xref: /openbmc/linux/arch/x86/crypto/sha512-avx-asm.S (revision d2f4a190)
1########################################################################
2# Implement fast SHA-512 with AVX instructions. (x86_64)
3#
4# Copyright (C) 2013 Intel Corporation.
5#
6# Authors:
7#     James Guilford <james.guilford@intel.com>
8#     Kirk Yap <kirk.s.yap@intel.com>
9#     David Cote <david.m.cote@intel.com>
10#     Tim Chen <tim.c.chen@linux.intel.com>
11#
12# This software is available to you under a choice of one of two
13# licenses.  You may choose to be licensed under the terms of the GNU
14# General Public License (GPL) Version 2, available from the file
15# COPYING in the main directory of this source tree, or the
16# OpenIB.org BSD license below:
17#
18#     Redistribution and use in source and binary forms, with or
19#     without modification, are permitted provided that the following
20#     conditions are met:
21#
22#      - Redistributions of source code must retain the above
23#        copyright notice, this list of conditions and the following
24#        disclaimer.
25#
26#      - Redistributions in binary form must reproduce the above
27#        copyright notice, this list of conditions and the following
28#        disclaimer in the documentation and/or other materials
29#        provided with the distribution.
30#
31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38# SOFTWARE.
39#
40########################################################################
41#
42# This code is described in an Intel White-Paper:
43# "Fast SHA-512 Implementations on Intel Architecture Processors"
44#
45# To find it, surf to http://www.intel.com/p/en_US/embedded
46# and search for that title.
47#
48########################################################################
49
50#include <linux/linkage.h>
51#include <linux/cfi_types.h>
52
53.text
54
55# Virtual Registers
56# ARG1
57digest	= %rdi
58# ARG2
59msg	= %rsi
60# ARG3
61msglen	= %rdx
62T1	= %rcx
63T2	= %r8
64a_64	= %r9
65b_64	= %r10
66c_64	= %r11
67d_64	= %r12
68e_64	= %r13
69f_64	= %r14
70g_64	= %r15
71h_64	= %rbx
72tmp0	= %rax
73
74# Local variables (stack frame)
75
76# Message Schedule
77W_SIZE = 80*8
78# W[t] + K[t] | W[t+1] + K[t+1]
79WK_SIZE = 2*8
80
81frame_W = 0
82frame_WK = frame_W + W_SIZE
83frame_size = frame_WK + WK_SIZE
84
85# Useful QWORD "arrays" for simpler memory references
86# MSG, DIGEST, K_t, W_t are arrays
87# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
88
89# Input message (arg1)
90#define MSG(i)    8*i(msg)
91
92# Output Digest (arg2)
93#define DIGEST(i) 8*i(digest)
94
95# SHA Constants (static mem)
96#define K_t(i)    8*i+K512(%rip)
97
98# Message Schedule (stack frame)
99#define W_t(i)    8*i+frame_W(%rsp)
100
101# W[t]+K[t] (stack frame)
102#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
103
104.macro RotateState
105	# Rotate symbols a..h right
106	TMP   = h_64
107	h_64  = g_64
108	g_64  = f_64
109	f_64  = e_64
110	e_64  = d_64
111	d_64  = c_64
112	c_64  = b_64
113	b_64  = a_64
114	a_64  = TMP
115.endm
116
117.macro RORQ p1 p2
118	# shld is faster than ror on Sandybridge
119	shld	$(64-\p2), \p1, \p1
120.endm
121
122.macro SHA512_Round rnd
123	# Compute Round %%t
124	mov     f_64, T1          # T1 = f
125	mov     e_64, tmp0        # tmp = e
126	xor     g_64, T1          # T1 = f ^ g
127	RORQ    tmp0, 23   # 41    # tmp = e ror 23
128	and     e_64, T1          # T1 = (f ^ g) & e
129	xor     e_64, tmp0        # tmp = (e ror 23) ^ e
130	xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
131	idx = \rnd
132	add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
133	RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
134	xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
135	mov     a_64, T2          # T2 = a
136	add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
137	RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
138	add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
139	mov     a_64, tmp0        # tmp = a
140	xor     c_64, T2          # T2 = a ^ c
141	and     c_64, tmp0        # tmp = a & c
142	and     b_64, T2          # T2 = (a ^ c) & b
143	xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
144	mov     a_64, tmp0        # tmp = a
145	RORQ    tmp0, 5  # 39     # tmp = a ror 5
146	xor     a_64, tmp0        # tmp = (a ror 5) ^ a
147	add     T1, d_64          # e(next_state) = d + T1
148	RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
149	xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
150	lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
151	RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
152	add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
153	RotateState
154.endm
155
156.macro SHA512_2Sched_2Round_avx rnd
157	# Compute rounds t-2 and t-1
158	# Compute message schedule QWORDS t and t+1
159
160	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
161	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
162	# scheduler.
163	#   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
164	# They are then added to their respective SHA512 constants at
165	# [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
166	#   For brievity, the comments following vectored instructions only refer to
167	# the first of a pair of QWORDS.
168	# Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
169	#   The computation of the message schedule and the rounds are tightly
170	# stitched to take advantage of instruction-level parallelism.
171
172	idx = \rnd - 2
173	vmovdqa	W_t(idx), %xmm4		# XMM4 = W[t-2]
174	idx = \rnd - 15
175	vmovdqu	W_t(idx), %xmm5		# XMM5 = W[t-15]
176	mov	f_64, T1
177	vpsrlq	$61, %xmm4, %xmm0	# XMM0 = W[t-2]>>61
178	mov	e_64, tmp0
179	vpsrlq	$1, %xmm5, %xmm6	# XMM6 = W[t-15]>>1
180	xor	g_64, T1
181	RORQ	tmp0, 23 # 41
182	vpsrlq	$19, %xmm4, %xmm1	# XMM1 = W[t-2]>>19
183	and	e_64, T1
184	xor	e_64, tmp0
185	vpxor	%xmm1, %xmm0, %xmm0	# XMM0 = W[t-2]>>61 ^ W[t-2]>>19
186	xor	g_64, T1
187	idx = \rnd
188	add	WK_2(idx), T1#
189	vpsrlq	$8, %xmm5, %xmm7	# XMM7 = W[t-15]>>8
190	RORQ	tmp0, 4 # 18
191	vpsrlq	$6, %xmm4, %xmm2	# XMM2 = W[t-2]>>6
192	xor	e_64, tmp0
193	mov	a_64, T2
194	add	h_64, T1
195	vpxor	%xmm7, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8
196	RORQ	tmp0, 14 # 14
197	add	tmp0, T1
198	vpsrlq	$7, %xmm5, %xmm8	# XMM8 = W[t-15]>>7
199	mov	a_64, tmp0
200	xor	c_64, T2
201	vpsllq	$(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
202	and	c_64, tmp0
203	and	b_64, T2
204	vpxor	%xmm3, %xmm2, %xmm2	# XMM2 = W[t-2]>>6 ^ W[t-2]<<3
205	xor	tmp0, T2
206	mov	a_64, tmp0
207	vpsllq	$(64-1), %xmm5, %xmm9	# XMM9 = W[t-15]<<63
208	RORQ	tmp0, 5 # 39
209	vpxor	%xmm9, %xmm8, %xmm8	# XMM8 = W[t-15]>>7 ^ W[t-15]<<63
210	xor	a_64, tmp0
211	add	T1, d_64
212	RORQ	tmp0, 6 # 34
213	xor	a_64, tmp0
214	vpxor	%xmm8, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
215					#  W[t-15]>>7 ^ W[t-15]<<63
216	lea	(T1, T2), h_64
217	RORQ	tmp0, 28 # 28
218	vpsllq	$(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
219	add	tmp0, h_64
220	RotateState
221	vpxor	%xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
222					#        W[t-2]<<25
223	mov	f_64, T1
224	vpxor	%xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
225	mov	e_64, tmp0
226	xor	g_64, T1
227	idx = \rnd - 16
228	vpaddq	W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
229	idx = \rnd - 7
230	vmovdqu	W_t(idx), %xmm1		# XMM1 = W[t-7]
231	RORQ	tmp0, 23 # 41
232	and	e_64, T1
233	xor	e_64, tmp0
234	xor	g_64, T1
235	vpsllq	$(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
236	idx = \rnd + 1
237	add	WK_2(idx), T1
238	vpxor	%xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
239	RORQ	tmp0, 4 # 18
240	vpaddq	%xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
241	xor	e_64, tmp0
242	vpaddq	%xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
243					#               s0(W[t-15]) + W[t-16]
244	mov	a_64, T2
245	add	h_64, T1
246	RORQ	tmp0, 14 # 14
247	add	tmp0, T1
248	idx = \rnd
249	vmovdqa	%xmm0, W_t(idx)		# Store W[t]
250	vpaddq	K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
251	vmovdqa	%xmm0, WK_2(idx)	# Store W[t]+K[t] for next rounds
252	mov	a_64, tmp0
253	xor	c_64, T2
254	and	c_64, tmp0
255	and	b_64, T2
256	xor	tmp0, T2
257	mov	a_64, tmp0
258	RORQ	tmp0, 5 # 39
259	xor	a_64, tmp0
260	add	T1, d_64
261	RORQ	tmp0, 6 # 34
262	xor	a_64, tmp0
263	lea	(T1, T2), h_64
264	RORQ	tmp0, 28 # 28
265	add	tmp0, h_64
266	RotateState
267.endm
268
269########################################################################
270# void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
271# Purpose: Updates the SHA512 digest stored at "state" with the message
272# stored in "data".
273# The size of the message pointed to by "data" must be an integer multiple
274# of SHA512 message blocks.
275# "blocks" is the message length in SHA512 blocks
276########################################################################
277SYM_TYPED_FUNC_START(sha512_transform_avx)
278	test msglen, msglen
279	je .Lnowork
280
281	# Save GPRs
282	push	%rbx
283	push	%r12
284	push	%r13
285	push	%r14
286	push	%r15
287
288	# Allocate Stack Space
289	push	%rbp
290	mov	%rsp, %rbp
291	sub     $frame_size, %rsp
292	and	$~(0x20 - 1), %rsp
293
294.Lupdateblock:
295
296	# Load state variables
297	mov     DIGEST(0), a_64
298	mov     DIGEST(1), b_64
299	mov     DIGEST(2), c_64
300	mov     DIGEST(3), d_64
301	mov     DIGEST(4), e_64
302	mov     DIGEST(5), f_64
303	mov     DIGEST(6), g_64
304	mov     DIGEST(7), h_64
305
306	t = 0
307	.rept 80/2 + 1
308	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
309	# +1 iteration because the scheduler leads hashing by 1 iteration
310		.if t < 2
311			# BSWAP 2 QWORDS
312			vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
313			vmovdqu  MSG(t), %xmm0
314			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
315			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
316			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
317			vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
318		.elseif t < 16
319			# BSWAP 2 QWORDS# Compute 2 Rounds
320			vmovdqu  MSG(t), %xmm0
321			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
322			SHA512_Round t-2    # Round t-2
323			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
324			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
325			SHA512_Round t-1    # Round t-1
326			vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
327		.elseif t < 79
328			# Schedule 2 QWORDS# Compute 2 Rounds
329			SHA512_2Sched_2Round_avx t
330		.else
331			# Compute 2 Rounds
332			SHA512_Round t-2
333			SHA512_Round t-1
334		.endif
335		t = t+2
336	.endr
337
338	# Update digest
339	add     a_64, DIGEST(0)
340	add     b_64, DIGEST(1)
341	add     c_64, DIGEST(2)
342	add     d_64, DIGEST(3)
343	add     e_64, DIGEST(4)
344	add     f_64, DIGEST(5)
345	add     g_64, DIGEST(6)
346	add     h_64, DIGEST(7)
347
348	# Advance to next message block
349	add     $16*8, msg
350	dec     msglen
351	jnz     .Lupdateblock
352
353	# Restore Stack Pointer
354	mov	%rbp, %rsp
355	pop	%rbp
356
357	# Restore GPRs
358	pop	%r15
359	pop	%r14
360	pop	%r13
361	pop	%r12
362	pop	%rbx
363
364.Lnowork:
365	RET
366SYM_FUNC_END(sha512_transform_avx)
367
368########################################################################
369### Binary Data
370
371.section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
372.align 16
373# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
374XMM_QWORD_BSWAP:
375	.octa 0x08090a0b0c0d0e0f0001020304050607
376
377# Mergeable 640-byte rodata section. This allows linker to merge the table
378# with other, exactly the same 640-byte fragment of another rodata section
379# (if such section exists).
380.section	.rodata.cst640.K512, "aM", @progbits, 640
381.align 64
382# K[t] used in SHA512 hashing
383K512:
384	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
385	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
386	.quad 0x3956c25bf348b538,0x59f111f1b605d019
387	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
388	.quad 0xd807aa98a3030242,0x12835b0145706fbe
389	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
390	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
391	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
392	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
393	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
394	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
395	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
396	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
397	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
398	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
399	.quad 0x06ca6351e003826f,0x142929670a0e6e70
400	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
401	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
402	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
403	.quad 0x81c2c92e47edaee6,0x92722c851482353b
404	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
405	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
406	.quad 0xd192e819d6ef5218,0xd69906245565a910
407	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
408	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
409	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
410	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
411	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
412	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
413	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
414	.quad 0x90befffa23631e28,0xa4506cebde82bde9
415	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
416	.quad 0xca273eceea26619c,0xd186b8c721c0c207
417	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
418	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
419	.quad 0x113f9804bef90dae,0x1b710b35131c471b
420	.quad 0x28db77f523047d84,0x32caab7b40c72493
421	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
422	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
423	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
424