1######################################################################## 2# Implement fast SHA-512 with SSSE3 instructions. (x86_64) 3# 4# Copyright (C) 2013 Intel Corporation. 5# 6# Authors: 7# James Guilford <james.guilford@intel.com> 8# Kirk Yap <kirk.s.yap@intel.com> 9# David Cote <david.m.cote@intel.com> 10# Tim Chen <tim.c.chen@linux.intel.com> 11# 12# This software is available to you under a choice of one of two 13# licenses. You may choose to be licensed under the terms of the GNU 14# General Public License (GPL) Version 2, available from the file 15# COPYING in the main directory of this source tree, or the 16# OpenIB.org BSD license below: 17# 18# Redistribution and use in source and binary forms, with or 19# without modification, are permitted provided that the following 20# conditions are met: 21# 22# - Redistributions of source code must retain the above 23# copyright notice, this list of conditions and the following 24# disclaimer. 25# 26# - Redistributions in binary form must reproduce the above 27# copyright notice, this list of conditions and the following 28# disclaimer in the documentation and/or other materials 29# provided with the distribution. 30# 31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38# SOFTWARE. 39# 40######################################################################## 41# 42# This code is described in an Intel White-Paper: 43# "Fast SHA-512 Implementations on Intel Architecture Processors" 44# 45# To find it, surf to http://www.intel.com/p/en_US/embedded 46# and search for that title. 47# 48######################################################################## 49 50#include <linux/linkage.h> 51 52.text 53 54# Virtual Registers 55# ARG1 56digest = %rdi 57# ARG2 58msg = %rsi 59# ARG3 60msglen = %rdx 61T1 = %rcx 62T2 = %r8 63a_64 = %r9 64b_64 = %r10 65c_64 = %r11 66d_64 = %r12 67e_64 = %r13 68f_64 = %r14 69g_64 = %r15 70h_64 = %rbx 71tmp0 = %rax 72 73# Local variables (stack frame) 74 75W_SIZE = 80*8 76WK_SIZE = 2*8 77 78frame_W = 0 79frame_WK = frame_W + W_SIZE 80frame_size = frame_WK + WK_SIZE 81 82# Useful QWORD "arrays" for simpler memory references 83# MSG, DIGEST, K_t, W_t are arrays 84# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even 85 86# Input message (arg1) 87#define MSG(i) 8*i(msg) 88 89# Output Digest (arg2) 90#define DIGEST(i) 8*i(digest) 91 92# SHA Constants (static mem) 93#define K_t(i) 8*i+K512(%rip) 94 95# Message Schedule (stack frame) 96#define W_t(i) 8*i+frame_W(%rsp) 97 98# W[t]+K[t] (stack frame) 99#define WK_2(i) 8*((i%2))+frame_WK(%rsp) 100 101.macro RotateState 102 # Rotate symbols a..h right 103 TMP = h_64 104 h_64 = g_64 105 g_64 = f_64 106 f_64 = e_64 107 e_64 = d_64 108 d_64 = c_64 109 c_64 = b_64 110 b_64 = a_64 111 a_64 = TMP 112.endm 113 114.macro SHA512_Round rnd 115 116 # Compute Round %%t 117 mov f_64, T1 # T1 = f 118 mov e_64, tmp0 # tmp = e 119 xor g_64, T1 # T1 = f ^ g 120 ror $23, tmp0 # 41 # tmp = e ror 23 121 and e_64, T1 # T1 = (f ^ g) & e 122 xor e_64, tmp0 # tmp = (e ror 23) ^ e 123 xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g) 124 idx = \rnd 125 add WK_2(idx), T1 # W[t] + K[t] from message scheduler 126 ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4 127 xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e 128 mov a_64, T2 # T2 = a 129 add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h 130 ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) 131 add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e) 132 mov a_64, tmp0 # tmp = a 133 xor c_64, T2 # T2 = a ^ c 134 and c_64, tmp0 # tmp = a & c 135 and b_64, T2 # T2 = (a ^ c) & b 136 xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) 137 mov a_64, tmp0 # tmp = a 138 ror $5, tmp0 # 39 # tmp = a ror 5 139 xor a_64, tmp0 # tmp = (a ror 5) ^ a 140 add T1, d_64 # e(next_state) = d + T1 141 ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6 142 xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a 143 lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c) 144 ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) 145 add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a) 146 RotateState 147.endm 148 149.macro SHA512_2Sched_2Round_sse rnd 150 151 # Compute rounds t-2 and t-1 152 # Compute message schedule QWORDS t and t+1 153 154 # Two rounds are computed based on the values for K[t-2]+W[t-2] and 155 # K[t-1]+W[t-1] which were previously stored at WK_2 by the message 156 # scheduler. 157 # The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)]. 158 # They are then added to their respective SHA512 constants at 159 # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)] 160 # For brievity, the comments following vectored instructions only refer to 161 # the first of a pair of QWORDS. 162 # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]} 163 # The computation of the message schedule and the rounds are tightly 164 # stitched to take advantage of instruction-level parallelism. 165 # For clarity, integer instructions (for the rounds calculation) are indented 166 # by one tab. Vectored instructions (for the message scheduler) are indented 167 # by two tabs. 168 169 mov f_64, T1 170 idx = \rnd -2 171 movdqa W_t(idx), %xmm2 # XMM2 = W[t-2] 172 xor g_64, T1 173 and e_64, T1 174 movdqa %xmm2, %xmm0 # XMM0 = W[t-2] 175 xor g_64, T1 176 idx = \rnd 177 add WK_2(idx), T1 178 idx = \rnd - 15 179 movdqu W_t(idx), %xmm5 # XMM5 = W[t-15] 180 mov e_64, tmp0 181 ror $23, tmp0 # 41 182 movdqa %xmm5, %xmm3 # XMM3 = W[t-15] 183 xor e_64, tmp0 184 ror $4, tmp0 # 18 185 psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42 186 xor e_64, tmp0 187 ror $14, tmp0 # 14 188 psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1 189 add tmp0, T1 190 add h_64, T1 191 pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2] 192 mov a_64, T2 193 xor c_64, T2 194 pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15] 195 and b_64, T2 196 mov a_64, tmp0 197 psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13 198 and c_64, tmp0 199 xor tmp0, T2 200 psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6 201 mov a_64, tmp0 202 ror $5, tmp0 # 39 203 pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2] 204 xor a_64, tmp0 205 ror $6, tmp0 # 34 206 pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15] 207 xor a_64, tmp0 208 ror $28, tmp0 # 28 209 psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6 210 add tmp0, T2 211 add T1, d_64 212 psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1 213 lea (T1, T2), h_64 214 RotateState 215 movdqa %xmm2, %xmm1 # XMM1 = W[t-2] 216 mov f_64, T1 217 xor g_64, T1 218 movdqa %xmm5, %xmm4 # XMM4 = W[t-15] 219 and e_64, T1 220 xor g_64, T1 221 psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42 222 idx = \rnd + 1 223 add WK_2(idx), T1 224 mov e_64, tmp0 225 psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7 226 ror $23, tmp0 # 41 227 xor e_64, tmp0 228 pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2] 229 ror $4, tmp0 # 18 230 xor e_64, tmp0 231 pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15] 232 ror $14, tmp0 # 14 233 add tmp0, T1 234 psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3 235 add h_64, T1 236 mov a_64, T2 237 psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56 238 xor c_64, T2 239 and b_64, T2 240 pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2]) 241 mov a_64, tmp0 242 and c_64, tmp0 243 idx = \rnd - 7 244 movdqu W_t(idx), %xmm1 # XMM1 = W[t-7] 245 xor tmp0, T2 246 pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15]) 247 mov a_64, tmp0 248 paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) 249 ror $5, tmp0 # 39 250 idx =\rnd-16 251 paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16] 252 xor a_64, tmp0 253 paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16] 254 ror $6, tmp0 # 34 255 movdqa %xmm0, W_t(\rnd) # Store scheduled qwords 256 xor a_64, tmp0 257 paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t] 258 ror $28, tmp0 # 28 259 idx = \rnd 260 movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds 261 add tmp0, T2 262 add T1, d_64 263 lea (T1, T2), h_64 264 RotateState 265.endm 266 267######################################################################## 268## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data, 269## int blocks); 270# (struct sha512_state is assumed to begin with u64 state[8]) 271# Purpose: Updates the SHA512 digest stored at "state" with the message 272# stored in "data". 273# The size of the message pointed to by "data" must be an integer multiple 274# of SHA512 message blocks. 275# "blocks" is the message length in SHA512 blocks. 276######################################################################## 277SYM_FUNC_START(sha512_transform_ssse3) 278 279 test msglen, msglen 280 je nowork 281 282 # Save GPRs 283 push %rbx 284 push %r12 285 push %r13 286 push %r14 287 push %r15 288 289 # Allocate Stack Space 290 push %rbp 291 mov %rsp, %rbp 292 sub $frame_size, %rsp 293 and $~(0x20 - 1), %rsp 294 295updateblock: 296 297# Load state variables 298 mov DIGEST(0), a_64 299 mov DIGEST(1), b_64 300 mov DIGEST(2), c_64 301 mov DIGEST(3), d_64 302 mov DIGEST(4), e_64 303 mov DIGEST(5), f_64 304 mov DIGEST(6), g_64 305 mov DIGEST(7), h_64 306 307 t = 0 308 .rept 80/2 + 1 309 # (80 rounds) / (2 rounds/iteration) + (1 iteration) 310 # +1 iteration because the scheduler leads hashing by 1 iteration 311 .if t < 2 312 # BSWAP 2 QWORDS 313 movdqa XMM_QWORD_BSWAP(%rip), %xmm1 314 movdqu MSG(t), %xmm0 315 pshufb %xmm1, %xmm0 # BSWAP 316 movdqa %xmm0, W_t(t) # Store Scheduled Pair 317 paddq K_t(t), %xmm0 # Compute W[t]+K[t] 318 movdqa %xmm0, WK_2(t) # Store into WK for rounds 319 .elseif t < 16 320 # BSWAP 2 QWORDS# Compute 2 Rounds 321 movdqu MSG(t), %xmm0 322 pshufb %xmm1, %xmm0 # BSWAP 323 SHA512_Round t-2 # Round t-2 324 movdqa %xmm0, W_t(t) # Store Scheduled Pair 325 paddq K_t(t), %xmm0 # Compute W[t]+K[t] 326 SHA512_Round t-1 # Round t-1 327 movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK 328 .elseif t < 79 329 # Schedule 2 QWORDS# Compute 2 Rounds 330 SHA512_2Sched_2Round_sse t 331 .else 332 # Compute 2 Rounds 333 SHA512_Round t-2 334 SHA512_Round t-1 335 .endif 336 t = t+2 337 .endr 338 339 # Update digest 340 add a_64, DIGEST(0) 341 add b_64, DIGEST(1) 342 add c_64, DIGEST(2) 343 add d_64, DIGEST(3) 344 add e_64, DIGEST(4) 345 add f_64, DIGEST(5) 346 add g_64, DIGEST(6) 347 add h_64, DIGEST(7) 348 349 # Advance to next message block 350 add $16*8, msg 351 dec msglen 352 jnz updateblock 353 354 # Restore Stack Pointer 355 mov %rbp, %rsp 356 pop %rbp 357 358 # Restore GPRs 359 pop %r15 360 pop %r14 361 pop %r13 362 pop %r12 363 pop %rbx 364 365nowork: 366 ret 367SYM_FUNC_END(sha512_transform_ssse3) 368 369######################################################################## 370### Binary Data 371 372.section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16 373.align 16 374# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 375XMM_QWORD_BSWAP: 376 .octa 0x08090a0b0c0d0e0f0001020304050607 377 378# Mergeable 640-byte rodata section. This allows linker to merge the table 379# with other, exactly the same 640-byte fragment of another rodata section 380# (if such section exists). 381.section .rodata.cst640.K512, "aM", @progbits, 640 382.align 64 383# K[t] used in SHA512 hashing 384K512: 385 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 386 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 387 .quad 0x3956c25bf348b538,0x59f111f1b605d019 388 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 389 .quad 0xd807aa98a3030242,0x12835b0145706fbe 390 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 391 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 392 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 393 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 394 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 395 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 396 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 397 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 398 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 399 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 400 .quad 0x06ca6351e003826f,0x142929670a0e6e70 401 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 402 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 403 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 404 .quad 0x81c2c92e47edaee6,0x92722c851482353b 405 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 406 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 407 .quad 0xd192e819d6ef5218,0xd69906245565a910 408 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 409 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 410 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 411 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 412 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 413 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 414 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 415 .quad 0x90befffa23631e28,0xa4506cebde82bde9 416 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 417 .quad 0xca273eceea26619c,0xd186b8c721c0c207 418 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 419 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 420 .quad 0x113f9804bef90dae,0x1b710b35131c471b 421 .quad 0x28db77f523047d84,0x32caab7b40c72493 422 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 423 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 424 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 425