1######################################################################## 2# Implement fast SHA-512 with AVX2 instructions. (x86_64) 3# 4# Copyright (C) 2013 Intel Corporation. 5# 6# Authors: 7# James Guilford <james.guilford@intel.com> 8# Kirk Yap <kirk.s.yap@intel.com> 9# David Cote <david.m.cote@intel.com> 10# Tim Chen <tim.c.chen@linux.intel.com> 11# 12# This software is available to you under a choice of one of two 13# licenses. You may choose to be licensed under the terms of the GNU 14# General Public License (GPL) Version 2, available from the file 15# COPYING in the main directory of this source tree, or the 16# OpenIB.org BSD license below: 17# 18# Redistribution and use in source and binary forms, with or 19# without modification, are permitted provided that the following 20# conditions are met: 21# 22# - Redistributions of source code must retain the above 23# copyright notice, this list of conditions and the following 24# disclaimer. 25# 26# - Redistributions in binary form must reproduce the above 27# copyright notice, this list of conditions and the following 28# disclaimer in the documentation and/or other materials 29# provided with the distribution. 30# 31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38# SOFTWARE. 39# 40######################################################################## 41# 42# This code is described in an Intel White-Paper: 43# "Fast SHA-512 Implementations on Intel Architecture Processors" 44# 45# To find it, surf to http://www.intel.com/p/en_US/embedded 46# and search for that title. 47# 48######################################################################## 49# This code schedules 1 blocks at a time, with 4 lanes per block 50######################################################################## 51 52#include <linux/linkage.h> 53 54.text 55 56# Virtual Registers 57Y_0 = %ymm4 58Y_1 = %ymm5 59Y_2 = %ymm6 60Y_3 = %ymm7 61 62YTMP0 = %ymm0 63YTMP1 = %ymm1 64YTMP2 = %ymm2 65YTMP3 = %ymm3 66YTMP4 = %ymm8 67XFER = YTMP0 68 69BYTE_FLIP_MASK = %ymm9 70 71# 1st arg is %rdi, which is saved to the stack and accessed later via %r12 72CTX1 = %rdi 73CTX2 = %r12 74# 2nd arg 75INP = %rsi 76# 3rd arg 77NUM_BLKS = %rdx 78 79c = %rcx 80d = %r8 81e = %rdx 82y3 = %rsi 83 84TBL = %rdi # clobbers CTX1 85 86a = %rax 87b = %rbx 88 89f = %r9 90g = %r10 91h = %r11 92old_h = %r11 93 94T1 = %r12 # clobbers CTX2 95y0 = %r13 96y1 = %r14 97y2 = %r15 98 99# Local variables (stack frame) 100XFER_SIZE = 4*8 101SRND_SIZE = 1*8 102INP_SIZE = 1*8 103INPEND_SIZE = 1*8 104CTX_SIZE = 1*8 105 106frame_XFER = 0 107frame_SRND = frame_XFER + XFER_SIZE 108frame_INP = frame_SRND + SRND_SIZE 109frame_INPEND = frame_INP + INP_SIZE 110frame_CTX = frame_INPEND + INPEND_SIZE 111frame_size = frame_CTX + CTX_SIZE 112 113## assume buffers not aligned 114#define VMOVDQ vmovdqu 115 116# addm [mem], reg 117# Add reg to mem using reg-mem add and store 118.macro addm p1 p2 119 add \p1, \p2 120 mov \p2, \p1 121.endm 122 123 124# COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask 125# Load ymm with mem and byte swap each dword 126.macro COPY_YMM_AND_BSWAP p1 p2 p3 127 VMOVDQ \p2, \p1 128 vpshufb \p3, \p1, \p1 129.endm 130# rotate_Ys 131# Rotate values of symbols Y0...Y3 132.macro rotate_Ys 133 Y_ = Y_0 134 Y_0 = Y_1 135 Y_1 = Y_2 136 Y_2 = Y_3 137 Y_3 = Y_ 138.endm 139 140# RotateState 141.macro RotateState 142 # Rotate symbols a..h right 143 old_h = h 144 TMP_ = h 145 h = g 146 g = f 147 f = e 148 e = d 149 d = c 150 c = b 151 b = a 152 a = TMP_ 153.endm 154 155# macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL 156# YDST = {YSRC1, YSRC2} >> RVAL*8 157.macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL 158 vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI} 159 vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8 160.endm 161 162.macro FOUR_ROUNDS_AND_SCHED 163################################### RND N + 0 ######################################### 164 165 # Extract w[t-7] 166 MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7] 167 # Calculate w[t-16] + w[t-7] 168 vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16] 169 # Extract w[t-15] 170 MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15] 171 172 # Calculate sigma0 173 174 # Calculate w[t-15] ror 1 175 vpsrlq $1, YTMP1, YTMP2 176 vpsllq $(64-1), YTMP1, YTMP3 177 vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 178 # Calculate w[t-15] shr 7 179 vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7 180 181 mov a, y3 # y3 = a # MAJA 182 rorx $41, e, y0 # y0 = e >> 41 # S1A 183 rorx $18, e, y1 # y1 = e >> 18 # S1B 184 add frame_XFER(%rsp),h # h = k + w + h # -- 185 or c, y3 # y3 = a|c # MAJA 186 mov f, y2 # y2 = f # CH 187 rorx $34, a, T1 # T1 = a >> 34 # S0B 188 189 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 190 xor g, y2 # y2 = f^g # CH 191 rorx $14, e, y1 # y1 = (e >> 14) # S1 192 193 and e, y2 # y2 = (f^g)&e # CH 194 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 195 rorx $39, a, y1 # y1 = a >> 39 # S0A 196 add h, d # d = k + w + h + d # -- 197 198 and b, y3 # y3 = (a|c)&b # MAJA 199 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 200 rorx $28, a, T1 # T1 = (a >> 28) # S0 201 202 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 203 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 204 mov a, T1 # T1 = a # MAJB 205 and c, T1 # T1 = a&c # MAJB 206 207 add y0, y2 # y2 = S1 + CH # -- 208 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 209 add y1, h # h = k + w + h + S0 # -- 210 211 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 212 213 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 214 add y3, h # h = t1 + S0 + MAJ # -- 215 216 RotateState 217 218################################### RND N + 1 ######################################### 219 220 # Calculate w[t-15] ror 8 221 vpsrlq $8, YTMP1, YTMP2 222 vpsllq $(64-8), YTMP1, YTMP1 223 vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8 224 # XOR the three components 225 vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7 226 vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0 227 228 229 # Add three components, w[t-16], w[t-7] and sigma0 230 vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 231 # Move to appropriate lanes for calculating w[16] and w[17] 232 vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA} 233 # Move to appropriate lanes for calculating w[18] and w[19] 234 vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00} 235 236 # Calculate w[16] and w[17] in both 128 bit lanes 237 238 # Calculate sigma1 for w[16] and w[17] on both 128 bit lanes 239 vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA} 240 vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA} 241 242 243 mov a, y3 # y3 = a # MAJA 244 rorx $41, e, y0 # y0 = e >> 41 # S1A 245 rorx $18, e, y1 # y1 = e >> 18 # S1B 246 add 1*8+frame_XFER(%rsp), h # h = k + w + h # -- 247 or c, y3 # y3 = a|c # MAJA 248 249 250 mov f, y2 # y2 = f # CH 251 rorx $34, a, T1 # T1 = a >> 34 # S0B 252 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 253 xor g, y2 # y2 = f^g # CH 254 255 256 rorx $14, e, y1 # y1 = (e >> 14) # S1 257 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 258 rorx $39, a, y1 # y1 = a >> 39 # S0A 259 and e, y2 # y2 = (f^g)&e # CH 260 add h, d # d = k + w + h + d # -- 261 262 and b, y3 # y3 = (a|c)&b # MAJA 263 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 264 265 rorx $28, a, T1 # T1 = (a >> 28) # S0 266 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 267 268 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 269 mov a, T1 # T1 = a # MAJB 270 and c, T1 # T1 = a&c # MAJB 271 add y0, y2 # y2 = S1 + CH # -- 272 273 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 274 add y1, h # h = k + w + h + S0 # -- 275 276 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 277 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 278 add y3, h # h = t1 + S0 + MAJ # -- 279 280 RotateState 281 282 283################################### RND N + 2 ######################################### 284 285 vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA} 286 vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA} 287 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA} 288 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA} 289 vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA} 290 vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA} 291 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA} 292 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^ 293 # (W[-2] ror 61) ^ (W[-2] >> 6) {BABA} 294 295 # Add sigma1 to the other compunents to get w[16] and w[17] 296 vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]} 297 298 # Calculate sigma1 for w[18] and w[19] for upper 128 bit lane 299 vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--} 300 301 mov a, y3 # y3 = a # MAJA 302 rorx $41, e, y0 # y0 = e >> 41 # S1A 303 add 2*8+frame_XFER(%rsp), h # h = k + w + h # -- 304 305 rorx $18, e, y1 # y1 = e >> 18 # S1B 306 or c, y3 # y3 = a|c # MAJA 307 mov f, y2 # y2 = f # CH 308 xor g, y2 # y2 = f^g # CH 309 310 rorx $34, a, T1 # T1 = a >> 34 # S0B 311 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 312 and e, y2 # y2 = (f^g)&e # CH 313 314 rorx $14, e, y1 # y1 = (e >> 14) # S1 315 add h, d # d = k + w + h + d # -- 316 and b, y3 # y3 = (a|c)&b # MAJA 317 318 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 319 rorx $39, a, y1 # y1 = a >> 39 # S0A 320 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 321 322 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 323 rorx $28, a, T1 # T1 = (a >> 28) # S0 324 325 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 326 mov a, T1 # T1 = a # MAJB 327 and c, T1 # T1 = a&c # MAJB 328 add y0, y2 # y2 = S1 + CH # -- 329 330 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 331 add y1, h # h = k + w + h + S0 # -- 332 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 333 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 334 335 add y3, h # h = t1 + S0 + MAJ # -- 336 337 RotateState 338 339################################### RND N + 3 ######################################### 340 341 vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--} 342 vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--} 343 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--} 344 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--} 345 vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--} 346 vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--} 347 vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--} 348 vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^ 349 # (W[-2] ror 61) ^ (W[-2] >> 6) {DC--} 350 351 # Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19] 352 # to newly calculated sigma1 to get w[18] and w[19] 353 vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --} 354 355 # Form w[19, w[18], w17], w[16] 356 vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]} 357 358 mov a, y3 # y3 = a # MAJA 359 rorx $41, e, y0 # y0 = e >> 41 # S1A 360 rorx $18, e, y1 # y1 = e >> 18 # S1B 361 add 3*8+frame_XFER(%rsp), h # h = k + w + h # -- 362 or c, y3 # y3 = a|c # MAJA 363 364 365 mov f, y2 # y2 = f # CH 366 rorx $34, a, T1 # T1 = a >> 34 # S0B 367 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 368 xor g, y2 # y2 = f^g # CH 369 370 371 rorx $14, e, y1 # y1 = (e >> 14) # S1 372 and e, y2 # y2 = (f^g)&e # CH 373 add h, d # d = k + w + h + d # -- 374 and b, y3 # y3 = (a|c)&b # MAJA 375 376 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 377 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 378 379 rorx $39, a, y1 # y1 = a >> 39 # S0A 380 add y0, y2 # y2 = S1 + CH # -- 381 382 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 383 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 384 385 rorx $28, a, T1 # T1 = (a >> 28) # S0 386 387 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 388 mov a, T1 # T1 = a # MAJB 389 and c, T1 # T1 = a&c # MAJB 390 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 391 392 add y1, h # h = k + w + h + S0 # -- 393 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 394 add y3, h # h = t1 + S0 + MAJ # -- 395 396 RotateState 397 398 rotate_Ys 399.endm 400 401.macro DO_4ROUNDS 402 403################################### RND N + 0 ######################################### 404 405 mov f, y2 # y2 = f # CH 406 rorx $41, e, y0 # y0 = e >> 41 # S1A 407 rorx $18, e, y1 # y1 = e >> 18 # S1B 408 xor g, y2 # y2 = f^g # CH 409 410 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 411 rorx $14, e, y1 # y1 = (e >> 14) # S1 412 and e, y2 # y2 = (f^g)&e # CH 413 414 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 415 rorx $34, a, T1 # T1 = a >> 34 # S0B 416 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 417 rorx $39, a, y1 # y1 = a >> 39 # S0A 418 mov a, y3 # y3 = a # MAJA 419 420 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 421 rorx $28, a, T1 # T1 = (a >> 28) # S0 422 add frame_XFER(%rsp), h # h = k + w + h # -- 423 or c, y3 # y3 = a|c # MAJA 424 425 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 426 mov a, T1 # T1 = a # MAJB 427 and b, y3 # y3 = (a|c)&b # MAJA 428 and c, T1 # T1 = a&c # MAJB 429 add y0, y2 # y2 = S1 + CH # -- 430 431 add h, d # d = k + w + h + d # -- 432 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 433 add y1, h # h = k + w + h + S0 # -- 434 435 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 436 437 RotateState 438 439################################### RND N + 1 ######################################### 440 441 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 442 mov f, y2 # y2 = f # CH 443 rorx $41, e, y0 # y0 = e >> 41 # S1A 444 rorx $18, e, y1 # y1 = e >> 18 # S1B 445 xor g, y2 # y2 = f^g # CH 446 447 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 448 rorx $14, e, y1 # y1 = (e >> 14) # S1 449 and e, y2 # y2 = (f^g)&e # CH 450 add y3, old_h # h = t1 + S0 + MAJ # -- 451 452 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 453 rorx $34, a, T1 # T1 = a >> 34 # S0B 454 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 455 rorx $39, a, y1 # y1 = a >> 39 # S0A 456 mov a, y3 # y3 = a # MAJA 457 458 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 459 rorx $28, a, T1 # T1 = (a >> 28) # S0 460 add 8*1+frame_XFER(%rsp), h # h = k + w + h # -- 461 or c, y3 # y3 = a|c # MAJA 462 463 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 464 mov a, T1 # T1 = a # MAJB 465 and b, y3 # y3 = (a|c)&b # MAJA 466 and c, T1 # T1 = a&c # MAJB 467 add y0, y2 # y2 = S1 + CH # -- 468 469 add h, d # d = k + w + h + d # -- 470 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 471 add y1, h # h = k + w + h + S0 # -- 472 473 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 474 475 RotateState 476 477################################### RND N + 2 ######################################### 478 479 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 480 mov f, y2 # y2 = f # CH 481 rorx $41, e, y0 # y0 = e >> 41 # S1A 482 rorx $18, e, y1 # y1 = e >> 18 # S1B 483 xor g, y2 # y2 = f^g # CH 484 485 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 486 rorx $14, e, y1 # y1 = (e >> 14) # S1 487 and e, y2 # y2 = (f^g)&e # CH 488 add y3, old_h # h = t1 + S0 + MAJ # -- 489 490 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 491 rorx $34, a, T1 # T1 = a >> 34 # S0B 492 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 493 rorx $39, a, y1 # y1 = a >> 39 # S0A 494 mov a, y3 # y3 = a # MAJA 495 496 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 497 rorx $28, a, T1 # T1 = (a >> 28) # S0 498 add 8*2+frame_XFER(%rsp), h # h = k + w + h # -- 499 or c, y3 # y3 = a|c # MAJA 500 501 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 502 mov a, T1 # T1 = a # MAJB 503 and b, y3 # y3 = (a|c)&b # MAJA 504 and c, T1 # T1 = a&c # MAJB 505 add y0, y2 # y2 = S1 + CH # -- 506 507 add h, d # d = k + w + h + d # -- 508 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 509 add y1, h # h = k + w + h + S0 # -- 510 511 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 512 513 RotateState 514 515################################### RND N + 3 ######################################### 516 517 add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 518 mov f, y2 # y2 = f # CH 519 rorx $41, e, y0 # y0 = e >> 41 # S1A 520 rorx $18, e, y1 # y1 = e >> 18 # S1B 521 xor g, y2 # y2 = f^g # CH 522 523 xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1 524 rorx $14, e, y1 # y1 = (e >> 14) # S1 525 and e, y2 # y2 = (f^g)&e # CH 526 add y3, old_h # h = t1 + S0 + MAJ # -- 527 528 xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1 529 rorx $34, a, T1 # T1 = a >> 34 # S0B 530 xor g, y2 # y2 = CH = ((f^g)&e)^g # CH 531 rorx $39, a, y1 # y1 = a >> 39 # S0A 532 mov a, y3 # y3 = a # MAJA 533 534 xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0 535 rorx $28, a, T1 # T1 = (a >> 28) # S0 536 add 8*3+frame_XFER(%rsp), h # h = k + w + h # -- 537 or c, y3 # y3 = a|c # MAJA 538 539 xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0 540 mov a, T1 # T1 = a # MAJB 541 and b, y3 # y3 = (a|c)&b # MAJA 542 and c, T1 # T1 = a&c # MAJB 543 add y0, y2 # y2 = S1 + CH # -- 544 545 546 add h, d # d = k + w + h + d # -- 547 or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ 548 add y1, h # h = k + w + h + S0 # -- 549 550 add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- 551 552 add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- 553 554 add y3, h # h = t1 + S0 + MAJ # -- 555 556 RotateState 557 558.endm 559 560######################################################################## 561# void sha512_transform_rorx(sha512_state *state, const u8 *data, int blocks) 562# Purpose: Updates the SHA512 digest stored at "state" with the message 563# stored in "data". 564# The size of the message pointed to by "data" must be an integer multiple 565# of SHA512 message blocks. 566# "blocks" is the message length in SHA512 blocks 567######################################################################## 568SYM_FUNC_START(sha512_transform_rorx) 569 # Save GPRs 570 push %rbx 571 push %r12 572 push %r13 573 push %r14 574 push %r15 575 576 # Allocate Stack Space 577 push %rbp 578 mov %rsp, %rbp 579 sub $frame_size, %rsp 580 and $~(0x20 - 1), %rsp 581 582 shl $7, NUM_BLKS # convert to bytes 583 jz done_hash 584 add INP, NUM_BLKS # pointer to end of data 585 mov NUM_BLKS, frame_INPEND(%rsp) 586 587 ## load initial digest 588 mov 8*0(CTX1), a 589 mov 8*1(CTX1), b 590 mov 8*2(CTX1), c 591 mov 8*3(CTX1), d 592 mov 8*4(CTX1), e 593 mov 8*5(CTX1), f 594 mov 8*6(CTX1), g 595 mov 8*7(CTX1), h 596 597 # save %rdi (CTX) before it gets clobbered 598 mov %rdi, frame_CTX(%rsp) 599 600 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK 601 602loop0: 603 lea K512(%rip), TBL 604 605 ## byte swap first 16 dwords 606 COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK 607 COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK 608 COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK 609 COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK 610 611 mov INP, frame_INP(%rsp) 612 613 ## schedule 64 input dwords, by doing 12 rounds of 4 each 614 movq $4, frame_SRND(%rsp) 615 616.align 16 617loop1: 618 vpaddq (TBL), Y_0, XFER 619 vmovdqa XFER, frame_XFER(%rsp) 620 FOUR_ROUNDS_AND_SCHED 621 622 vpaddq 1*32(TBL), Y_0, XFER 623 vmovdqa XFER, frame_XFER(%rsp) 624 FOUR_ROUNDS_AND_SCHED 625 626 vpaddq 2*32(TBL), Y_0, XFER 627 vmovdqa XFER, frame_XFER(%rsp) 628 FOUR_ROUNDS_AND_SCHED 629 630 vpaddq 3*32(TBL), Y_0, XFER 631 vmovdqa XFER, frame_XFER(%rsp) 632 add $(4*32), TBL 633 FOUR_ROUNDS_AND_SCHED 634 635 subq $1, frame_SRND(%rsp) 636 jne loop1 637 638 movq $2, frame_SRND(%rsp) 639loop2: 640 vpaddq (TBL), Y_0, XFER 641 vmovdqa XFER, frame_XFER(%rsp) 642 DO_4ROUNDS 643 vpaddq 1*32(TBL), Y_1, XFER 644 vmovdqa XFER, frame_XFER(%rsp) 645 add $(2*32), TBL 646 DO_4ROUNDS 647 648 vmovdqa Y_2, Y_0 649 vmovdqa Y_3, Y_1 650 651 subq $1, frame_SRND(%rsp) 652 jne loop2 653 654 mov frame_CTX(%rsp), CTX2 655 addm 8*0(CTX2), a 656 addm 8*1(CTX2), b 657 addm 8*2(CTX2), c 658 addm 8*3(CTX2), d 659 addm 8*4(CTX2), e 660 addm 8*5(CTX2), f 661 addm 8*6(CTX2), g 662 addm 8*7(CTX2), h 663 664 mov frame_INP(%rsp), INP 665 add $128, INP 666 cmp frame_INPEND(%rsp), INP 667 jne loop0 668 669done_hash: 670 671 # Restore Stack Pointer 672 mov %rbp, %rsp 673 pop %rbp 674 675 # Restore GPRs 676 pop %r15 677 pop %r14 678 pop %r13 679 pop %r12 680 pop %rbx 681 682 RET 683SYM_FUNC_END(sha512_transform_rorx) 684 685######################################################################## 686### Binary Data 687 688 689# Mergeable 640-byte rodata section. This allows linker to merge the table 690# with other, exactly the same 640-byte fragment of another rodata section 691# (if such section exists). 692.section .rodata.cst640.K512, "aM", @progbits, 640 693.align 64 694# K[t] used in SHA512 hashing 695K512: 696 .quad 0x428a2f98d728ae22,0x7137449123ef65cd 697 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc 698 .quad 0x3956c25bf348b538,0x59f111f1b605d019 699 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 700 .quad 0xd807aa98a3030242,0x12835b0145706fbe 701 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 702 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 703 .quad 0x9bdc06a725c71235,0xc19bf174cf692694 704 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 705 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 706 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 707 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 708 .quad 0x983e5152ee66dfab,0xa831c66d2db43210 709 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 710 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 711 .quad 0x06ca6351e003826f,0x142929670a0e6e70 712 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 713 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df 714 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 715 .quad 0x81c2c92e47edaee6,0x92722c851482353b 716 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 717 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 718 .quad 0xd192e819d6ef5218,0xd69906245565a910 719 .quad 0xf40e35855771202a,0x106aa07032bbd1b8 720 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 721 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 722 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb 723 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 724 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 725 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec 726 .quad 0x90befffa23631e28,0xa4506cebde82bde9 727 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b 728 .quad 0xca273eceea26619c,0xd186b8c721c0c207 729 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 730 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 731 .quad 0x113f9804bef90dae,0x1b710b35131c471b 732 .quad 0x28db77f523047d84,0x32caab7b40c72493 733 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c 734 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a 735 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 736 737.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32 738.align 32 739# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. 740PSHUFFLE_BYTE_FLIP_MASK: 741 .octa 0x08090a0b0c0d0e0f0001020304050607 742 .octa 0x18191a1b1c1d1e1f1011121314151617 743 744.section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32 745.align 32 746MASK_YMM_LO: 747 .octa 0x00000000000000000000000000000000 748 .octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 749