xref: /openbmc/linux/arch/x86/entry/entry_32.S (revision 5d7800d9)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  Copyright (C) 1991,1992  Linus Torvalds
4 *
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
6 *
7 * Stack layout while running C code:
8 *	ptrace needs to have all registers on the stack.
9 *	If the order here is changed, it needs to be
10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
11 *	ptrace.c and ptrace.h
12 *
13 *	 0(%esp) - %ebx
14 *	 4(%esp) - %ecx
15 *	 8(%esp) - %edx
16 *	 C(%esp) - %esi
17 *	10(%esp) - %edi
18 *	14(%esp) - %ebp
19 *	18(%esp) - %eax
20 *	1C(%esp) - %ds
21 *	20(%esp) - %es
22 *	24(%esp) - %fs
23 *	28(%esp) - unused -- was %gs on old stackprotector kernels
24 *	2C(%esp) - orig_eax
25 *	30(%esp) - %eip
26 *	34(%esp) - %cs
27 *	38(%esp) - %eflags
28 *	3C(%esp) - %oldesp
29 *	40(%esp) - %oldss
30 */
31
32#include <linux/linkage.h>
33#include <linux/err.h>
34#include <asm/thread_info.h>
35#include <asm/irqflags.h>
36#include <asm/errno.h>
37#include <asm/segment.h>
38#include <asm/smp.h>
39#include <asm/percpu.h>
40#include <asm/processor-flags.h>
41#include <asm/irq_vectors.h>
42#include <asm/cpufeatures.h>
43#include <asm/alternative.h>
44#include <asm/asm.h>
45#include <asm/smap.h>
46#include <asm/frame.h>
47#include <asm/trapnr.h>
48#include <asm/nospec-branch.h>
49
50#include "calling.h"
51
52	.section .entry.text, "ax"
53
54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
55
56/* Unconditionally switch to user cr3 */
57.macro SWITCH_TO_USER_CR3 scratch_reg:req
58	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
59
60	movl	%cr3, \scratch_reg
61	orl	$PTI_SWITCH_MASK, \scratch_reg
62	movl	\scratch_reg, %cr3
63.Lend_\@:
64.endm
65
66.macro BUG_IF_WRONG_CR3 no_user_check=0
67#ifdef CONFIG_DEBUG_ENTRY
68	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69	.if \no_user_check == 0
70	/* coming from usermode? */
71	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
72	jz	.Lend_\@
73	.endif
74	/* On user-cr3? */
75	movl	%cr3, %eax
76	testl	$PTI_SWITCH_MASK, %eax
77	jnz	.Lend_\@
78	/* From userspace with kernel cr3 - BUG */
79	ud2
80.Lend_\@:
81#endif
82.endm
83
84/*
85 * Switch to kernel cr3 if not already loaded and return current cr3 in
86 * \scratch_reg
87 */
88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90	movl	%cr3, \scratch_reg
91	/* Test if we are already on kernel CR3 */
92	testl	$PTI_SWITCH_MASK, \scratch_reg
93	jz	.Lend_\@
94	andl	$(~PTI_SWITCH_MASK), \scratch_reg
95	movl	\scratch_reg, %cr3
96	/* Return original CR3 in \scratch_reg */
97	orl	$PTI_SWITCH_MASK, \scratch_reg
98.Lend_\@:
99.endm
100
101#define CS_FROM_ENTRY_STACK	(1 << 31)
102#define CS_FROM_USER_CR3	(1 << 30)
103#define CS_FROM_KERNEL		(1 << 29)
104#define CS_FROM_ESPFIX		(1 << 28)
105
106.macro FIXUP_FRAME
107	/*
108	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109	 * Clear them in case hardware didn't do this for us.
110	 */
111	andl	$0x0000ffff, 4*4(%esp)
112
113#ifdef CONFIG_VM86
114	testl	$X86_EFLAGS_VM, 5*4(%esp)
115	jnz	.Lfrom_usermode_no_fixup_\@
116#endif
117	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
118	jnz	.Lfrom_usermode_no_fixup_\@
119
120	orl	$CS_FROM_KERNEL, 4*4(%esp)
121
122	/*
123	 * When we're here from kernel mode; the (exception) stack looks like:
124	 *
125	 *  6*4(%esp) - <previous context>
126	 *  5*4(%esp) - flags
127	 *  4*4(%esp) - cs
128	 *  3*4(%esp) - ip
129	 *  2*4(%esp) - orig_eax
130	 *  1*4(%esp) - gs / function
131	 *  0*4(%esp) - fs
132	 *
133	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134	 * is complete and in particular regs->sp is correct. This gives us
135	 * the original 6 entries as gap:
136	 *
137	 * 14*4(%esp) - <previous context>
138	 * 13*4(%esp) - gap / flags
139	 * 12*4(%esp) - gap / cs
140	 * 11*4(%esp) - gap / ip
141	 * 10*4(%esp) - gap / orig_eax
142	 *  9*4(%esp) - gap / gs / function
143	 *  8*4(%esp) - gap / fs
144	 *  7*4(%esp) - ss
145	 *  6*4(%esp) - sp
146	 *  5*4(%esp) - flags
147	 *  4*4(%esp) - cs
148	 *  3*4(%esp) - ip
149	 *  2*4(%esp) - orig_eax
150	 *  1*4(%esp) - gs / function
151	 *  0*4(%esp) - fs
152	 */
153
154	pushl	%ss		# ss
155	pushl	%esp		# sp (points at ss)
156	addl	$7*4, (%esp)	# point sp back at the previous context
157	pushl	7*4(%esp)	# flags
158	pushl	7*4(%esp)	# cs
159	pushl	7*4(%esp)	# ip
160	pushl	7*4(%esp)	# orig_eax
161	pushl	7*4(%esp)	# gs / function
162	pushl	7*4(%esp)	# fs
163.Lfrom_usermode_no_fixup_\@:
164.endm
165
166.macro IRET_FRAME
167	/*
168	 * We're called with %ds, %es, %fs, and %gs from the interrupted
169	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
170	 * mode and therefore have a nonzero SS base and an offset ESP,
171	 * so any attempt to access the stack needs to use SS.  (except for
172	 * accesses through %esp, which automatically use SS.)
173	 */
174	testl $CS_FROM_KERNEL, 1*4(%esp)
175	jz .Lfinished_frame_\@
176
177	/*
178	 * Reconstruct the 3 entry IRET frame right after the (modified)
179	 * regs->sp without lowering %esp in between, such that an NMI in the
180	 * middle doesn't scribble our stack.
181	 */
182	pushl	%eax
183	pushl	%ecx
184	movl	5*4(%esp), %eax		# (modified) regs->sp
185
186	movl	4*4(%esp), %ecx		# flags
187	movl	%ecx, %ss:-1*4(%eax)
188
189	movl	3*4(%esp), %ecx		# cs
190	andl	$0x0000ffff, %ecx
191	movl	%ecx, %ss:-2*4(%eax)
192
193	movl	2*4(%esp), %ecx		# ip
194	movl	%ecx, %ss:-3*4(%eax)
195
196	movl	1*4(%esp), %ecx		# eax
197	movl	%ecx, %ss:-4*4(%eax)
198
199	popl	%ecx
200	lea	-4*4(%eax), %esp
201	popl	%eax
202.Lfinished_frame_\@:
203.endm
204
205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
206	cld
207.if \skip_gs == 0
208	pushl	$0
209.endif
210	pushl	%fs
211
212	pushl	%eax
213	movl	$(__KERNEL_PERCPU), %eax
214	movl	%eax, %fs
215.if \unwind_espfix > 0
216	UNWIND_ESPFIX_STACK
217.endif
218	popl	%eax
219
220	FIXUP_FRAME
221	pushl	%es
222	pushl	%ds
223	pushl	\pt_regs_ax
224	pushl	%ebp
225	pushl	%edi
226	pushl	%esi
227	pushl	%edx
228	pushl	%ecx
229	pushl	%ebx
230	movl	$(__USER_DS), %edx
231	movl	%edx, %ds
232	movl	%edx, %es
233	/* Switch to kernel stack if necessary */
234.if \switch_stacks > 0
235	SWITCH_TO_KERNEL_STACK
236.endif
237.endm
238
239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240	SAVE_ALL unwind_espfix=\unwind_espfix
241
242	BUG_IF_WRONG_CR3
243
244	/*
245	 * Now switch the CR3 when PTI is enabled.
246	 *
247	 * We can enter with either user or kernel cr3, the code will
248	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
249	 * if necessary.
250	 */
251	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
252
253.Lend_\@:
254.endm
255
256.macro RESTORE_INT_REGS
257	popl	%ebx
258	popl	%ecx
259	popl	%edx
260	popl	%esi
261	popl	%edi
262	popl	%ebp
263	popl	%eax
264.endm
265
266.macro RESTORE_REGS pop=0
267	RESTORE_INT_REGS
2681:	popl	%ds
2692:	popl	%es
2703:	popl	%fs
2714:	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
272	IRET_FRAME
273
274	/*
275	 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276	 * ASM the registers are known and we can trivially hard-code them.
277	 */
278	_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279	_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280	_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
281.endm
282
283.macro RESTORE_ALL_NMI cr3_reg:req pop=0
284	/*
285	 * Now switch the CR3 when PTI is enabled.
286	 *
287	 * We enter with kernel cr3 and switch the cr3 to the value
288	 * stored on \cr3_reg, which is either a user or a kernel cr3.
289	 */
290	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
291
292	testl	$PTI_SWITCH_MASK, \cr3_reg
293	jz	.Lswitched_\@
294
295	/* User cr3 in \cr3_reg - write it to hardware cr3 */
296	movl	\cr3_reg, %cr3
297
298.Lswitched_\@:
299
300	BUG_IF_WRONG_CR3
301
302	RESTORE_REGS pop=\pop
303.endm
304
305.macro CHECK_AND_APPLY_ESPFIX
306#ifdef CONFIG_X86_ESPFIX32
307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
309
310	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
311
312	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
313	/*
314	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315	 * are returning to the kernel.
316	 * See comments in process.c:copy_thread() for details.
317	 */
318	movb	PT_OLDSS(%esp), %ah
319	movb	PT_CS(%esp), %al
320	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
322	jne	.Lend_\@	# returning to user-space with LDT SS
323
324	/*
325	 * Setup and switch to ESPFIX stack
326	 *
327	 * We're returning to userspace with a 16 bit stack. The CPU will not
328	 * restore the high word of ESP for us on executing iret... This is an
329	 * "official" bug of all the x86-compatible CPUs, which we can work
330	 * around to make dosemu and wine happy. We do this by preloading the
331	 * high word of ESP with the high word of the userspace ESP while
332	 * compensating for the offset by changing to the ESPFIX segment with
333	 * a base address that matches for the difference.
334	 */
335	mov	%esp, %edx			/* load kernel esp */
336	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
337	mov	%dx, %ax			/* eax: new kernel esp */
338	sub	%eax, %edx			/* offset (low word is 0) */
339	shr	$16, %edx
340	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
341	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
342	pushl	$__ESPFIX_SS
343	pushl	%eax				/* new kernel esp */
344	/*
345	 * Disable interrupts, but do not irqtrace this section: we
346	 * will soon execute iret and the tracer was already set to
347	 * the irqstate after the IRET:
348	 */
349	cli
350	lss	(%esp), %esp			/* switch to espfix segment */
351.Lend_\@:
352#endif /* CONFIG_X86_ESPFIX32 */
353.endm
354
355/*
356 * Called with pt_regs fully populated and kernel segments loaded,
357 * so we can access PER_CPU and use the integer registers.
358 *
359 * We need to be very careful here with the %esp switch, because an NMI
360 * can happen everywhere. If the NMI handler finds itself on the
361 * entry-stack, it will overwrite the task-stack and everything we
362 * copied there. So allocate the stack-frame on the task-stack and
363 * switch to it before we do any copying.
364 */
365
366.macro SWITCH_TO_KERNEL_STACK
367
368	BUG_IF_WRONG_CR3
369
370	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
371
372	/*
373	 * %eax now contains the entry cr3 and we carry it forward in
374	 * that register for the time this macro runs
375	 */
376
377	/* Are we on the entry stack? Bail out if not! */
378	movl	PER_CPU_VAR(cpu_entry_area), %ecx
379	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
381	cmpl	$SIZEOF_entry_stack, %ecx
382	jae	.Lend_\@
383
384	/* Load stack pointer into %esi and %edi */
385	movl	%esp, %esi
386	movl	%esi, %edi
387
388	/* Move %edi to the top of the entry stack */
389	andl	$(MASK_entry_stack), %edi
390	addl	$(SIZEOF_entry_stack), %edi
391
392	/* Load top of task-stack into %edi */
393	movl	TSS_entry2task_stack(%edi), %edi
394
395	/* Special case - entry from kernel mode via entry stack */
396#ifdef CONFIG_VM86
397	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
398	movb	PT_CS(%esp), %cl
399	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
400#else
401	movl	PT_CS(%esp), %ecx
402	andl	$SEGMENT_RPL_MASK, %ecx
403#endif
404	cmpl	$USER_RPL, %ecx
405	jb	.Lentry_from_kernel_\@
406
407	/* Bytes to copy */
408	movl	$PTREGS_SIZE, %ecx
409
410#ifdef CONFIG_VM86
411	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
412	jz	.Lcopy_pt_regs_\@
413
414	/*
415	 * Stack-frame contains 4 additional segment registers when
416	 * coming from VM86 mode
417	 */
418	addl	$(4 * 4), %ecx
419
420#endif
421.Lcopy_pt_regs_\@:
422
423	/* Allocate frame on task-stack */
424	subl	%ecx, %edi
425
426	/* Switch to task-stack */
427	movl	%edi, %esp
428
429	/*
430	 * We are now on the task-stack and can safely copy over the
431	 * stack-frame
432	 */
433	shrl	$2, %ecx
434	cld
435	rep movsl
436
437	jmp .Lend_\@
438
439.Lentry_from_kernel_\@:
440
441	/*
442	 * This handles the case when we enter the kernel from
443	 * kernel-mode and %esp points to the entry-stack. When this
444	 * happens we need to switch to the task-stack to run C code,
445	 * but switch back to the entry-stack again when we approach
446	 * iret and return to the interrupted code-path. This usually
447	 * happens when we hit an exception while restoring user-space
448	 * segment registers on the way back to user-space or when the
449	 * sysenter handler runs with eflags.tf set.
450	 *
451	 * When we switch to the task-stack here, we can't trust the
452	 * contents of the entry-stack anymore, as the exception handler
453	 * might be scheduled out or moved to another CPU. Therefore we
454	 * copy the complete entry-stack to the task-stack and set a
455	 * marker in the iret-frame (bit 31 of the CS dword) to detect
456	 * what we've done on the iret path.
457	 *
458	 * On the iret path we copy everything back and switch to the
459	 * entry-stack, so that the interrupted kernel code-path
460	 * continues on the same stack it was interrupted with.
461	 *
462	 * Be aware that an NMI can happen anytime in this code.
463	 *
464	 * %esi: Entry-Stack pointer (same as %esp)
465	 * %edi: Top of the task stack
466	 * %eax: CR3 on kernel entry
467	 */
468
469	/* Calculate number of bytes on the entry stack in %ecx */
470	movl	%esi, %ecx
471
472	/* %ecx to the top of entry-stack */
473	andl	$(MASK_entry_stack), %ecx
474	addl	$(SIZEOF_entry_stack), %ecx
475
476	/* Number of bytes on the entry stack to %ecx */
477	sub	%esi, %ecx
478
479	/* Mark stackframe as coming from entry stack */
480	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
481
482	/*
483	 * Test the cr3 used to enter the kernel and add a marker
484	 * so that we can switch back to it before iret.
485	 */
486	testl	$PTI_SWITCH_MASK, %eax
487	jz	.Lcopy_pt_regs_\@
488	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
489
490	/*
491	 * %esi and %edi are unchanged, %ecx contains the number of
492	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493	 * the stack-frame on task-stack and copy everything over
494	 */
495	jmp .Lcopy_pt_regs_\@
496
497.Lend_\@:
498.endm
499
500/*
501 * Switch back from the kernel stack to the entry stack.
502 *
503 * The %esp register must point to pt_regs on the task stack. It will
504 * first calculate the size of the stack-frame to copy, depending on
505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506 * to copy the contents of the stack over to the entry stack.
507 *
508 * We must be very careful here, as we can't trust the contents of the
509 * task-stack once we switched to the entry-stack. When an NMI happens
510 * while on the entry-stack, the NMI handler will switch back to the top
511 * of the task stack, overwriting our stack-frame we are about to copy.
512 * Therefore we switch the stack only after everything is copied over.
513 */
514.macro SWITCH_TO_ENTRY_STACK
515
516	/* Bytes to copy */
517	movl	$PTREGS_SIZE, %ecx
518
519#ifdef CONFIG_VM86
520	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
521	jz	.Lcopy_pt_regs_\@
522
523	/* Additional 4 registers to copy when returning to VM86 mode */
524	addl    $(4 * 4), %ecx
525
526.Lcopy_pt_regs_\@:
527#endif
528
529	/* Initialize source and destination for movsl */
530	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
531	subl	%ecx, %edi
532	movl	%esp, %esi
533
534	/* Save future stack pointer in %ebx */
535	movl	%edi, %ebx
536
537	/* Copy over the stack-frame */
538	shrl	$2, %ecx
539	cld
540	rep movsl
541
542	/*
543	 * Switch to entry-stack - needs to happen after everything is
544	 * copied because the NMI handler will overwrite the task-stack
545	 * when on entry-stack
546	 */
547	movl	%ebx, %esp
548
549.Lend_\@:
550.endm
551
552/*
553 * This macro handles the case when we return to kernel-mode on the iret
554 * path and have to switch back to the entry stack and/or user-cr3
555 *
556 * See the comments below the .Lentry_from_kernel_\@ label in the
557 * SWITCH_TO_KERNEL_STACK macro for more details.
558 */
559.macro PARANOID_EXIT_TO_KERNEL_MODE
560
561	/*
562	 * Test if we entered the kernel with the entry-stack. Most
563	 * likely we did not, because this code only runs on the
564	 * return-to-kernel path.
565	 */
566	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
567	jz	.Lend_\@
568
569	/* Unlikely slow-path */
570
571	/* Clear marker from stack-frame */
572	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
573
574	/* Copy the remaining task-stack contents to entry-stack */
575	movl	%esp, %esi
576	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
577
578	/* Bytes on the task-stack to ecx */
579	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
580	subl	%esi, %ecx
581
582	/* Allocate stack-frame on entry-stack */
583	subl	%ecx, %edi
584
585	/*
586	 * Save future stack-pointer, we must not switch until the
587	 * copy is done, otherwise the NMI handler could destroy the
588	 * contents of the task-stack we are about to copy.
589	 */
590	movl	%edi, %ebx
591
592	/* Do the copy */
593	shrl	$2, %ecx
594	cld
595	rep movsl
596
597	/* Safe to switch to entry-stack now */
598	movl	%ebx, %esp
599
600	/*
601	 * We came from entry-stack and need to check if we also need to
602	 * switch back to user cr3.
603	 */
604	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
605	jz	.Lend_\@
606
607	/* Clear marker from stack-frame */
608	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
609
610	SWITCH_TO_USER_CR3 scratch_reg=%eax
611
612.Lend_\@:
613.endm
614
615/**
616 * idtentry - Macro to generate entry stubs for simple IDT entries
617 * @vector:		Vector number
618 * @asmsym:		ASM symbol for the entry point
619 * @cfunc:		C function to be called
620 * @has_error_code:	Hardware pushed error code on stack
621 */
622.macro idtentry vector asmsym cfunc has_error_code:req
623SYM_CODE_START(\asmsym)
624	ASM_CLAC
625	cld
626
627	.if \has_error_code == 0
628		pushl	$0		/* Clear the error code */
629	.endif
630
631	/* Push the C-function address into the GS slot */
632	pushl	$\cfunc
633	/* Invoke the common exception entry */
634	jmp	handle_exception
635SYM_CODE_END(\asmsym)
636.endm
637
638.macro idtentry_irq vector cfunc
639	.p2align CONFIG_X86_L1_CACHE_SHIFT
640SYM_CODE_START_LOCAL(asm_\cfunc)
641	ASM_CLAC
642	SAVE_ALL switch_stacks=1
643	ENCODE_FRAME_POINTER
644	movl	%esp, %eax
645	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
646	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
647	call	\cfunc
648	jmp	handle_exception_return
649SYM_CODE_END(asm_\cfunc)
650.endm
651
652.macro idtentry_sysvec vector cfunc
653	idtentry \vector asm_\cfunc \cfunc has_error_code=0
654.endm
655
656/*
657 * Include the defines which emit the idt entries which are shared
658 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
659 * so the stacktrace boundary checks work.
660 */
661	.align 16
662	.globl __irqentry_text_start
663__irqentry_text_start:
664
665#include <asm/idtentry.h>
666
667	.align 16
668	.globl __irqentry_text_end
669__irqentry_text_end:
670
671/*
672 * %eax: prev task
673 * %edx: next task
674 */
675.pushsection .text, "ax"
676SYM_CODE_START(__switch_to_asm)
677	/*
678	 * Save callee-saved registers
679	 * This must match the order in struct inactive_task_frame
680	 */
681	pushl	%ebp
682	pushl	%ebx
683	pushl	%edi
684	pushl	%esi
685	/*
686	 * Flags are saved to prevent AC leakage. This could go
687	 * away if objtool would have 32bit support to verify
688	 * the STAC/CLAC correctness.
689	 */
690	pushfl
691
692	/* switch stack */
693	movl	%esp, TASK_threadsp(%eax)
694	movl	TASK_threadsp(%edx), %esp
695
696#ifdef CONFIG_STACKPROTECTOR
697	movl	TASK_stack_canary(%edx), %ebx
698	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
699#endif
700
701	/*
702	 * When switching from a shallower to a deeper call stack
703	 * the RSB may either underflow or use entries populated
704	 * with userspace addresses. On CPUs where those concerns
705	 * exist, overwrite the RSB with entries which capture
706	 * speculative execution to prevent attack.
707	 */
708	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
709
710	/* Restore flags or the incoming task to restore AC state. */
711	popfl
712	/* restore callee-saved registers */
713	popl	%esi
714	popl	%edi
715	popl	%ebx
716	popl	%ebp
717
718	jmp	__switch_to
719SYM_CODE_END(__switch_to_asm)
720.popsection
721
722/*
723 * A newly forked process directly context switches into this address.
724 *
725 * eax: prev task we switched from
726 * ebx: kernel thread func (NULL for user thread)
727 * edi: kernel thread arg
728 */
729.pushsection .text, "ax"
730SYM_CODE_START(ret_from_fork_asm)
731	movl	%esp, %edx	/* regs */
732
733	/* return address for the stack unwinder */
734	pushl	$.Lsyscall_32_done
735
736	FRAME_BEGIN
737	/* prev already in EAX */
738	movl	%ebx, %ecx	/* fn */
739	pushl	%edi		/* fn_arg */
740	call	ret_from_fork
741	addl	$4, %esp
742	FRAME_END
743
744	RET
745SYM_CODE_END(ret_from_fork_asm)
746.popsection
747
748SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
749/*
750 * All code from here through __end_SYSENTER_singlestep_region is subject
751 * to being single-stepped if a user program sets TF and executes SYSENTER.
752 * There is absolutely nothing that we can do to prevent this from happening
753 * (thanks Intel!).  To keep our handling of this situation as simple as
754 * possible, we handle TF just like AC and NT, except that our #DB handler
755 * will ignore all of the single-step traps generated in this range.
756 */
757
758/*
759 * 32-bit SYSENTER entry.
760 *
761 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
762 * if X86_FEATURE_SEP is available.  This is the preferred system call
763 * entry on 32-bit systems.
764 *
765 * The SYSENTER instruction, in principle, should *only* occur in the
766 * vDSO.  In practice, a small number of Android devices were shipped
767 * with a copy of Bionic that inlined a SYSENTER instruction.  This
768 * never happened in any of Google's Bionic versions -- it only happened
769 * in a narrow range of Intel-provided versions.
770 *
771 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
772 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
773 * SYSENTER does not save anything on the stack,
774 * and does not save old EIP (!!!), ESP, or EFLAGS.
775 *
776 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
777 * user and/or vm86 state), we explicitly disable the SYSENTER
778 * instruction in vm86 mode by reprogramming the MSRs.
779 *
780 * Arguments:
781 * eax  system call number
782 * ebx  arg1
783 * ecx  arg2
784 * edx  arg3
785 * esi  arg4
786 * edi  arg5
787 * ebp  user stack
788 * 0(%ebp) arg6
789 */
790SYM_FUNC_START(entry_SYSENTER_32)
791	/*
792	 * On entry-stack with all userspace-regs live - save and
793	 * restore eflags and %eax to use it as scratch-reg for the cr3
794	 * switch.
795	 */
796	pushfl
797	pushl	%eax
798	BUG_IF_WRONG_CR3 no_user_check=1
799	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
800	popl	%eax
801	popfl
802
803	/* Stack empty again, switch to task stack */
804	movl	TSS_entry2task_stack(%esp), %esp
805
806.Lsysenter_past_esp:
807	pushl	$__USER_DS		/* pt_regs->ss */
808	pushl	$0			/* pt_regs->sp (placeholder) */
809	pushfl				/* pt_regs->flags (except IF = 0) */
810	pushl	$__USER_CS		/* pt_regs->cs */
811	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
812	pushl	%eax			/* pt_regs->orig_ax */
813	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
814
815	/*
816	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
817	 * and TF ourselves.  To save a few cycles, we can check whether
818	 * either was set instead of doing an unconditional popfq.
819	 * This needs to happen before enabling interrupts so that
820	 * we don't get preempted with NT set.
821	 *
822	 * If TF is set, we will single-step all the way to here -- do_debug
823	 * will ignore all the traps.  (Yes, this is slow, but so is
824	 * single-stepping in general.  This allows us to avoid having
825	 * a more complicated code to handle the case where a user program
826	 * forces us to single-step through the SYSENTER entry code.)
827	 *
828	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
829	 * out-of-line as an optimization: NT is unlikely to be set in the
830	 * majority of the cases and instead of polluting the I$ unnecessarily,
831	 * we're keeping that code behind a branch which will predict as
832	 * not-taken and therefore its instructions won't be fetched.
833	 */
834	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
835	jnz	.Lsysenter_fix_flags
836.Lsysenter_flags_fixed:
837
838	movl	%esp, %eax
839	call	do_SYSENTER_32
840	testl	%eax, %eax
841	jz	.Lsyscall_32_done
842
843	STACKLEAK_ERASE
844
845	/* Opportunistic SYSEXIT */
846
847	/*
848	 * Setup entry stack - we keep the pointer in %eax and do the
849	 * switch after almost all user-state is restored.
850	 */
851
852	/* Load entry stack pointer and allocate frame for eflags/eax */
853	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
854	subl	$(2*4), %eax
855
856	/* Copy eflags and eax to entry stack */
857	movl	PT_EFLAGS(%esp), %edi
858	movl	PT_EAX(%esp), %esi
859	movl	%edi, (%eax)
860	movl	%esi, 4(%eax)
861
862	/* Restore user registers and segments */
863	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
864	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
8651:	mov	PT_FS(%esp), %fs
866
867	popl	%ebx			/* pt_regs->bx */
868	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
869	popl	%esi			/* pt_regs->si */
870	popl	%edi			/* pt_regs->di */
871	popl	%ebp			/* pt_regs->bp */
872
873	/* Switch to entry stack */
874	movl	%eax, %esp
875
876	/* Now ready to switch the cr3 */
877	SWITCH_TO_USER_CR3 scratch_reg=%eax
878
879	/*
880	 * Restore all flags except IF. (We restore IF separately because
881	 * STI gives a one-instruction window in which we won't be interrupted,
882	 * whereas POPF does not.)
883	 */
884	btrl	$X86_EFLAGS_IF_BIT, (%esp)
885	BUG_IF_WRONG_CR3 no_user_check=1
886	popfl
887	popl	%eax
888
889	/*
890	 * Return back to the vDSO, which will pop ecx and edx.
891	 * Don't bother with DS and ES (they already contain __USER_DS).
892	 */
893	sti
894	sysexit
895
8962:	movl    $0, PT_FS(%esp)
897	jmp     1b
898	_ASM_EXTABLE(1b, 2b)
899
900.Lsysenter_fix_flags:
901	pushl	$X86_EFLAGS_FIXED
902	popfl
903	jmp	.Lsysenter_flags_fixed
904SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
905SYM_FUNC_END(entry_SYSENTER_32)
906
907/*
908 * 32-bit legacy system call entry.
909 *
910 * 32-bit x86 Linux system calls traditionally used the INT $0x80
911 * instruction.  INT $0x80 lands here.
912 *
913 * This entry point can be used by any 32-bit perform system calls.
914 * Instances of INT $0x80 can be found inline in various programs and
915 * libraries.  It is also used by the vDSO's __kernel_vsyscall
916 * fallback for hardware that doesn't support a faster entry method.
917 * Restarted 32-bit system calls also fall back to INT $0x80
918 * regardless of what instruction was originally used to do the system
919 * call.  (64-bit programs can use INT $0x80 as well, but they can
920 * only run on 64-bit kernels and therefore land in
921 * entry_INT80_compat.)
922 *
923 * This is considered a slow path.  It is not used by most libc
924 * implementations on modern hardware except during process startup.
925 *
926 * Arguments:
927 * eax  system call number
928 * ebx  arg1
929 * ecx  arg2
930 * edx  arg3
931 * esi  arg4
932 * edi  arg5
933 * ebp  arg6
934 */
935SYM_FUNC_START(entry_INT80_32)
936	ASM_CLAC
937	pushl	%eax			/* pt_regs->orig_ax */
938
939	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
940
941	movl	%esp, %eax
942	call	do_int80_syscall_32
943.Lsyscall_32_done:
944	STACKLEAK_ERASE
945
946restore_all_switch_stack:
947	SWITCH_TO_ENTRY_STACK
948	CHECK_AND_APPLY_ESPFIX
949
950	/* Switch back to user CR3 */
951	SWITCH_TO_USER_CR3 scratch_reg=%eax
952
953	BUG_IF_WRONG_CR3
954
955	/* Restore user state */
956	RESTORE_REGS pop=4			# skip orig_eax/error_code
957.Lirq_return:
958	/*
959	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
960	 * when returning from IPI handler and when returning from
961	 * scheduler to user-space.
962	 */
963	iret
964
965.Lasm_iret_error:
966	pushl	$0				# no error code
967	pushl	$iret_error
968
969#ifdef CONFIG_DEBUG_ENTRY
970	/*
971	 * The stack-frame here is the one that iret faulted on, so its a
972	 * return-to-user frame. We are on kernel-cr3 because we come here from
973	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
974	 * as the checker expects it.
975	 */
976	pushl	%eax
977	SWITCH_TO_USER_CR3 scratch_reg=%eax
978	popl	%eax
979#endif
980
981	jmp	handle_exception
982
983	_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
984SYM_FUNC_END(entry_INT80_32)
985
986.macro FIXUP_ESPFIX_STACK
987/*
988 * Switch back for ESPFIX stack to the normal zerobased stack
989 *
990 * We can't call C functions using the ESPFIX stack. This code reads
991 * the high word of the segment base from the GDT and swiches to the
992 * normal stack and adjusts ESP with the matching offset.
993 *
994 * We might be on user CR3 here, so percpu data is not mapped and we can't
995 * access the GDT through the percpu segment.  Instead, use SGDT to find
996 * the cpu_entry_area alias of the GDT.
997 */
998#ifdef CONFIG_X86_ESPFIX32
999	/* fixup the stack */
1000	pushl	%ecx
1001	subl	$2*4, %esp
1002	sgdt	(%esp)
1003	movl	2(%esp), %ecx				/* GDT address */
1004	/*
1005	 * Careful: ECX is a linear pointer, so we need to force base
1006	 * zero.  %cs is the only known-linear segment we have right now.
1007	 */
1008	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1009	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1010	shl	$16, %eax
1011	addl	$2*4, %esp
1012	popl	%ecx
1013	addl	%esp, %eax			/* the adjusted stack pointer */
1014	pushl	$__KERNEL_DS
1015	pushl	%eax
1016	lss	(%esp), %esp			/* switch to the normal stack segment */
1017#endif
1018.endm
1019
1020.macro UNWIND_ESPFIX_STACK
1021	/* It's safe to clobber %eax, all other regs need to be preserved */
1022#ifdef CONFIG_X86_ESPFIX32
1023	movl	%ss, %eax
1024	/* see if on espfix stack */
1025	cmpw	$__ESPFIX_SS, %ax
1026	jne	.Lno_fixup_\@
1027	/* switch to normal stack */
1028	FIXUP_ESPFIX_STACK
1029.Lno_fixup_\@:
1030#endif
1031.endm
1032
1033SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1034	/* the function address is in %gs's slot on the stack */
1035	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1036	ENCODE_FRAME_POINTER
1037
1038	movl	PT_GS(%esp), %edi		# get the function address
1039
1040	/* fixup orig %eax */
1041	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1042	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1043
1044	movl	%esp, %eax			# pt_regs pointer
1045	CALL_NOSPEC edi
1046
1047handle_exception_return:
1048#ifdef CONFIG_VM86
1049	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1050	movb	PT_CS(%esp), %al
1051	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1052#else
1053	/*
1054	 * We can be coming here from child spawned by kernel_thread().
1055	 */
1056	movl	PT_CS(%esp), %eax
1057	andl	$SEGMENT_RPL_MASK, %eax
1058#endif
1059	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1060	jnb	ret_to_user
1061
1062	PARANOID_EXIT_TO_KERNEL_MODE
1063	BUG_IF_WRONG_CR3
1064	RESTORE_REGS 4
1065	jmp	.Lirq_return
1066
1067ret_to_user:
1068	movl	%esp, %eax
1069	jmp	restore_all_switch_stack
1070SYM_CODE_END(handle_exception)
1071
1072SYM_CODE_START(asm_exc_double_fault)
10731:
1074	/*
1075	 * This is a task gate handler, not an interrupt gate handler.
1076	 * The error code is on the stack, but the stack is otherwise
1077	 * empty.  Interrupts are off.  Our state is sane with the following
1078	 * exceptions:
1079	 *
1080	 *  - CR0.TS is set.  "TS" literally means "task switched".
1081	 *  - EFLAGS.NT is set because we're a "nested task".
1082	 *  - The doublefault TSS has back_link set and has been marked busy.
1083	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1084	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1085	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1086	 *    would make it very awkward to return back to the context we came
1087	 *    from.
1088	 *
1089	 * The rest of EFLAGS is sanitized for us, so we don't need to
1090	 * worry about AC or DF.
1091	 *
1092	 * Don't even bother popping the error code.  It's always zero,
1093	 * and ignoring it makes us a bit more robust against buggy
1094	 * hypervisor task gate implementations.
1095	 *
1096	 * We will manually undo the task switch instead of doing a
1097	 * task-switching IRET.
1098	 */
1099
1100	clts				/* clear CR0.TS */
1101	pushl	$X86_EFLAGS_FIXED
1102	popfl				/* clear EFLAGS.NT */
1103
1104	call	doublefault_shim
1105
1106	/* We don't support returning, so we have no IRET here. */
11071:
1108	hlt
1109	jmp 1b
1110SYM_CODE_END(asm_exc_double_fault)
1111
1112/*
1113 * NMI is doubly nasty.  It can happen on the first instruction of
1114 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1115 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1116 * switched stacks.  We handle both conditions by simply checking whether we
1117 * interrupted kernel code running on the SYSENTER stack.
1118 */
1119SYM_CODE_START(asm_exc_nmi)
1120	ASM_CLAC
1121
1122#ifdef CONFIG_X86_ESPFIX32
1123	/*
1124	 * ESPFIX_SS is only ever set on the return to user path
1125	 * after we've switched to the entry stack.
1126	 */
1127	pushl	%eax
1128	movl	%ss, %eax
1129	cmpw	$__ESPFIX_SS, %ax
1130	popl	%eax
1131	je	.Lnmi_espfix_stack
1132#endif
1133
1134	pushl	%eax				# pt_regs->orig_ax
1135	SAVE_ALL_NMI cr3_reg=%edi
1136	ENCODE_FRAME_POINTER
1137	xorl	%edx, %edx			# zero error code
1138	movl	%esp, %eax			# pt_regs pointer
1139
1140	/* Are we currently on the SYSENTER stack? */
1141	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1142	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1143	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1144	cmpl	$SIZEOF_entry_stack, %ecx
1145	jb	.Lnmi_from_sysenter_stack
1146
1147	/* Not on SYSENTER stack. */
1148	call	exc_nmi
1149	jmp	.Lnmi_return
1150
1151.Lnmi_from_sysenter_stack:
1152	/*
1153	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1154	 * is using the thread stack right now, so it's safe for us to use it.
1155	 */
1156	movl	%esp, %ebx
1157	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1158	call	exc_nmi
1159	movl	%ebx, %esp
1160
1161.Lnmi_return:
1162#ifdef CONFIG_X86_ESPFIX32
1163	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1164	jnz	.Lnmi_from_espfix
1165#endif
1166
1167	CHECK_AND_APPLY_ESPFIX
1168	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1169	jmp	.Lirq_return
1170
1171#ifdef CONFIG_X86_ESPFIX32
1172.Lnmi_espfix_stack:
1173	/*
1174	 * Create the pointer to LSS back
1175	 */
1176	pushl	%ss
1177	pushl	%esp
1178	addl	$4, (%esp)
1179
1180	/* Copy the (short) IRET frame */
1181	pushl	4*4(%esp)	# flags
1182	pushl	4*4(%esp)	# cs
1183	pushl	4*4(%esp)	# ip
1184
1185	pushl	%eax		# orig_ax
1186
1187	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1188	ENCODE_FRAME_POINTER
1189
1190	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1191	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1192
1193	xorl	%edx, %edx			# zero error code
1194	movl	%esp, %eax			# pt_regs pointer
1195	jmp	.Lnmi_from_sysenter_stack
1196
1197.Lnmi_from_espfix:
1198	RESTORE_ALL_NMI cr3_reg=%edi
1199	/*
1200	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1201	 * fix up the gap and long frame:
1202	 *
1203	 *  3 - original frame	(exception)
1204	 *  2 - ESPFIX block	(above)
1205	 *  6 - gap		(FIXUP_FRAME)
1206	 *  5 - long frame	(FIXUP_FRAME)
1207	 *  1 - orig_ax
1208	 */
1209	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1210	jmp	.Lirq_return
1211#endif
1212SYM_CODE_END(asm_exc_nmi)
1213
1214.pushsection .text, "ax"
1215SYM_CODE_START(rewind_stack_and_make_dead)
1216	/* Prevent any naive code from trying to unwind to our caller. */
1217	xorl	%ebp, %ebp
1218
1219	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1220	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1221
1222	call	make_task_dead
12231:	jmp 1b
1224SYM_CODE_END(rewind_stack_and_make_dead)
1225.popsection
1226