xref: /openbmc/linux/arch/x86/entry/common.c (revision 623e9ef6)
1 /*
2  * common.c - C code for kernel entry and exit
3  * Copyright (c) 2015 Andrew Lutomirski
4  * GPL v2
5  *
6  * Based on asm and ptrace code by many authors.  The code here originated
7  * in ptrace.c and signal.c.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/tracehook.h>
17 #include <linux/audit.h>
18 #include <linux/seccomp.h>
19 #include <linux/signal.h>
20 #include <linux/export.h>
21 #include <linux/context_tracking.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/uprobes.h>
24 
25 #include <asm/desc.h>
26 #include <asm/traps.h>
27 #include <asm/vdso.h>
28 #include <asm/uaccess.h>
29 #include <asm/cpufeature.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/syscalls.h>
33 
34 static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
35 {
36 	unsigned long top_of_stack =
37 		(unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
38 	return (struct thread_info *)(top_of_stack - THREAD_SIZE);
39 }
40 
41 #ifdef CONFIG_CONTEXT_TRACKING
42 /* Called on entry from user mode with IRQs off. */
43 __visible void enter_from_user_mode(void)
44 {
45 	CT_WARN_ON(ct_state() != CONTEXT_USER);
46 	user_exit();
47 }
48 #else
49 static inline void enter_from_user_mode(void) {}
50 #endif
51 
52 static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
53 {
54 #ifdef CONFIG_X86_64
55 	if (arch == AUDIT_ARCH_X86_64) {
56 		audit_syscall_entry(regs->orig_ax, regs->di,
57 				    regs->si, regs->dx, regs->r10);
58 	} else
59 #endif
60 	{
61 		audit_syscall_entry(regs->orig_ax, regs->bx,
62 				    regs->cx, regs->dx, regs->si);
63 	}
64 }
65 
66 /*
67  * We can return 0 to resume the syscall or anything else to go to phase
68  * 2.  If we resume the syscall, we need to put something appropriate in
69  * regs->orig_ax.
70  *
71  * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
72  * are fully functional.
73  *
74  * For phase 2's benefit, our return value is:
75  * 0:			resume the syscall
76  * 1:			go to phase 2; no seccomp phase 2 needed
77  * anything else:	go to phase 2; pass return value to seccomp
78  */
79 unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
80 {
81 	struct thread_info *ti = pt_regs_to_thread_info(regs);
82 	unsigned long ret = 0;
83 	u32 work;
84 
85 	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
86 		BUG_ON(regs != task_pt_regs(current));
87 
88 	work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
89 
90 #ifdef CONFIG_SECCOMP
91 	/*
92 	 * Do seccomp first -- it should minimize exposure of other
93 	 * code, and keeping seccomp fast is probably more valuable
94 	 * than the rest of this.
95 	 */
96 	if (work & _TIF_SECCOMP) {
97 		struct seccomp_data sd;
98 
99 		sd.arch = arch;
100 		sd.nr = regs->orig_ax;
101 		sd.instruction_pointer = regs->ip;
102 #ifdef CONFIG_X86_64
103 		if (arch == AUDIT_ARCH_X86_64) {
104 			sd.args[0] = regs->di;
105 			sd.args[1] = regs->si;
106 			sd.args[2] = regs->dx;
107 			sd.args[3] = regs->r10;
108 			sd.args[4] = regs->r8;
109 			sd.args[5] = regs->r9;
110 		} else
111 #endif
112 		{
113 			sd.args[0] = regs->bx;
114 			sd.args[1] = regs->cx;
115 			sd.args[2] = regs->dx;
116 			sd.args[3] = regs->si;
117 			sd.args[4] = regs->di;
118 			sd.args[5] = regs->bp;
119 		}
120 
121 		BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
122 		BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
123 
124 		ret = seccomp_phase1(&sd);
125 		if (ret == SECCOMP_PHASE1_SKIP) {
126 			regs->orig_ax = -1;
127 			ret = 0;
128 		} else if (ret != SECCOMP_PHASE1_OK) {
129 			return ret;  /* Go directly to phase 2 */
130 		}
131 
132 		work &= ~_TIF_SECCOMP;
133 	}
134 #endif
135 
136 	/* Do our best to finish without phase 2. */
137 	if (work == 0)
138 		return ret;  /* seccomp and/or nohz only (ret == 0 here) */
139 
140 #ifdef CONFIG_AUDITSYSCALL
141 	if (work == _TIF_SYSCALL_AUDIT) {
142 		/*
143 		 * If there is no more work to be done except auditing,
144 		 * then audit in phase 1.  Phase 2 always audits, so, if
145 		 * we audit here, then we can't go on to phase 2.
146 		 */
147 		do_audit_syscall_entry(regs, arch);
148 		return 0;
149 	}
150 #endif
151 
152 	return 1;  /* Something is enabled that we can't handle in phase 1 */
153 }
154 
155 /* Returns the syscall nr to run (which should match regs->orig_ax). */
156 long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
157 				unsigned long phase1_result)
158 {
159 	struct thread_info *ti = pt_regs_to_thread_info(regs);
160 	long ret = 0;
161 	u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
162 
163 	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
164 		BUG_ON(regs != task_pt_regs(current));
165 
166 #ifdef CONFIG_SECCOMP
167 	/*
168 	 * Call seccomp_phase2 before running the other hooks so that
169 	 * they can see any changes made by a seccomp tracer.
170 	 */
171 	if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
172 		/* seccomp failures shouldn't expose any additional code. */
173 		return -1;
174 	}
175 #endif
176 
177 	if (unlikely(work & _TIF_SYSCALL_EMU))
178 		ret = -1L;
179 
180 	if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
181 	    tracehook_report_syscall_entry(regs))
182 		ret = -1L;
183 
184 	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
185 		trace_sys_enter(regs, regs->orig_ax);
186 
187 	do_audit_syscall_entry(regs, arch);
188 
189 	return ret ?: regs->orig_ax;
190 }
191 
192 long syscall_trace_enter(struct pt_regs *regs)
193 {
194 	u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
195 	unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
196 
197 	if (phase1_result == 0)
198 		return regs->orig_ax;
199 	else
200 		return syscall_trace_enter_phase2(regs, arch, phase1_result);
201 }
202 
203 #define EXIT_TO_USERMODE_LOOP_FLAGS				\
204 	(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE |	\
205 	 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
206 
207 static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
208 {
209 	/*
210 	 * In order to return to user mode, we need to have IRQs off with
211 	 * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
212 	 * _TIF_UPROBE, or _TIF_NEED_RESCHED set.  Several of these flags
213 	 * can be set at any time on preemptable kernels if we have IRQs on,
214 	 * so we need to loop.  Disabling preemption wouldn't help: doing the
215 	 * work to clear some of the flags can sleep.
216 	 */
217 	while (true) {
218 		/* We have work to do. */
219 		local_irq_enable();
220 
221 		if (cached_flags & _TIF_NEED_RESCHED)
222 			schedule();
223 
224 		if (cached_flags & _TIF_UPROBE)
225 			uprobe_notify_resume(regs);
226 
227 		/* deal with pending signal delivery */
228 		if (cached_flags & _TIF_SIGPENDING)
229 			do_signal(regs);
230 
231 		if (cached_flags & _TIF_NOTIFY_RESUME) {
232 			clear_thread_flag(TIF_NOTIFY_RESUME);
233 			tracehook_notify_resume(regs);
234 		}
235 
236 		if (cached_flags & _TIF_USER_RETURN_NOTIFY)
237 			fire_user_return_notifiers();
238 
239 		/* Disable IRQs and retry */
240 		local_irq_disable();
241 
242 		cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
243 
244 		if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
245 			break;
246 
247 	}
248 }
249 
250 /* Called with IRQs disabled. */
251 __visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
252 {
253 	struct thread_info *ti = pt_regs_to_thread_info(regs);
254 	u32 cached_flags;
255 
256 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
257 		local_irq_disable();
258 
259 	lockdep_sys_exit();
260 
261 	cached_flags = READ_ONCE(ti->flags);
262 
263 	if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
264 		exit_to_usermode_loop(regs, cached_flags);
265 
266 #ifdef CONFIG_COMPAT
267 	/*
268 	 * Compat syscalls set TS_COMPAT.  Make sure we clear it before
269 	 * returning to user mode.  We need to clear it *after* signal
270 	 * handling, because syscall restart has a fixup for compat
271 	 * syscalls.  The fixup is exercised by the ptrace_syscall_32
272 	 * selftest.
273 	 */
274 	ti->status &= ~TS_COMPAT;
275 #endif
276 
277 	user_enter();
278 }
279 
280 #define SYSCALL_EXIT_WORK_FLAGS				\
281 	(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |	\
282 	 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
283 
284 static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
285 {
286 	bool step;
287 
288 	audit_syscall_exit(regs);
289 
290 	if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
291 		trace_sys_exit(regs, regs->ax);
292 
293 	/*
294 	 * If TIF_SYSCALL_EMU is set, we only get here because of
295 	 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
296 	 * We already reported this syscall instruction in
297 	 * syscall_trace_enter().
298 	 */
299 	step = unlikely(
300 		(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
301 		== _TIF_SINGLESTEP);
302 	if (step || cached_flags & _TIF_SYSCALL_TRACE)
303 		tracehook_report_syscall_exit(regs, step);
304 }
305 
306 /*
307  * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
308  * state such that we can immediately switch to user mode.
309  */
310 __visible inline void syscall_return_slowpath(struct pt_regs *regs)
311 {
312 	struct thread_info *ti = pt_regs_to_thread_info(regs);
313 	u32 cached_flags = READ_ONCE(ti->flags);
314 
315 	CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
316 
317 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
318 	    WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
319 		local_irq_enable();
320 
321 	/*
322 	 * First do one-time work.  If these work items are enabled, we
323 	 * want to run them exactly once per syscall exit with IRQs on.
324 	 */
325 	if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
326 		syscall_slow_exit_work(regs, cached_flags);
327 
328 	local_irq_disable();
329 	prepare_exit_to_usermode(regs);
330 }
331 
332 #ifdef CONFIG_X86_64
333 __visible void do_syscall_64(struct pt_regs *regs)
334 {
335 	struct thread_info *ti = pt_regs_to_thread_info(regs);
336 	unsigned long nr = regs->orig_ax;
337 
338 	enter_from_user_mode();
339 	local_irq_enable();
340 
341 	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
342 		nr = syscall_trace_enter(regs);
343 
344 	/*
345 	 * NB: Native and x32 syscalls are dispatched from the same
346 	 * table.  The only functional difference is the x32 bit in
347 	 * regs->orig_ax, which changes the behavior of some syscalls.
348 	 */
349 	if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
350 		regs->ax = sys_call_table[nr & __SYSCALL_MASK](
351 			regs->di, regs->si, regs->dx,
352 			regs->r10, regs->r8, regs->r9);
353 	}
354 
355 	syscall_return_slowpath(regs);
356 }
357 #endif
358 
359 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
360 /*
361  * Does a 32-bit syscall.  Called with IRQs on in CONTEXT_KERNEL.  Does
362  * all entry and exit work and returns with IRQs off.  This function is
363  * extremely hot in workloads that use it, and it's usually called from
364  * do_fast_syscall_32, so forcibly inline it to improve performance.
365  */
366 static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
367 {
368 	struct thread_info *ti = pt_regs_to_thread_info(regs);
369 	unsigned int nr = (unsigned int)regs->orig_ax;
370 
371 #ifdef CONFIG_IA32_EMULATION
372 	ti->status |= TS_COMPAT;
373 #endif
374 
375 	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
376 		/*
377 		 * Subtlety here: if ptrace pokes something larger than
378 		 * 2^32-1 into orig_ax, this truncates it.  This may or
379 		 * may not be necessary, but it matches the old asm
380 		 * behavior.
381 		 */
382 		nr = syscall_trace_enter(regs);
383 	}
384 
385 	if (likely(nr < IA32_NR_syscalls)) {
386 		/*
387 		 * It's possible that a 32-bit syscall implementation
388 		 * takes a 64-bit parameter but nonetheless assumes that
389 		 * the high bits are zero.  Make sure we zero-extend all
390 		 * of the args.
391 		 */
392 		regs->ax = ia32_sys_call_table[nr](
393 			(unsigned int)regs->bx, (unsigned int)regs->cx,
394 			(unsigned int)regs->dx, (unsigned int)regs->si,
395 			(unsigned int)regs->di, (unsigned int)regs->bp);
396 	}
397 
398 	syscall_return_slowpath(regs);
399 }
400 
401 /* Handles int $0x80 */
402 __visible void do_int80_syscall_32(struct pt_regs *regs)
403 {
404 	enter_from_user_mode();
405 	local_irq_enable();
406 	do_syscall_32_irqs_on(regs);
407 }
408 
409 /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
410 __visible long do_fast_syscall_32(struct pt_regs *regs)
411 {
412 	/*
413 	 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
414 	 * convention.  Adjust regs so it looks like we entered using int80.
415 	 */
416 
417 	unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
418 		vdso_image_32.sym_int80_landing_pad;
419 
420 	/*
421 	 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
422 	 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
423 	 * Fix it up.
424 	 */
425 	regs->ip = landing_pad;
426 
427 	enter_from_user_mode();
428 
429 	local_irq_enable();
430 
431 	/* Fetch EBP from where the vDSO stashed it. */
432 	if (
433 #ifdef CONFIG_X86_64
434 		/*
435 		 * Micro-optimization: the pointer we're following is explicitly
436 		 * 32 bits, so it can't be out of range.
437 		 */
438 		__get_user(*(u32 *)&regs->bp,
439 			    (u32 __user __force *)(unsigned long)(u32)regs->sp)
440 #else
441 		get_user(*(u32 *)&regs->bp,
442 			 (u32 __user __force *)(unsigned long)(u32)regs->sp)
443 #endif
444 		) {
445 
446 		/* User code screwed up. */
447 		local_irq_disable();
448 		regs->ax = -EFAULT;
449 		prepare_exit_to_usermode(regs);
450 		return 0;	/* Keep it simple: use IRET. */
451 	}
452 
453 	/* Now this is just like a normal syscall. */
454 	do_syscall_32_irqs_on(regs);
455 
456 #ifdef CONFIG_X86_64
457 	/*
458 	 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
459 	 * SYSRETL is available on all 64-bit CPUs, so we don't need to
460 	 * bother with SYSEXIT.
461 	 *
462 	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
463 	 * because the ECX fixup above will ensure that this is essentially
464 	 * never the case.
465 	 */
466 	return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
467 		regs->ip == landing_pad &&
468 		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
469 #else
470 	/*
471 	 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
472 	 *
473 	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
474 	 * because the ECX fixup above will ensure that this is essentially
475 	 * never the case.
476 	 *
477 	 * We don't allow syscalls at all from VM86 mode, but we still
478 	 * need to check VM, because we might be returning from sys_vm86.
479 	 */
480 	return static_cpu_has(X86_FEATURE_SEP) &&
481 		regs->cs == __USER_CS && regs->ss == __USER_DS &&
482 		regs->ip == landing_pad &&
483 		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
484 #endif
485 }
486 #endif
487