xref: /openbmc/linux/arch/x86/crypto/twofish-x86_64-asm_64-3way.S (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Twofish Cipher 3-way parallel algorithm (x86_64)
4 *
5 * Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6 */
7
8#include <linux/linkage.h>
9
10.file "twofish-x86_64-asm-3way.S"
11.text
12
13/* structure of crypto context */
14#define s0	0
15#define s1	1024
16#define s2	2048
17#define s3	3072
18#define w	4096
19#define k	4128
20
21/**********************************************************************
22  3-way twofish
23 **********************************************************************/
24#define CTX %rdi
25#define RIO %rdx
26
27#define RAB0 %rax
28#define RAB1 %rbx
29#define RAB2 %rcx
30
31#define RAB0d %eax
32#define RAB1d %ebx
33#define RAB2d %ecx
34
35#define RAB0bh %ah
36#define RAB1bh %bh
37#define RAB2bh %ch
38
39#define RAB0bl %al
40#define RAB1bl %bl
41#define RAB2bl %cl
42
43#define CD0 0x0(%rsp)
44#define CD1 0x8(%rsp)
45#define CD2 0x10(%rsp)
46
47# used only before/after all rounds
48#define RCD0 %r8
49#define RCD1 %r9
50#define RCD2 %r10
51
52# used only during rounds
53#define RX0 %r8
54#define RX1 %r9
55#define RX2 %r10
56
57#define RX0d %r8d
58#define RX1d %r9d
59#define RX2d %r10d
60
61#define RY0 %r11
62#define RY1 %r12
63#define RY2 %r13
64
65#define RY0d %r11d
66#define RY1d %r12d
67#define RY2d %r13d
68
69#define RT0 %rdx
70#define RT1 %rsi
71
72#define RT0d %edx
73#define RT1d %esi
74
75#define RT1bl %sil
76
77#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
78	movzbl ab ## bl,		tmp2 ## d; \
79	movzbl ab ## bh,		tmp1 ## d; \
80	rorq $(rot),			ab; \
81	op1##l T0(CTX, tmp2, 4),	dst ## d; \
82	op2##l T1(CTX, tmp1, 4),	dst ## d;
83
84#define swap_ab_with_cd(ab, cd, tmp)	\
85	movq cd, tmp;			\
86	movq ab, cd;			\
87	movq tmp, ab;
88
89/*
90 * Combined G1 & G2 function. Reordered with help of rotates to have moves
91 * at begining.
92 */
93#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
94	/* G1,1 && G2,1 */ \
95	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
96	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
97	\
98	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
99	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
100	\
101	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
102	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
103	\
104	/* G1,2 && G2,2 */ \
105	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
106	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
107	swap_ab_with_cd(ab ## 0, cd ## 0, RT0); \
108	\
109	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
110	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
111	swap_ab_with_cd(ab ## 1, cd ## 1, RT0); \
112	\
113	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
114	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
115	swap_ab_with_cd(ab ## 2, cd ## 2, RT0);
116
117#define enc_round_end(ab, x, y, n) \
118	addl y ## d,			x ## d; \
119	addl x ## d,			y ## d; \
120	addl k+4*(2*(n))(CTX),		x ## d; \
121	xorl ab ## d,			x ## d; \
122	addl k+4*(2*(n)+1)(CTX),	y ## d; \
123	shrq $32,			ab; \
124	roll $1,			ab ## d; \
125	xorl y ## d,			ab ## d; \
126	shlq $32,			ab; \
127	rorl $1,			x ## d; \
128	orq x,				ab;
129
130#define dec_round_end(ba, x, y, n) \
131	addl y ## d,			x ## d; \
132	addl x ## d,			y ## d; \
133	addl k+4*(2*(n))(CTX),		x ## d; \
134	addl k+4*(2*(n)+1)(CTX),	y ## d; \
135	xorl ba ## d,			y ## d; \
136	shrq $32,			ba; \
137	roll $1,			ba ## d; \
138	xorl x ## d,			ba ## d; \
139	shlq $32,			ba; \
140	rorl $1,			y ## d; \
141	orq y,				ba;
142
143#define encrypt_round3(ab, cd, n) \
144	g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
145	\
146	enc_round_end(ab ## 0, RX0, RY0, n); \
147	enc_round_end(ab ## 1, RX1, RY1, n); \
148	enc_round_end(ab ## 2, RX2, RY2, n);
149
150#define decrypt_round3(ba, dc, n) \
151	g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
152	\
153	dec_round_end(ba ## 0, RX0, RY0, n); \
154	dec_round_end(ba ## 1, RX1, RY1, n); \
155	dec_round_end(ba ## 2, RX2, RY2, n);
156
157#define encrypt_cycle3(ab, cd, n) \
158	encrypt_round3(ab, cd, n*2); \
159	encrypt_round3(ab, cd, (n*2)+1);
160
161#define decrypt_cycle3(ba, dc, n) \
162	decrypt_round3(ba, dc, (n*2)+1); \
163	decrypt_round3(ba, dc, (n*2));
164
165#define push_cd()	\
166	pushq RCD2;	\
167	pushq RCD1;	\
168	pushq RCD0;
169
170#define pop_cd()	\
171	popq RCD0;	\
172	popq RCD1;	\
173	popq RCD2;
174
175#define inpack3(in, n, xy, m) \
176	movq 4*(n)(in),			xy ## 0; \
177	xorq w+4*m(CTX),		xy ## 0; \
178	\
179	movq 4*(4+(n))(in),		xy ## 1; \
180	xorq w+4*m(CTX),		xy ## 1; \
181	\
182	movq 4*(8+(n))(in),		xy ## 2; \
183	xorq w+4*m(CTX),		xy ## 2;
184
185#define outunpack3(op, out, n, xy, m) \
186	xorq w+4*m(CTX),		xy ## 0; \
187	op ## q xy ## 0,		4*(n)(out); \
188	\
189	xorq w+4*m(CTX),		xy ## 1; \
190	op ## q xy ## 1,		4*(4+(n))(out); \
191	\
192	xorq w+4*m(CTX),		xy ## 2; \
193	op ## q xy ## 2,		4*(8+(n))(out);
194
195#define inpack_enc3() \
196	inpack3(RIO, 0, RAB, 0); \
197	inpack3(RIO, 2, RCD, 2);
198
199#define outunpack_enc3(op) \
200	outunpack3(op, RIO, 2, RAB, 6); \
201	outunpack3(op, RIO, 0, RCD, 4);
202
203#define inpack_dec3() \
204	inpack3(RIO, 0, RAB, 4); \
205	rorq $32,			RAB0; \
206	rorq $32,			RAB1; \
207	rorq $32,			RAB2; \
208	inpack3(RIO, 2, RCD, 6); \
209	rorq $32,			RCD0; \
210	rorq $32,			RCD1; \
211	rorq $32,			RCD2;
212
213#define outunpack_dec3() \
214	rorq $32,			RCD0; \
215	rorq $32,			RCD1; \
216	rorq $32,			RCD2; \
217	outunpack3(mov, RIO, 0, RCD, 0); \
218	rorq $32,			RAB0; \
219	rorq $32,			RAB1; \
220	rorq $32,			RAB2; \
221	outunpack3(mov, RIO, 2, RAB, 2);
222
223ENTRY(__twofish_enc_blk_3way)
224	/* input:
225	 *	%rdi: ctx, CTX
226	 *	%rsi: dst
227	 *	%rdx: src, RIO
228	 *	%rcx: bool, if true: xor output
229	 */
230	pushq %r13;
231	pushq %r12;
232	pushq %rbx;
233
234	pushq %rcx; /* bool xor */
235	pushq %rsi; /* dst */
236
237	inpack_enc3();
238
239	push_cd();
240	encrypt_cycle3(RAB, CD, 0);
241	encrypt_cycle3(RAB, CD, 1);
242	encrypt_cycle3(RAB, CD, 2);
243	encrypt_cycle3(RAB, CD, 3);
244	encrypt_cycle3(RAB, CD, 4);
245	encrypt_cycle3(RAB, CD, 5);
246	encrypt_cycle3(RAB, CD, 6);
247	encrypt_cycle3(RAB, CD, 7);
248	pop_cd();
249
250	popq RIO; /* dst */
251	popq RT1; /* bool xor */
252
253	testb RT1bl, RT1bl;
254	jnz .L__enc_xor3;
255
256	outunpack_enc3(mov);
257
258	popq %rbx;
259	popq %r12;
260	popq %r13;
261	ret;
262
263.L__enc_xor3:
264	outunpack_enc3(xor);
265
266	popq %rbx;
267	popq %r12;
268	popq %r13;
269	ret;
270ENDPROC(__twofish_enc_blk_3way)
271
272ENTRY(twofish_dec_blk_3way)
273	/* input:
274	 *	%rdi: ctx, CTX
275	 *	%rsi: dst
276	 *	%rdx: src, RIO
277	 */
278	pushq %r13;
279	pushq %r12;
280	pushq %rbx;
281
282	pushq %rsi; /* dst */
283
284	inpack_dec3();
285
286	push_cd();
287	decrypt_cycle3(RAB, CD, 7);
288	decrypt_cycle3(RAB, CD, 6);
289	decrypt_cycle3(RAB, CD, 5);
290	decrypt_cycle3(RAB, CD, 4);
291	decrypt_cycle3(RAB, CD, 3);
292	decrypt_cycle3(RAB, CD, 2);
293	decrypt_cycle3(RAB, CD, 1);
294	decrypt_cycle3(RAB, CD, 0);
295	pop_cd();
296
297	popq RIO; /* dst */
298
299	outunpack_dec3();
300
301	popq %rbx;
302	popq %r12;
303	popq %r13;
304	ret;
305ENDPROC(twofish_dec_blk_3way)
306