xref: /openbmc/linux/arch/x86/crypto/sha512-avx-asm.S (revision 15e3ae36)
1########################################################################
2# Implement fast SHA-512 with AVX instructions. (x86_64)
3#
4# Copyright (C) 2013 Intel Corporation.
5#
6# Authors:
7#     James Guilford <james.guilford@intel.com>
8#     Kirk Yap <kirk.s.yap@intel.com>
9#     David Cote <david.m.cote@intel.com>
10#     Tim Chen <tim.c.chen@linux.intel.com>
11#
12# This software is available to you under a choice of one of two
13# licenses.  You may choose to be licensed under the terms of the GNU
14# General Public License (GPL) Version 2, available from the file
15# COPYING in the main directory of this source tree, or the
16# OpenIB.org BSD license below:
17#
18#     Redistribution and use in source and binary forms, with or
19#     without modification, are permitted provided that the following
20#     conditions are met:
21#
22#      - Redistributions of source code must retain the above
23#        copyright notice, this list of conditions and the following
24#        disclaimer.
25#
26#      - Redistributions in binary form must reproduce the above
27#        copyright notice, this list of conditions and the following
28#        disclaimer in the documentation and/or other materials
29#        provided with the distribution.
30#
31# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38# SOFTWARE.
39#
40########################################################################
41#
42# This code is described in an Intel White-Paper:
43# "Fast SHA-512 Implementations on Intel Architecture Processors"
44#
45# To find it, surf to http://www.intel.com/p/en_US/embedded
46# and search for that title.
47#
48########################################################################
49
50#include <linux/linkage.h>
51
52.text
53
54# Virtual Registers
55# ARG1
56digest	= %rdi
57# ARG2
58msg	= %rsi
59# ARG3
60msglen	= %rdx
61T1	= %rcx
62T2	= %r8
63a_64	= %r9
64b_64	= %r10
65c_64	= %r11
66d_64	= %r12
67e_64	= %r13
68f_64	= %r14
69g_64	= %r15
70h_64	= %rbx
71tmp0	= %rax
72
73# Local variables (stack frame)
74
75# Message Schedule
76W_SIZE = 80*8
77# W[t] + K[t] | W[t+1] + K[t+1]
78WK_SIZE = 2*8
79RSPSAVE_SIZE = 1*8
80GPRSAVE_SIZE = 5*8
81
82frame_W = 0
83frame_WK = frame_W + W_SIZE
84frame_RSPSAVE = frame_WK + WK_SIZE
85frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE
86frame_size = frame_GPRSAVE + GPRSAVE_SIZE
87
88# Useful QWORD "arrays" for simpler memory references
89# MSG, DIGEST, K_t, W_t are arrays
90# WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even
91
92# Input message (arg1)
93#define MSG(i)    8*i(msg)
94
95# Output Digest (arg2)
96#define DIGEST(i) 8*i(digest)
97
98# SHA Constants (static mem)
99#define K_t(i)    8*i+K512(%rip)
100
101# Message Schedule (stack frame)
102#define W_t(i)    8*i+frame_W(%rsp)
103
104# W[t]+K[t] (stack frame)
105#define WK_2(i)   8*((i%2))+frame_WK(%rsp)
106
107.macro RotateState
108	# Rotate symbols a..h right
109	TMP   = h_64
110	h_64  = g_64
111	g_64  = f_64
112	f_64  = e_64
113	e_64  = d_64
114	d_64  = c_64
115	c_64  = b_64
116	b_64  = a_64
117	a_64  = TMP
118.endm
119
120.macro RORQ p1 p2
121	# shld is faster than ror on Sandybridge
122	shld	$(64-\p2), \p1, \p1
123.endm
124
125.macro SHA512_Round rnd
126	# Compute Round %%t
127	mov     f_64, T1          # T1 = f
128	mov     e_64, tmp0        # tmp = e
129	xor     g_64, T1          # T1 = f ^ g
130	RORQ    tmp0, 23   # 41    # tmp = e ror 23
131	and     e_64, T1          # T1 = (f ^ g) & e
132	xor     e_64, tmp0        # tmp = (e ror 23) ^ e
133	xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
134	idx = \rnd
135	add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
136	RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
137	xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
138	mov     a_64, T2          # T2 = a
139	add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
140	RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
141	add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
142	mov     a_64, tmp0        # tmp = a
143	xor     c_64, T2          # T2 = a ^ c
144	and     c_64, tmp0        # tmp = a & c
145	and     b_64, T2          # T2 = (a ^ c) & b
146	xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
147	mov     a_64, tmp0        # tmp = a
148	RORQ    tmp0, 5  # 39     # tmp = a ror 5
149	xor     a_64, tmp0        # tmp = (a ror 5) ^ a
150	add     T1, d_64          # e(next_state) = d + T1
151	RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
152	xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
153	lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
154	RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
155	add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
156	RotateState
157.endm
158
159.macro SHA512_2Sched_2Round_avx rnd
160	# Compute rounds t-2 and t-1
161	# Compute message schedule QWORDS t and t+1
162
163	#   Two rounds are computed based on the values for K[t-2]+W[t-2] and
164	# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
165	# scheduler.
166	#   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
167	# They are then added to their respective SHA512 constants at
168	# [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
169	#   For brievity, the comments following vectored instructions only refer to
170	# the first of a pair of QWORDS.
171	# Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
172	#   The computation of the message schedule and the rounds are tightly
173	# stitched to take advantage of instruction-level parallelism.
174
175	idx = \rnd - 2
176	vmovdqa	W_t(idx), %xmm4		# XMM4 = W[t-2]
177	idx = \rnd - 15
178	vmovdqu	W_t(idx), %xmm5		# XMM5 = W[t-15]
179	mov	f_64, T1
180	vpsrlq	$61, %xmm4, %xmm0	# XMM0 = W[t-2]>>61
181	mov	e_64, tmp0
182	vpsrlq	$1, %xmm5, %xmm6	# XMM6 = W[t-15]>>1
183	xor	g_64, T1
184	RORQ	tmp0, 23 # 41
185	vpsrlq	$19, %xmm4, %xmm1	# XMM1 = W[t-2]>>19
186	and	e_64, T1
187	xor	e_64, tmp0
188	vpxor	%xmm1, %xmm0, %xmm0	# XMM0 = W[t-2]>>61 ^ W[t-2]>>19
189	xor	g_64, T1
190	idx = \rnd
191	add	WK_2(idx), T1#
192	vpsrlq	$8, %xmm5, %xmm7	# XMM7 = W[t-15]>>8
193	RORQ	tmp0, 4 # 18
194	vpsrlq	$6, %xmm4, %xmm2	# XMM2 = W[t-2]>>6
195	xor	e_64, tmp0
196	mov	a_64, T2
197	add	h_64, T1
198	vpxor	%xmm7, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8
199	RORQ	tmp0, 14 # 14
200	add	tmp0, T1
201	vpsrlq	$7, %xmm5, %xmm8	# XMM8 = W[t-15]>>7
202	mov	a_64, tmp0
203	xor	c_64, T2
204	vpsllq	$(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
205	and	c_64, tmp0
206	and	b_64, T2
207	vpxor	%xmm3, %xmm2, %xmm2	# XMM2 = W[t-2]>>6 ^ W[t-2]<<3
208	xor	tmp0, T2
209	mov	a_64, tmp0
210	vpsllq	$(64-1), %xmm5, %xmm9	# XMM9 = W[t-15]<<63
211	RORQ	tmp0, 5 # 39
212	vpxor	%xmm9, %xmm8, %xmm8	# XMM8 = W[t-15]>>7 ^ W[t-15]<<63
213	xor	a_64, tmp0
214	add	T1, d_64
215	RORQ	tmp0, 6 # 34
216	xor	a_64, tmp0
217	vpxor	%xmm8, %xmm6, %xmm6	# XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
218					#  W[t-15]>>7 ^ W[t-15]<<63
219	lea	(T1, T2), h_64
220	RORQ	tmp0, 28 # 28
221	vpsllq	$(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
222	add	tmp0, h_64
223	RotateState
224	vpxor	%xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
225					#        W[t-2]<<25
226	mov	f_64, T1
227	vpxor	%xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
228	mov	e_64, tmp0
229	xor	g_64, T1
230	idx = \rnd - 16
231	vpaddq	W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
232	idx = \rnd - 7
233	vmovdqu	W_t(idx), %xmm1		# XMM1 = W[t-7]
234	RORQ	tmp0, 23 # 41
235	and	e_64, T1
236	xor	e_64, tmp0
237	xor	g_64, T1
238	vpsllq	$(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
239	idx = \rnd + 1
240	add	WK_2(idx), T1
241	vpxor	%xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
242	RORQ	tmp0, 4 # 18
243	vpaddq	%xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
244	xor	e_64, tmp0
245	vpaddq	%xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
246					#               s0(W[t-15]) + W[t-16]
247	mov	a_64, T2
248	add	h_64, T1
249	RORQ	tmp0, 14 # 14
250	add	tmp0, T1
251	idx = \rnd
252	vmovdqa	%xmm0, W_t(idx)		# Store W[t]
253	vpaddq	K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
254	vmovdqa	%xmm0, WK_2(idx)	# Store W[t]+K[t] for next rounds
255	mov	a_64, tmp0
256	xor	c_64, T2
257	and	c_64, tmp0
258	and	b_64, T2
259	xor	tmp0, T2
260	mov	a_64, tmp0
261	RORQ	tmp0, 5 # 39
262	xor	a_64, tmp0
263	add	T1, d_64
264	RORQ	tmp0, 6 # 34
265	xor	a_64, tmp0
266	lea	(T1, T2), h_64
267	RORQ	tmp0, 28 # 28
268	add	tmp0, h_64
269	RotateState
270.endm
271
272########################################################################
273# void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
274# Purpose: Updates the SHA512 digest stored at "state" with the message
275# stored in "data".
276# The size of the message pointed to by "data" must be an integer multiple
277# of SHA512 message blocks.
278# "blocks" is the message length in SHA512 blocks
279########################################################################
280SYM_FUNC_START(sha512_transform_avx)
281	cmp $0, msglen
282	je nowork
283
284	# Allocate Stack Space
285	mov	%rsp, %rax
286	sub     $frame_size, %rsp
287	and	$~(0x20 - 1), %rsp
288	mov	%rax, frame_RSPSAVE(%rsp)
289
290	# Save GPRs
291	mov     %rbx, frame_GPRSAVE(%rsp)
292	mov     %r12, frame_GPRSAVE +8*1(%rsp)
293	mov     %r13, frame_GPRSAVE +8*2(%rsp)
294	mov     %r14, frame_GPRSAVE +8*3(%rsp)
295	mov     %r15, frame_GPRSAVE +8*4(%rsp)
296
297updateblock:
298
299	# Load state variables
300	mov     DIGEST(0), a_64
301	mov     DIGEST(1), b_64
302	mov     DIGEST(2), c_64
303	mov     DIGEST(3), d_64
304	mov     DIGEST(4), e_64
305	mov     DIGEST(5), f_64
306	mov     DIGEST(6), g_64
307	mov     DIGEST(7), h_64
308
309	t = 0
310	.rept 80/2 + 1
311	# (80 rounds) / (2 rounds/iteration) + (1 iteration)
312	# +1 iteration because the scheduler leads hashing by 1 iteration
313		.if t < 2
314			# BSWAP 2 QWORDS
315			vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
316			vmovdqu  MSG(t), %xmm0
317			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
318			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
319			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
320			vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
321		.elseif t < 16
322			# BSWAP 2 QWORDS# Compute 2 Rounds
323			vmovdqu  MSG(t), %xmm0
324			vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
325			SHA512_Round t-2    # Round t-2
326			vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
327			vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
328			SHA512_Round t-1    # Round t-1
329			vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
330		.elseif t < 79
331			# Schedule 2 QWORDS# Compute 2 Rounds
332			SHA512_2Sched_2Round_avx t
333		.else
334			# Compute 2 Rounds
335			SHA512_Round t-2
336			SHA512_Round t-1
337		.endif
338		t = t+2
339	.endr
340
341	# Update digest
342	add     a_64, DIGEST(0)
343	add     b_64, DIGEST(1)
344	add     c_64, DIGEST(2)
345	add     d_64, DIGEST(3)
346	add     e_64, DIGEST(4)
347	add     f_64, DIGEST(5)
348	add     g_64, DIGEST(6)
349	add     h_64, DIGEST(7)
350
351	# Advance to next message block
352	add     $16*8, msg
353	dec     msglen
354	jnz     updateblock
355
356	# Restore GPRs
357	mov     frame_GPRSAVE(%rsp),      %rbx
358	mov     frame_GPRSAVE +8*1(%rsp), %r12
359	mov     frame_GPRSAVE +8*2(%rsp), %r13
360	mov     frame_GPRSAVE +8*3(%rsp), %r14
361	mov     frame_GPRSAVE +8*4(%rsp), %r15
362
363	# Restore Stack Pointer
364	mov	frame_RSPSAVE(%rsp), %rsp
365
366nowork:
367	ret
368SYM_FUNC_END(sha512_transform_avx)
369
370########################################################################
371### Binary Data
372
373.section	.rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
374.align 16
375# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
376XMM_QWORD_BSWAP:
377	.octa 0x08090a0b0c0d0e0f0001020304050607
378
379# Mergeable 640-byte rodata section. This allows linker to merge the table
380# with other, exactly the same 640-byte fragment of another rodata section
381# (if such section exists).
382.section	.rodata.cst640.K512, "aM", @progbits, 640
383.align 64
384# K[t] used in SHA512 hashing
385K512:
386	.quad 0x428a2f98d728ae22,0x7137449123ef65cd
387	.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
388	.quad 0x3956c25bf348b538,0x59f111f1b605d019
389	.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
390	.quad 0xd807aa98a3030242,0x12835b0145706fbe
391	.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
392	.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
393	.quad 0x9bdc06a725c71235,0xc19bf174cf692694
394	.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
395	.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
396	.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
397	.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
398	.quad 0x983e5152ee66dfab,0xa831c66d2db43210
399	.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
400	.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
401	.quad 0x06ca6351e003826f,0x142929670a0e6e70
402	.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
403	.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
404	.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
405	.quad 0x81c2c92e47edaee6,0x92722c851482353b
406	.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
407	.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
408	.quad 0xd192e819d6ef5218,0xd69906245565a910
409	.quad 0xf40e35855771202a,0x106aa07032bbd1b8
410	.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
411	.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
412	.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
413	.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
414	.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
415	.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
416	.quad 0x90befffa23631e28,0xa4506cebde82bde9
417	.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
418	.quad 0xca273eceea26619c,0xd186b8c721c0c207
419	.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
420	.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
421	.quad 0x113f9804bef90dae,0x1b710b35131c471b
422	.quad 0x28db77f523047d84,0x32caab7b40c72493
423	.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
424	.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
425	.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
426