1######################################################################## 2# Implement fast SHA-256 with AVX1 instructions. (x86_64) 3# 4# Copyright (C) 2013 Intel Corporation. 5# 6# Authors: 7# James Guilford <james.guilford@intel.com> 8# Kirk Yap <kirk.s.yap@intel.com> 9# Tim Chen <tim.c.chen@linux.intel.com> 10# 11# This software is available to you under a choice of one of two 12# licenses. You may choose to be licensed under the terms of the GNU 13# General Public License (GPL) Version 2, available from the file 14# COPYING in the main directory of this source tree, or the 15# OpenIB.org BSD license below: 16# 17# Redistribution and use in source and binary forms, with or 18# without modification, are permitted provided that the following 19# conditions are met: 20# 21# - Redistributions of source code must retain the above 22# copyright notice, this list of conditions and the following 23# disclaimer. 24# 25# - Redistributions in binary form must reproduce the above 26# copyright notice, this list of conditions and the following 27# disclaimer in the documentation and/or other materials 28# provided with the distribution. 29# 30# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 31# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 32# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 33# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 34# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 35# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 36# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 37# SOFTWARE. 38######################################################################## 39# 40# This code is described in an Intel White-Paper: 41# "Fast SHA-256 Implementations on Intel Architecture Processors" 42# 43# To find it, surf to http://www.intel.com/p/en_US/embedded 44# and search for that title. 45# 46######################################################################## 47# This code schedules 1 block at a time, with 4 lanes per block 48######################################################################## 49 50#ifdef CONFIG_AS_AVX 51#include <linux/linkage.h> 52 53## assume buffers not aligned 54#define VMOVDQ vmovdqu 55 56################################ Define Macros 57 58# addm [mem], reg 59# Add reg to mem using reg-mem add and store 60.macro addm p1 p2 61 add \p1, \p2 62 mov \p2, \p1 63.endm 64 65 66.macro MY_ROR p1 p2 67 shld $(32-(\p1)), \p2, \p2 68.endm 69 70################################ 71 72# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask 73# Load xmm with mem and byte swap each dword 74.macro COPY_XMM_AND_BSWAP p1 p2 p3 75 VMOVDQ \p2, \p1 76 vpshufb \p3, \p1, \p1 77.endm 78 79################################ 80 81X0 = %xmm4 82X1 = %xmm5 83X2 = %xmm6 84X3 = %xmm7 85 86XTMP0 = %xmm0 87XTMP1 = %xmm1 88XTMP2 = %xmm2 89XTMP3 = %xmm3 90XTMP4 = %xmm8 91XFER = %xmm9 92XTMP5 = %xmm11 93 94SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA 95SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00 96BYTE_FLIP_MASK = %xmm13 97 98NUM_BLKS = %rdx # 3rd arg 99INP = %rsi # 2nd arg 100CTX = %rdi # 1st arg 101 102SRND = %rsi # clobbers INP 103c = %ecx 104d = %r8d 105e = %edx 106TBL = %r12 107a = %eax 108b = %ebx 109 110f = %r9d 111g = %r10d 112h = %r11d 113 114y0 = %r13d 115y1 = %r14d 116y2 = %r15d 117 118 119_INP_END_SIZE = 8 120_INP_SIZE = 8 121_XFER_SIZE = 16 122_XMM_SAVE_SIZE = 0 123 124_INP_END = 0 125_INP = _INP_END + _INP_END_SIZE 126_XFER = _INP + _INP_SIZE 127_XMM_SAVE = _XFER + _XFER_SIZE 128STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE 129 130# rotate_Xs 131# Rotate values of symbols X0...X3 132.macro rotate_Xs 133X_ = X0 134X0 = X1 135X1 = X2 136X2 = X3 137X3 = X_ 138.endm 139 140# ROTATE_ARGS 141# Rotate values of symbols a...h 142.macro ROTATE_ARGS 143TMP_ = h 144h = g 145g = f 146f = e 147e = d 148d = c 149c = b 150b = a 151a = TMP_ 152.endm 153 154.macro FOUR_ROUNDS_AND_SCHED 155 ## compute s0 four at a time and s1 two at a time 156 ## compute W[-16] + W[-7] 4 at a time 157 158 mov e, y0 # y0 = e 159 MY_ROR (25-11), y0 # y0 = e >> (25-11) 160 mov a, y1 # y1 = a 161 vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7] 162 MY_ROR (22-13), y1 # y1 = a >> (22-13) 163 xor e, y0 # y0 = e ^ (e >> (25-11)) 164 mov f, y2 # y2 = f 165 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) 166 xor a, y1 # y1 = a ^ (a >> (22-13) 167 xor g, y2 # y2 = f^g 168 vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16] 169 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) 170 and e, y2 # y2 = (f^g)&e 171 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) 172 ## compute s0 173 vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15] 174 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) 175 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) 176 xor g, y2 # y2 = CH = ((f^g)&e)^g 177 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) 178 add y0, y2 # y2 = S1 + CH 179 add _XFER(%rsp), y2 # y2 = k + w + S1 + CH 180 mov a, y0 # y0 = a 181 add y2, h # h = h + S1 + CH + k + w 182 mov a, y2 # y2 = a 183 vpsrld $7, XTMP1, XTMP2 184 or c, y0 # y0 = a|c 185 add h, d # d = d + h + S1 + CH + k + w 186 and c, y2 # y2 = a&c 187 vpslld $(32-7), XTMP1, XTMP3 188 and b, y0 # y0 = (a|c)&b 189 add y1, h # h = h + S1 + CH + k + w + S0 190 vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 191 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) 192 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ 193 ROTATE_ARGS 194 mov e, y0 # y0 = e 195 mov a, y1 # y1 = a 196 MY_ROR (25-11), y0 # y0 = e >> (25-11) 197 xor e, y0 # y0 = e ^ (e >> (25-11)) 198 mov f, y2 # y2 = f 199 MY_ROR (22-13), y1 # y1 = a >> (22-13) 200 vpsrld $18, XTMP1, XTMP2 # 201 xor a, y1 # y1 = a ^ (a >> (22-13) 202 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) 203 xor g, y2 # y2 = f^g 204 vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3 205 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) 206 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) 207 and e, y2 # y2 = (f^g)&e 208 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) 209 vpslld $(32-18), XTMP1, XTMP1 210 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) 211 xor g, y2 # y2 = CH = ((f^g)&e)^g 212 vpxor XTMP1, XTMP3, XTMP3 # 213 add y0, y2 # y2 = S1 + CH 214 add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH 215 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) 216 vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR 217 mov a, y0 # y0 = a 218 add y2, h # h = h + S1 + CH + k + w 219 mov a, y2 # y2 = a 220 vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0 221 or c, y0 # y0 = a|c 222 add h, d # d = d + h + S1 + CH + k + w 223 and c, y2 # y2 = a&c 224 ## compute low s1 225 vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} 226 and b, y0 # y0 = (a|c)&b 227 add y1, h # h = h + S1 + CH + k + w + S0 228 vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 229 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) 230 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ 231 ROTATE_ARGS 232 mov e, y0 # y0 = e 233 mov a, y1 # y1 = a 234 MY_ROR (25-11), y0 # y0 = e >> (25-11) 235 xor e, y0 # y0 = e ^ (e >> (25-11)) 236 MY_ROR (22-13), y1 # y1 = a >> (22-13) 237 mov f, y2 # y2 = f 238 xor a, y1 # y1 = a ^ (a >> (22-13) 239 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) 240 vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} 241 xor g, y2 # y2 = f^g 242 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA} 243 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) 244 and e, y2 # y2 = (f^g)&e 245 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA} 246 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) 247 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) 248 xor g, y2 # y2 = CH = ((f^g)&e)^g 249 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) 250 vpxor XTMP3, XTMP2, XTMP2 # 251 add y0, y2 # y2 = S1 + CH 252 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) 253 add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH 254 vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA} 255 mov a, y0 # y0 = a 256 add y2, h # h = h + S1 + CH + k + w 257 mov a, y2 # y2 = a 258 vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA} 259 or c, y0 # y0 = a|c 260 add h, d # d = d + h + S1 + CH + k + w 261 and c, y2 # y2 = a&c 262 vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} 263 and b, y0 # y0 = (a|c)&b 264 add y1, h # h = h + S1 + CH + k + w + S0 265 ## compute high s1 266 vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC} 267 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) 268 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ 269 ROTATE_ARGS 270 mov e, y0 # y0 = e 271 MY_ROR (25-11), y0 # y0 = e >> (25-11) 272 mov a, y1 # y1 = a 273 MY_ROR (22-13), y1 # y1 = a >> (22-13) 274 xor e, y0 # y0 = e ^ (e >> (25-11)) 275 mov f, y2 # y2 = f 276 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) 277 vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC} 278 xor a, y1 # y1 = a ^ (a >> (22-13) 279 xor g, y2 # y2 = f^g 280 vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC} 281 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) 282 and e, y2 # y2 = (f^g)&e 283 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) 284 vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC} 285 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) 286 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) 287 xor g, y2 # y2 = CH = ((f^g)&e)^g 288 vpxor XTMP3, XTMP2, XTMP2 289 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) 290 add y0, y2 # y2 = S1 + CH 291 add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH 292 vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC} 293 mov a, y0 # y0 = a 294 add y2, h # h = h + S1 + CH + k + w 295 mov a, y2 # y2 = a 296 vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00} 297 or c, y0 # y0 = a|c 298 add h, d # d = d + h + S1 + CH + k + w 299 and c, y2 # y2 = a&c 300 vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]} 301 and b, y0 # y0 = (a|c)&b 302 add y1, h # h = h + S1 + CH + k + w + S0 303 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) 304 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ 305 ROTATE_ARGS 306 rotate_Xs 307.endm 308 309## input is [rsp + _XFER + %1 * 4] 310.macro DO_ROUND round 311 mov e, y0 # y0 = e 312 MY_ROR (25-11), y0 # y0 = e >> (25-11) 313 mov a, y1 # y1 = a 314 xor e, y0 # y0 = e ^ (e >> (25-11)) 315 MY_ROR (22-13), y1 # y1 = a >> (22-13) 316 mov f, y2 # y2 = f 317 xor a, y1 # y1 = a ^ (a >> (22-13) 318 MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) 319 xor g, y2 # y2 = f^g 320 xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) 321 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) 322 and e, y2 # y2 = (f^g)&e 323 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) 324 MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) 325 xor g, y2 # y2 = CH = ((f^g)&e)^g 326 add y0, y2 # y2 = S1 + CH 327 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) 328 offset = \round * 4 + _XFER # 329 add offset(%rsp), y2 # y2 = k + w + S1 + CH 330 mov a, y0 # y0 = a 331 add y2, h # h = h + S1 + CH + k + w 332 mov a, y2 # y2 = a 333 or c, y0 # y0 = a|c 334 add h, d # d = d + h + S1 + CH + k + w 335 and c, y2 # y2 = a&c 336 and b, y0 # y0 = (a|c)&b 337 add y1, h # h = h + S1 + CH + k + w + S0 338 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) 339 add y0, h # h = h + S1 + CH + k + w + S0 + MAJ 340 ROTATE_ARGS 341.endm 342 343######################################################################## 344## void sha256_transform_avx(state sha256_state *state, const u8 *data, int blocks) 345## arg 1 : pointer to state 346## arg 2 : pointer to input data 347## arg 3 : Num blocks 348######################################################################## 349.text 350SYM_FUNC_START(sha256_transform_avx) 351.align 32 352 pushq %rbx 353 pushq %r12 354 pushq %r13 355 pushq %r14 356 pushq %r15 357 pushq %rbp 358 movq %rsp, %rbp 359 360 subq $STACK_SIZE, %rsp # allocate stack space 361 and $~15, %rsp # align stack pointer 362 363 shl $6, NUM_BLKS # convert to bytes 364 jz done_hash 365 add INP, NUM_BLKS # pointer to end of data 366 mov NUM_BLKS, _INP_END(%rsp) 367 368 ## load initial digest 369 mov 4*0(CTX), a 370 mov 4*1(CTX), b 371 mov 4*2(CTX), c 372 mov 4*3(CTX), d 373 mov 4*4(CTX), e 374 mov 4*5(CTX), f 375 mov 4*6(CTX), g 376 mov 4*7(CTX), h 377 378 vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK 379 vmovdqa _SHUF_00BA(%rip), SHUF_00BA 380 vmovdqa _SHUF_DC00(%rip), SHUF_DC00 381loop0: 382 lea K256(%rip), TBL 383 384 ## byte swap first 16 dwords 385 COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK 386 COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK 387 COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK 388 COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK 389 390 mov INP, _INP(%rsp) 391 392 ## schedule 48 input dwords, by doing 3 rounds of 16 each 393 mov $3, SRND 394.align 16 395loop1: 396 vpaddd (TBL), X0, XFER 397 vmovdqa XFER, _XFER(%rsp) 398 FOUR_ROUNDS_AND_SCHED 399 400 vpaddd 1*16(TBL), X0, XFER 401 vmovdqa XFER, _XFER(%rsp) 402 FOUR_ROUNDS_AND_SCHED 403 404 vpaddd 2*16(TBL), X0, XFER 405 vmovdqa XFER, _XFER(%rsp) 406 FOUR_ROUNDS_AND_SCHED 407 408 vpaddd 3*16(TBL), X0, XFER 409 vmovdqa XFER, _XFER(%rsp) 410 add $4*16, TBL 411 FOUR_ROUNDS_AND_SCHED 412 413 sub $1, SRND 414 jne loop1 415 416 mov $2, SRND 417loop2: 418 vpaddd (TBL), X0, XFER 419 vmovdqa XFER, _XFER(%rsp) 420 DO_ROUND 0 421 DO_ROUND 1 422 DO_ROUND 2 423 DO_ROUND 3 424 425 vpaddd 1*16(TBL), X1, XFER 426 vmovdqa XFER, _XFER(%rsp) 427 add $2*16, TBL 428 DO_ROUND 0 429 DO_ROUND 1 430 DO_ROUND 2 431 DO_ROUND 3 432 433 vmovdqa X2, X0 434 vmovdqa X3, X1 435 436 sub $1, SRND 437 jne loop2 438 439 addm (4*0)(CTX),a 440 addm (4*1)(CTX),b 441 addm (4*2)(CTX),c 442 addm (4*3)(CTX),d 443 addm (4*4)(CTX),e 444 addm (4*5)(CTX),f 445 addm (4*6)(CTX),g 446 addm (4*7)(CTX),h 447 448 mov _INP(%rsp), INP 449 add $64, INP 450 cmp _INP_END(%rsp), INP 451 jne loop0 452 453done_hash: 454 455 mov %rbp, %rsp 456 popq %rbp 457 popq %r15 458 popq %r14 459 popq %r13 460 popq %r12 461 popq %rbx 462 ret 463SYM_FUNC_END(sha256_transform_avx) 464 465.section .rodata.cst256.K256, "aM", @progbits, 256 466.align 64 467K256: 468 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 469 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 470 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 471 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 472 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc 473 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da 474 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 475 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 476 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 477 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 478 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 479 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 480 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 481 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 482 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 483 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 484 485.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 486.align 16 487PSHUFFLE_BYTE_FLIP_MASK: 488 .octa 0x0c0d0e0f08090a0b0405060700010203 489 490.section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16 491.align 16 492# shuffle xBxA -> 00BA 493_SHUF_00BA: 494 .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100 495 496.section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16 497.align 16 498# shuffle xDxC -> DC00 499_SHUF_DC00: 500 .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF 501 502#endif 503