1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Using hardware provided CRC32 instruction to accelerate the CRC32 disposal.
4  * CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE)
5  * CRC32 is a new instruction in Intel SSE4.2, the reference can be found at:
6  * http://www.intel.com/products/processor/manuals/
7  * Intel(R) 64 and IA-32 Architectures Software Developer's Manual
8  * Volume 2A: Instruction Set Reference, A-M
9  *
10  * Copyright (C) 2008 Intel Corporation
11  * Authors: Austin Zhang <austin_zhang@linux.intel.com>
12  *          Kent Liu <kent.liu@intel.com>
13  */
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/internal/simd.h>
20 
21 #include <asm/cpufeatures.h>
22 #include <asm/cpu_device_id.h>
23 #include <asm/simd.h>
24 
25 #define CHKSUM_BLOCK_SIZE	1
26 #define CHKSUM_DIGEST_SIZE	4
27 
28 #define SCALE_F	sizeof(unsigned long)
29 
30 #ifdef CONFIG_X86_64
31 #define REX_PRE "0x48, "
32 #else
33 #define REX_PRE
34 #endif
35 
36 #ifdef CONFIG_X86_64
37 /*
38  * use carryless multiply version of crc32c when buffer
39  * size is >= 512 to account
40  * for fpu state save/restore overhead.
41  */
42 #define CRC32C_PCL_BREAKEVEN	512
43 
44 asmlinkage unsigned int crc_pcl(const u8 *buffer, int len,
45 				unsigned int crc_init);
46 #endif /* CONFIG_X86_64 */
47 
48 static u32 crc32c_intel_le_hw_byte(u32 crc, unsigned char const *data, size_t length)
49 {
50 	while (length--) {
51 		__asm__ __volatile__(
52 			".byte 0xf2, 0xf, 0x38, 0xf0, 0xf1"
53 			:"=S"(crc)
54 			:"0"(crc), "c"(*data)
55 		);
56 		data++;
57 	}
58 
59 	return crc;
60 }
61 
62 static u32 __pure crc32c_intel_le_hw(u32 crc, unsigned char const *p, size_t len)
63 {
64 	unsigned int iquotient = len / SCALE_F;
65 	unsigned int iremainder = len % SCALE_F;
66 	unsigned long *ptmp = (unsigned long *)p;
67 
68 	while (iquotient--) {
69 		__asm__ __volatile__(
70 			".byte 0xf2, " REX_PRE "0xf, 0x38, 0xf1, 0xf1;"
71 			:"=S"(crc)
72 			:"0"(crc), "c"(*ptmp)
73 		);
74 		ptmp++;
75 	}
76 
77 	if (iremainder)
78 		crc = crc32c_intel_le_hw_byte(crc, (unsigned char *)ptmp,
79 				 iremainder);
80 
81 	return crc;
82 }
83 
84 /*
85  * Setting the seed allows arbitrary accumulators and flexible XOR policy
86  * If your algorithm starts with ~0, then XOR with ~0 before you set
87  * the seed.
88  */
89 static int crc32c_intel_setkey(struct crypto_shash *hash, const u8 *key,
90 			unsigned int keylen)
91 {
92 	u32 *mctx = crypto_shash_ctx(hash);
93 
94 	if (keylen != sizeof(u32)) {
95 		crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
96 		return -EINVAL;
97 	}
98 	*mctx = le32_to_cpup((__le32 *)key);
99 	return 0;
100 }
101 
102 static int crc32c_intel_init(struct shash_desc *desc)
103 {
104 	u32 *mctx = crypto_shash_ctx(desc->tfm);
105 	u32 *crcp = shash_desc_ctx(desc);
106 
107 	*crcp = *mctx;
108 
109 	return 0;
110 }
111 
112 static int crc32c_intel_update(struct shash_desc *desc, const u8 *data,
113 			       unsigned int len)
114 {
115 	u32 *crcp = shash_desc_ctx(desc);
116 
117 	*crcp = crc32c_intel_le_hw(*crcp, data, len);
118 	return 0;
119 }
120 
121 static int __crc32c_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
122 				u8 *out)
123 {
124 	*(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
125 	return 0;
126 }
127 
128 static int crc32c_intel_finup(struct shash_desc *desc, const u8 *data,
129 			      unsigned int len, u8 *out)
130 {
131 	return __crc32c_intel_finup(shash_desc_ctx(desc), data, len, out);
132 }
133 
134 static int crc32c_intel_final(struct shash_desc *desc, u8 *out)
135 {
136 	u32 *crcp = shash_desc_ctx(desc);
137 
138 	*(__le32 *)out = ~cpu_to_le32p(crcp);
139 	return 0;
140 }
141 
142 static int crc32c_intel_digest(struct shash_desc *desc, const u8 *data,
143 			       unsigned int len, u8 *out)
144 {
145 	return __crc32c_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
146 				    out);
147 }
148 
149 static int crc32c_intel_cra_init(struct crypto_tfm *tfm)
150 {
151 	u32 *key = crypto_tfm_ctx(tfm);
152 
153 	*key = ~0;
154 
155 	return 0;
156 }
157 
158 #ifdef CONFIG_X86_64
159 static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data,
160 			       unsigned int len)
161 {
162 	u32 *crcp = shash_desc_ctx(desc);
163 
164 	/*
165 	 * use faster PCL version if datasize is large enough to
166 	 * overcome kernel fpu state save/restore overhead
167 	 */
168 	if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) {
169 		kernel_fpu_begin();
170 		*crcp = crc_pcl(data, len, *crcp);
171 		kernel_fpu_end();
172 	} else
173 		*crcp = crc32c_intel_le_hw(*crcp, data, len);
174 	return 0;
175 }
176 
177 static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len,
178 				u8 *out)
179 {
180 	if (len >= CRC32C_PCL_BREAKEVEN && crypto_simd_usable()) {
181 		kernel_fpu_begin();
182 		*(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp));
183 		kernel_fpu_end();
184 	} else
185 		*(__le32 *)out =
186 			~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len));
187 	return 0;
188 }
189 
190 static int crc32c_pcl_intel_finup(struct shash_desc *desc, const u8 *data,
191 			      unsigned int len, u8 *out)
192 {
193 	return __crc32c_pcl_intel_finup(shash_desc_ctx(desc), data, len, out);
194 }
195 
196 static int crc32c_pcl_intel_digest(struct shash_desc *desc, const u8 *data,
197 			       unsigned int len, u8 *out)
198 {
199 	return __crc32c_pcl_intel_finup(crypto_shash_ctx(desc->tfm), data, len,
200 				    out);
201 }
202 #endif /* CONFIG_X86_64 */
203 
204 static struct shash_alg alg = {
205 	.setkey			=	crc32c_intel_setkey,
206 	.init			=	crc32c_intel_init,
207 	.update			=	crc32c_intel_update,
208 	.final			=	crc32c_intel_final,
209 	.finup			=	crc32c_intel_finup,
210 	.digest			=	crc32c_intel_digest,
211 	.descsize		=	sizeof(u32),
212 	.digestsize		=	CHKSUM_DIGEST_SIZE,
213 	.base			=	{
214 		.cra_name		=	"crc32c",
215 		.cra_driver_name	=	"crc32c-intel",
216 		.cra_priority		=	200,
217 		.cra_flags		=	CRYPTO_ALG_OPTIONAL_KEY,
218 		.cra_blocksize		=	CHKSUM_BLOCK_SIZE,
219 		.cra_ctxsize		=	sizeof(u32),
220 		.cra_module		=	THIS_MODULE,
221 		.cra_init		=	crc32c_intel_cra_init,
222 	}
223 };
224 
225 static const struct x86_cpu_id crc32c_cpu_id[] = {
226 	X86_FEATURE_MATCH(X86_FEATURE_XMM4_2),
227 	{}
228 };
229 MODULE_DEVICE_TABLE(x86cpu, crc32c_cpu_id);
230 
231 static int __init crc32c_intel_mod_init(void)
232 {
233 	if (!x86_match_cpu(crc32c_cpu_id))
234 		return -ENODEV;
235 #ifdef CONFIG_X86_64
236 	if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) {
237 		alg.update = crc32c_pcl_intel_update;
238 		alg.finup = crc32c_pcl_intel_finup;
239 		alg.digest = crc32c_pcl_intel_digest;
240 	}
241 #endif
242 	return crypto_register_shash(&alg);
243 }
244 
245 static void __exit crc32c_intel_mod_fini(void)
246 {
247 	crypto_unregister_shash(&alg);
248 }
249 
250 module_init(crc32c_intel_mod_init);
251 module_exit(crc32c_intel_mod_fini);
252 
253 MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.com>");
254 MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware.");
255 MODULE_LICENSE("GPL");
256 
257 MODULE_ALIAS_CRYPTO("crc32c");
258 MODULE_ALIAS_CRYPTO("crc32c-intel");
259