xref: /openbmc/linux/arch/x86/crypto/twofish-x86_64-asm_64-3way.S (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1/*
2 * Twofish Cipher 3-way parallel algorithm (x86_64)
3 *
4 * Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
19 * USA
20 *
21 */
22
23#include <linux/linkage.h>
24
25.file "twofish-x86_64-asm-3way.S"
26.text
27
28/* structure of crypto context */
29#define s0	0
30#define s1	1024
31#define s2	2048
32#define s3	3072
33#define w	4096
34#define k	4128
35
36/**********************************************************************
37  3-way twofish
38 **********************************************************************/
39#define CTX %rdi
40#define RIO %rdx
41
42#define RAB0 %rax
43#define RAB1 %rbx
44#define RAB2 %rcx
45
46#define RAB0d %eax
47#define RAB1d %ebx
48#define RAB2d %ecx
49
50#define RAB0bh %ah
51#define RAB1bh %bh
52#define RAB2bh %ch
53
54#define RAB0bl %al
55#define RAB1bl %bl
56#define RAB2bl %cl
57
58#define RCD0 %r8
59#define RCD1 %r9
60#define RCD2 %r10
61
62#define RCD0d %r8d
63#define RCD1d %r9d
64#define RCD2d %r10d
65
66#define RX0 %rbp
67#define RX1 %r11
68#define RX2 %r12
69
70#define RX0d %ebp
71#define RX1d %r11d
72#define RX2d %r12d
73
74#define RY0 %r13
75#define RY1 %r14
76#define RY2 %r15
77
78#define RY0d %r13d
79#define RY1d %r14d
80#define RY2d %r15d
81
82#define RT0 %rdx
83#define RT1 %rsi
84
85#define RT0d %edx
86#define RT1d %esi
87
88#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
89	movzbl ab ## bl,		tmp2 ## d; \
90	movzbl ab ## bh,		tmp1 ## d; \
91	rorq $(rot),			ab; \
92	op1##l T0(CTX, tmp2, 4),	dst ## d; \
93	op2##l T1(CTX, tmp1, 4),	dst ## d;
94
95/*
96 * Combined G1 & G2 function. Reordered with help of rotates to have moves
97 * at begining.
98 */
99#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
100	/* G1,1 && G2,1 */ \
101	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
102	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
103	\
104	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
105	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
106	\
107	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
108	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
109	\
110	/* G1,2 && G2,2 */ \
111	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
112	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
113	xchgq cd ## 0, ab ## 0; \
114	\
115	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
116	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
117	xchgq cd ## 1, ab ## 1; \
118	\
119	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
120	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
121	xchgq cd ## 2, ab ## 2;
122
123#define enc_round_end(ab, x, y, n) \
124	addl y ## d,			x ## d; \
125	addl x ## d,			y ## d; \
126	addl k+4*(2*(n))(CTX),		x ## d; \
127	xorl ab ## d,			x ## d; \
128	addl k+4*(2*(n)+1)(CTX),	y ## d; \
129	shrq $32,			ab; \
130	roll $1,			ab ## d; \
131	xorl y ## d,			ab ## d; \
132	shlq $32,			ab; \
133	rorl $1,			x ## d; \
134	orq x,				ab;
135
136#define dec_round_end(ba, x, y, n) \
137	addl y ## d,			x ## d; \
138	addl x ## d,			y ## d; \
139	addl k+4*(2*(n))(CTX),		x ## d; \
140	addl k+4*(2*(n)+1)(CTX),	y ## d; \
141	xorl ba ## d,			y ## d; \
142	shrq $32,			ba; \
143	roll $1,			ba ## d; \
144	xorl x ## d,			ba ## d; \
145	shlq $32,			ba; \
146	rorl $1,			y ## d; \
147	orq y,				ba;
148
149#define encrypt_round3(ab, cd, n) \
150	g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
151	\
152	enc_round_end(ab ## 0, RX0, RY0, n); \
153	enc_round_end(ab ## 1, RX1, RY1, n); \
154	enc_round_end(ab ## 2, RX2, RY2, n);
155
156#define decrypt_round3(ba, dc, n) \
157	g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
158	\
159	dec_round_end(ba ## 0, RX0, RY0, n); \
160	dec_round_end(ba ## 1, RX1, RY1, n); \
161	dec_round_end(ba ## 2, RX2, RY2, n);
162
163#define encrypt_cycle3(ab, cd, n) \
164	encrypt_round3(ab, cd, n*2); \
165	encrypt_round3(ab, cd, (n*2)+1);
166
167#define decrypt_cycle3(ba, dc, n) \
168	decrypt_round3(ba, dc, (n*2)+1); \
169	decrypt_round3(ba, dc, (n*2));
170
171#define inpack3(in, n, xy, m) \
172	movq 4*(n)(in),			xy ## 0; \
173	xorq w+4*m(CTX),		xy ## 0; \
174	\
175	movq 4*(4+(n))(in),		xy ## 1; \
176	xorq w+4*m(CTX),		xy ## 1; \
177	\
178	movq 4*(8+(n))(in),		xy ## 2; \
179	xorq w+4*m(CTX),		xy ## 2;
180
181#define outunpack3(op, out, n, xy, m) \
182	xorq w+4*m(CTX),		xy ## 0; \
183	op ## q xy ## 0,		4*(n)(out); \
184	\
185	xorq w+4*m(CTX),		xy ## 1; \
186	op ## q xy ## 1,		4*(4+(n))(out); \
187	\
188	xorq w+4*m(CTX),		xy ## 2; \
189	op ## q xy ## 2,		4*(8+(n))(out);
190
191#define inpack_enc3() \
192	inpack3(RIO, 0, RAB, 0); \
193	inpack3(RIO, 2, RCD, 2);
194
195#define outunpack_enc3(op) \
196	outunpack3(op, RIO, 2, RAB, 6); \
197	outunpack3(op, RIO, 0, RCD, 4);
198
199#define inpack_dec3() \
200	inpack3(RIO, 0, RAB, 4); \
201	rorq $32,			RAB0; \
202	rorq $32,			RAB1; \
203	rorq $32,			RAB2; \
204	inpack3(RIO, 2, RCD, 6); \
205	rorq $32,			RCD0; \
206	rorq $32,			RCD1; \
207	rorq $32,			RCD2;
208
209#define outunpack_dec3() \
210	rorq $32,			RCD0; \
211	rorq $32,			RCD1; \
212	rorq $32,			RCD2; \
213	outunpack3(mov, RIO, 0, RCD, 0); \
214	rorq $32,			RAB0; \
215	rorq $32,			RAB1; \
216	rorq $32,			RAB2; \
217	outunpack3(mov, RIO, 2, RAB, 2);
218
219ENTRY(__twofish_enc_blk_3way)
220	/* input:
221	 *	%rdi: ctx, CTX
222	 *	%rsi: dst
223	 *	%rdx: src, RIO
224	 *	%rcx: bool, if true: xor output
225	 */
226	pushq %r15;
227	pushq %r14;
228	pushq %r13;
229	pushq %r12;
230	pushq %rbp;
231	pushq %rbx;
232
233	pushq %rcx; /* bool xor */
234	pushq %rsi; /* dst */
235
236	inpack_enc3();
237
238	encrypt_cycle3(RAB, RCD, 0);
239	encrypt_cycle3(RAB, RCD, 1);
240	encrypt_cycle3(RAB, RCD, 2);
241	encrypt_cycle3(RAB, RCD, 3);
242	encrypt_cycle3(RAB, RCD, 4);
243	encrypt_cycle3(RAB, RCD, 5);
244	encrypt_cycle3(RAB, RCD, 6);
245	encrypt_cycle3(RAB, RCD, 7);
246
247	popq RIO; /* dst */
248	popq %rbp; /* bool xor */
249
250	testb %bpl, %bpl;
251	jnz .L__enc_xor3;
252
253	outunpack_enc3(mov);
254
255	popq %rbx;
256	popq %rbp;
257	popq %r12;
258	popq %r13;
259	popq %r14;
260	popq %r15;
261	ret;
262
263.L__enc_xor3:
264	outunpack_enc3(xor);
265
266	popq %rbx;
267	popq %rbp;
268	popq %r12;
269	popq %r13;
270	popq %r14;
271	popq %r15;
272	ret;
273ENDPROC(__twofish_enc_blk_3way)
274
275ENTRY(twofish_dec_blk_3way)
276	/* input:
277	 *	%rdi: ctx, CTX
278	 *	%rsi: dst
279	 *	%rdx: src, RIO
280	 */
281	pushq %r15;
282	pushq %r14;
283	pushq %r13;
284	pushq %r12;
285	pushq %rbp;
286	pushq %rbx;
287
288	pushq %rsi; /* dst */
289
290	inpack_dec3();
291
292	decrypt_cycle3(RAB, RCD, 7);
293	decrypt_cycle3(RAB, RCD, 6);
294	decrypt_cycle3(RAB, RCD, 5);
295	decrypt_cycle3(RAB, RCD, 4);
296	decrypt_cycle3(RAB, RCD, 3);
297	decrypt_cycle3(RAB, RCD, 2);
298	decrypt_cycle3(RAB, RCD, 1);
299	decrypt_cycle3(RAB, RCD, 0);
300
301	popq RIO; /* dst */
302
303	outunpack_dec3();
304
305	popq %rbx;
306	popq %rbp;
307	popq %r12;
308	popq %r13;
309	popq %r14;
310	popq %r15;
311	ret;
312ENDPROC(twofish_dec_blk_3way)
313