1 /* 2 * common.c - C code for kernel entry and exit 3 * Copyright (c) 2015 Andrew Lutomirski 4 * GPL v2 5 * 6 * Based on asm and ptrace code by many authors. The code here originated 7 * in ptrace.c and signal.c. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/sched.h> 12 #include <linux/mm.h> 13 #include <linux/smp.h> 14 #include <linux/errno.h> 15 #include <linux/ptrace.h> 16 #include <linux/tracehook.h> 17 #include <linux/audit.h> 18 #include <linux/seccomp.h> 19 #include <linux/signal.h> 20 #include <linux/export.h> 21 #include <linux/context_tracking.h> 22 #include <linux/user-return-notifier.h> 23 #include <linux/uprobes.h> 24 25 #include <asm/desc.h> 26 #include <asm/traps.h> 27 #include <asm/vdso.h> 28 #include <asm/uaccess.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/syscalls.h> 32 33 static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs) 34 { 35 unsigned long top_of_stack = 36 (unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING; 37 return (struct thread_info *)(top_of_stack - THREAD_SIZE); 38 } 39 40 #ifdef CONFIG_CONTEXT_TRACKING 41 /* Called on entry from user mode with IRQs off. */ 42 __visible void enter_from_user_mode(void) 43 { 44 CT_WARN_ON(ct_state() != CONTEXT_USER); 45 user_exit(); 46 } 47 #endif 48 49 static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch) 50 { 51 #ifdef CONFIG_X86_64 52 if (arch == AUDIT_ARCH_X86_64) { 53 audit_syscall_entry(regs->orig_ax, regs->di, 54 regs->si, regs->dx, regs->r10); 55 } else 56 #endif 57 { 58 audit_syscall_entry(regs->orig_ax, regs->bx, 59 regs->cx, regs->dx, regs->si); 60 } 61 } 62 63 /* 64 * We can return 0 to resume the syscall or anything else to go to phase 65 * 2. If we resume the syscall, we need to put something appropriate in 66 * regs->orig_ax. 67 * 68 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax 69 * are fully functional. 70 * 71 * For phase 2's benefit, our return value is: 72 * 0: resume the syscall 73 * 1: go to phase 2; no seccomp phase 2 needed 74 * anything else: go to phase 2; pass return value to seccomp 75 */ 76 unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch) 77 { 78 struct thread_info *ti = pt_regs_to_thread_info(regs); 79 unsigned long ret = 0; 80 u32 work; 81 82 if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) 83 BUG_ON(regs != task_pt_regs(current)); 84 85 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY; 86 87 #ifdef CONFIG_CONTEXT_TRACKING 88 /* 89 * If TIF_NOHZ is set, we are required to call user_exit() before 90 * doing anything that could touch RCU. 91 */ 92 if (work & _TIF_NOHZ) { 93 enter_from_user_mode(); 94 work &= ~_TIF_NOHZ; 95 } 96 #endif 97 98 #ifdef CONFIG_SECCOMP 99 /* 100 * Do seccomp first -- it should minimize exposure of other 101 * code, and keeping seccomp fast is probably more valuable 102 * than the rest of this. 103 */ 104 if (work & _TIF_SECCOMP) { 105 struct seccomp_data sd; 106 107 sd.arch = arch; 108 sd.nr = regs->orig_ax; 109 sd.instruction_pointer = regs->ip; 110 #ifdef CONFIG_X86_64 111 if (arch == AUDIT_ARCH_X86_64) { 112 sd.args[0] = regs->di; 113 sd.args[1] = regs->si; 114 sd.args[2] = regs->dx; 115 sd.args[3] = regs->r10; 116 sd.args[4] = regs->r8; 117 sd.args[5] = regs->r9; 118 } else 119 #endif 120 { 121 sd.args[0] = regs->bx; 122 sd.args[1] = regs->cx; 123 sd.args[2] = regs->dx; 124 sd.args[3] = regs->si; 125 sd.args[4] = regs->di; 126 sd.args[5] = regs->bp; 127 } 128 129 BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0); 130 BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1); 131 132 ret = seccomp_phase1(&sd); 133 if (ret == SECCOMP_PHASE1_SKIP) { 134 regs->orig_ax = -1; 135 ret = 0; 136 } else if (ret != SECCOMP_PHASE1_OK) { 137 return ret; /* Go directly to phase 2 */ 138 } 139 140 work &= ~_TIF_SECCOMP; 141 } 142 #endif 143 144 /* Do our best to finish without phase 2. */ 145 if (work == 0) 146 return ret; /* seccomp and/or nohz only (ret == 0 here) */ 147 148 #ifdef CONFIG_AUDITSYSCALL 149 if (work == _TIF_SYSCALL_AUDIT) { 150 /* 151 * If there is no more work to be done except auditing, 152 * then audit in phase 1. Phase 2 always audits, so, if 153 * we audit here, then we can't go on to phase 2. 154 */ 155 do_audit_syscall_entry(regs, arch); 156 return 0; 157 } 158 #endif 159 160 return 1; /* Something is enabled that we can't handle in phase 1 */ 161 } 162 163 /* Returns the syscall nr to run (which should match regs->orig_ax). */ 164 long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch, 165 unsigned long phase1_result) 166 { 167 struct thread_info *ti = pt_regs_to_thread_info(regs); 168 long ret = 0; 169 u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY; 170 171 if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) 172 BUG_ON(regs != task_pt_regs(current)); 173 174 /* 175 * If we stepped into a sysenter/syscall insn, it trapped in 176 * kernel mode; do_debug() cleared TF and set TIF_SINGLESTEP. 177 * If user-mode had set TF itself, then it's still clear from 178 * do_debug() and we need to set it again to restore the user 179 * state. If we entered on the slow path, TF was already set. 180 */ 181 if (work & _TIF_SINGLESTEP) 182 regs->flags |= X86_EFLAGS_TF; 183 184 #ifdef CONFIG_SECCOMP 185 /* 186 * Call seccomp_phase2 before running the other hooks so that 187 * they can see any changes made by a seccomp tracer. 188 */ 189 if (phase1_result > 1 && seccomp_phase2(phase1_result)) { 190 /* seccomp failures shouldn't expose any additional code. */ 191 return -1; 192 } 193 #endif 194 195 if (unlikely(work & _TIF_SYSCALL_EMU)) 196 ret = -1L; 197 198 if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) && 199 tracehook_report_syscall_entry(regs)) 200 ret = -1L; 201 202 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) 203 trace_sys_enter(regs, regs->orig_ax); 204 205 do_audit_syscall_entry(regs, arch); 206 207 return ret ?: regs->orig_ax; 208 } 209 210 long syscall_trace_enter(struct pt_regs *regs) 211 { 212 u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; 213 unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch); 214 215 if (phase1_result == 0) 216 return regs->orig_ax; 217 else 218 return syscall_trace_enter_phase2(regs, arch, phase1_result); 219 } 220 221 #define EXIT_TO_USERMODE_LOOP_FLAGS \ 222 (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ 223 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY) 224 225 static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags) 226 { 227 /* 228 * In order to return to user mode, we need to have IRQs off with 229 * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY, 230 * _TIF_UPROBE, or _TIF_NEED_RESCHED set. Several of these flags 231 * can be set at any time on preemptable kernels if we have IRQs on, 232 * so we need to loop. Disabling preemption wouldn't help: doing the 233 * work to clear some of the flags can sleep. 234 */ 235 while (true) { 236 /* We have work to do. */ 237 local_irq_enable(); 238 239 if (cached_flags & _TIF_NEED_RESCHED) 240 schedule(); 241 242 if (cached_flags & _TIF_UPROBE) 243 uprobe_notify_resume(regs); 244 245 /* deal with pending signal delivery */ 246 if (cached_flags & _TIF_SIGPENDING) 247 do_signal(regs); 248 249 if (cached_flags & _TIF_NOTIFY_RESUME) { 250 clear_thread_flag(TIF_NOTIFY_RESUME); 251 tracehook_notify_resume(regs); 252 } 253 254 if (cached_flags & _TIF_USER_RETURN_NOTIFY) 255 fire_user_return_notifiers(); 256 257 /* Disable IRQs and retry */ 258 local_irq_disable(); 259 260 cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags); 261 262 if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) 263 break; 264 265 } 266 } 267 268 /* Called with IRQs disabled. */ 269 __visible inline void prepare_exit_to_usermode(struct pt_regs *regs) 270 { 271 u32 cached_flags; 272 273 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled())) 274 local_irq_disable(); 275 276 lockdep_sys_exit(); 277 278 cached_flags = 279 READ_ONCE(pt_regs_to_thread_info(regs)->flags); 280 281 if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) 282 exit_to_usermode_loop(regs, cached_flags); 283 284 user_enter(); 285 } 286 287 #define SYSCALL_EXIT_WORK_FLAGS \ 288 (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \ 289 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT) 290 291 static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags) 292 { 293 bool step; 294 295 audit_syscall_exit(regs); 296 297 if (cached_flags & _TIF_SYSCALL_TRACEPOINT) 298 trace_sys_exit(regs, regs->ax); 299 300 /* 301 * If TIF_SYSCALL_EMU is set, we only get here because of 302 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP). 303 * We already reported this syscall instruction in 304 * syscall_trace_enter(). 305 */ 306 step = unlikely( 307 (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU)) 308 == _TIF_SINGLESTEP); 309 if (step || cached_flags & _TIF_SYSCALL_TRACE) 310 tracehook_report_syscall_exit(regs, step); 311 } 312 313 /* 314 * Called with IRQs on and fully valid regs. Returns with IRQs off in a 315 * state such that we can immediately switch to user mode. 316 */ 317 __visible inline void syscall_return_slowpath(struct pt_regs *regs) 318 { 319 struct thread_info *ti = pt_regs_to_thread_info(regs); 320 u32 cached_flags = READ_ONCE(ti->flags); 321 322 CT_WARN_ON(ct_state() != CONTEXT_KERNEL); 323 324 if (IS_ENABLED(CONFIG_PROVE_LOCKING) && 325 WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax)) 326 local_irq_enable(); 327 328 /* 329 * First do one-time work. If these work items are enabled, we 330 * want to run them exactly once per syscall exit with IRQs on. 331 */ 332 if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS)) 333 syscall_slow_exit_work(regs, cached_flags); 334 335 #ifdef CONFIG_COMPAT 336 /* 337 * Compat syscalls set TS_COMPAT. Make sure we clear it before 338 * returning to user mode. 339 */ 340 ti->status &= ~TS_COMPAT; 341 #endif 342 343 local_irq_disable(); 344 prepare_exit_to_usermode(regs); 345 } 346 347 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) 348 /* 349 * Does a 32-bit syscall. Called with IRQs on and does all entry and 350 * exit work and returns with IRQs off. This function is extremely hot 351 * in workloads that use it, and it's usually called from 352 * do_fast_syscall_32, so forcibly inline it to improve performance. 353 */ 354 #ifdef CONFIG_X86_32 355 /* 32-bit kernels use a trap gate for INT80, and the asm code calls here. */ 356 __visible 357 #else 358 /* 64-bit kernels use do_syscall_32_irqs_off() instead. */ 359 static 360 #endif 361 __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs) 362 { 363 struct thread_info *ti = pt_regs_to_thread_info(regs); 364 unsigned int nr = (unsigned int)regs->orig_ax; 365 366 #ifdef CONFIG_IA32_EMULATION 367 ti->status |= TS_COMPAT; 368 #endif 369 370 if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) { 371 /* 372 * Subtlety here: if ptrace pokes something larger than 373 * 2^32-1 into orig_ax, this truncates it. This may or 374 * may not be necessary, but it matches the old asm 375 * behavior. 376 */ 377 nr = syscall_trace_enter(regs); 378 } 379 380 if (likely(nr < IA32_NR_syscalls)) { 381 /* 382 * It's possible that a 32-bit syscall implementation 383 * takes a 64-bit parameter but nonetheless assumes that 384 * the high bits are zero. Make sure we zero-extend all 385 * of the args. 386 */ 387 regs->ax = ia32_sys_call_table[nr]( 388 (unsigned int)regs->bx, (unsigned int)regs->cx, 389 (unsigned int)regs->dx, (unsigned int)regs->si, 390 (unsigned int)regs->di, (unsigned int)regs->bp); 391 } 392 393 syscall_return_slowpath(regs); 394 } 395 396 #ifdef CONFIG_X86_64 397 /* Handles INT80 on 64-bit kernels */ 398 __visible void do_syscall_32_irqs_off(struct pt_regs *regs) 399 { 400 local_irq_enable(); 401 do_syscall_32_irqs_on(regs); 402 } 403 #endif 404 405 /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */ 406 __visible long do_fast_syscall_32(struct pt_regs *regs) 407 { 408 /* 409 * Called using the internal vDSO SYSENTER/SYSCALL32 calling 410 * convention. Adjust regs so it looks like we entered using int80. 411 */ 412 413 unsigned long landing_pad = (unsigned long)current->mm->context.vdso + 414 vdso_image_32.sym_int80_landing_pad; 415 416 /* 417 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward 418 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction. 419 * Fix it up. 420 */ 421 regs->ip = landing_pad; 422 423 /* 424 * Fetch EBP from where the vDSO stashed it. 425 * 426 * WARNING: We are in CONTEXT_USER and RCU isn't paying attention! 427 */ 428 local_irq_enable(); 429 if ( 430 #ifdef CONFIG_X86_64 431 /* 432 * Micro-optimization: the pointer we're following is explicitly 433 * 32 bits, so it can't be out of range. 434 */ 435 __get_user(*(u32 *)®s->bp, 436 (u32 __user __force *)(unsigned long)(u32)regs->sp) 437 #else 438 get_user(*(u32 *)®s->bp, 439 (u32 __user __force *)(unsigned long)(u32)regs->sp) 440 #endif 441 ) { 442 443 /* User code screwed up. */ 444 local_irq_disable(); 445 regs->ax = -EFAULT; 446 #ifdef CONFIG_CONTEXT_TRACKING 447 enter_from_user_mode(); 448 #endif 449 prepare_exit_to_usermode(regs); 450 return 0; /* Keep it simple: use IRET. */ 451 } 452 453 /* Now this is just like a normal syscall. */ 454 do_syscall_32_irqs_on(regs); 455 456 #ifdef CONFIG_X86_64 457 /* 458 * Opportunistic SYSRETL: if possible, try to return using SYSRETL. 459 * SYSRETL is available on all 64-bit CPUs, so we don't need to 460 * bother with SYSEXIT. 461 * 462 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, 463 * because the ECX fixup above will ensure that this is essentially 464 * never the case. 465 */ 466 return regs->cs == __USER32_CS && regs->ss == __USER_DS && 467 regs->ip == landing_pad && 468 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0; 469 #else 470 /* 471 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT. 472 * 473 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, 474 * because the ECX fixup above will ensure that this is essentially 475 * never the case. 476 * 477 * We don't allow syscalls at all from VM86 mode, but we still 478 * need to check VM, because we might be returning from sys_vm86. 479 */ 480 return static_cpu_has(X86_FEATURE_SEP) && 481 regs->cs == __USER_CS && regs->ss == __USER_DS && 482 regs->ip == landing_pad && 483 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0; 484 #endif 485 } 486 #endif 487