1 /* 2 * Using hardware provided CRC32 instruction to accelerate the CRC32 disposal. 3 * CRC32C polynomial:0x1EDC6F41(BE)/0x82F63B78(LE) 4 * CRC32 is a new instruction in Intel SSE4.2, the reference can be found at: 5 * http://www.intel.com/products/processor/manuals/ 6 * Intel(R) 64 and IA-32 Architectures Software Developer's Manual 7 * Volume 2A: Instruction Set Reference, A-M 8 * 9 * Copyright (C) 2008 Intel Corporation 10 * Authors: Austin Zhang <austin_zhang@linux.intel.com> 11 * Kent Liu <kent.liu@intel.com> 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms and conditions of the GNU General Public License, 15 * version 2, as published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * You should have received a copy of the GNU General Public License along with 23 * this program; if not, write to the Free Software Foundation, Inc., 24 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 25 * 26 */ 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/string.h> 30 #include <linux/kernel.h> 31 #include <crypto/internal/hash.h> 32 33 #include <asm/cpufeatures.h> 34 #include <asm/cpu_device_id.h> 35 #include <asm/fpu/internal.h> 36 37 #define CHKSUM_BLOCK_SIZE 1 38 #define CHKSUM_DIGEST_SIZE 4 39 40 #define SCALE_F sizeof(unsigned long) 41 42 #ifdef CONFIG_X86_64 43 #define REX_PRE "0x48, " 44 #else 45 #define REX_PRE 46 #endif 47 48 #ifdef CONFIG_X86_64 49 /* 50 * use carryless multiply version of crc32c when buffer 51 * size is >= 512 to account 52 * for fpu state save/restore overhead. 53 */ 54 #define CRC32C_PCL_BREAKEVEN 512 55 56 asmlinkage unsigned int crc_pcl(const u8 *buffer, int len, 57 unsigned int crc_init); 58 #endif /* CONFIG_X86_64 */ 59 60 static u32 crc32c_intel_le_hw_byte(u32 crc, unsigned char const *data, size_t length) 61 { 62 while (length--) { 63 __asm__ __volatile__( 64 ".byte 0xf2, 0xf, 0x38, 0xf0, 0xf1" 65 :"=S"(crc) 66 :"0"(crc), "c"(*data) 67 ); 68 data++; 69 } 70 71 return crc; 72 } 73 74 static u32 __pure crc32c_intel_le_hw(u32 crc, unsigned char const *p, size_t len) 75 { 76 unsigned int iquotient = len / SCALE_F; 77 unsigned int iremainder = len % SCALE_F; 78 unsigned long *ptmp = (unsigned long *)p; 79 80 while (iquotient--) { 81 __asm__ __volatile__( 82 ".byte 0xf2, " REX_PRE "0xf, 0x38, 0xf1, 0xf1;" 83 :"=S"(crc) 84 :"0"(crc), "c"(*ptmp) 85 ); 86 ptmp++; 87 } 88 89 if (iremainder) 90 crc = crc32c_intel_le_hw_byte(crc, (unsigned char *)ptmp, 91 iremainder); 92 93 return crc; 94 } 95 96 /* 97 * Setting the seed allows arbitrary accumulators and flexible XOR policy 98 * If your algorithm starts with ~0, then XOR with ~0 before you set 99 * the seed. 100 */ 101 static int crc32c_intel_setkey(struct crypto_shash *hash, const u8 *key, 102 unsigned int keylen) 103 { 104 u32 *mctx = crypto_shash_ctx(hash); 105 106 if (keylen != sizeof(u32)) { 107 crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN); 108 return -EINVAL; 109 } 110 *mctx = le32_to_cpup((__le32 *)key); 111 return 0; 112 } 113 114 static int crc32c_intel_init(struct shash_desc *desc) 115 { 116 u32 *mctx = crypto_shash_ctx(desc->tfm); 117 u32 *crcp = shash_desc_ctx(desc); 118 119 *crcp = *mctx; 120 121 return 0; 122 } 123 124 static int crc32c_intel_update(struct shash_desc *desc, const u8 *data, 125 unsigned int len) 126 { 127 u32 *crcp = shash_desc_ctx(desc); 128 129 *crcp = crc32c_intel_le_hw(*crcp, data, len); 130 return 0; 131 } 132 133 static int __crc32c_intel_finup(u32 *crcp, const u8 *data, unsigned int len, 134 u8 *out) 135 { 136 *(__le32 *)out = ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len)); 137 return 0; 138 } 139 140 static int crc32c_intel_finup(struct shash_desc *desc, const u8 *data, 141 unsigned int len, u8 *out) 142 { 143 return __crc32c_intel_finup(shash_desc_ctx(desc), data, len, out); 144 } 145 146 static int crc32c_intel_final(struct shash_desc *desc, u8 *out) 147 { 148 u32 *crcp = shash_desc_ctx(desc); 149 150 *(__le32 *)out = ~cpu_to_le32p(crcp); 151 return 0; 152 } 153 154 static int crc32c_intel_digest(struct shash_desc *desc, const u8 *data, 155 unsigned int len, u8 *out) 156 { 157 return __crc32c_intel_finup(crypto_shash_ctx(desc->tfm), data, len, 158 out); 159 } 160 161 static int crc32c_intel_cra_init(struct crypto_tfm *tfm) 162 { 163 u32 *key = crypto_tfm_ctx(tfm); 164 165 *key = ~0; 166 167 return 0; 168 } 169 170 #ifdef CONFIG_X86_64 171 static int crc32c_pcl_intel_update(struct shash_desc *desc, const u8 *data, 172 unsigned int len) 173 { 174 u32 *crcp = shash_desc_ctx(desc); 175 176 /* 177 * use faster PCL version if datasize is large enough to 178 * overcome kernel fpu state save/restore overhead 179 */ 180 if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) { 181 kernel_fpu_begin(); 182 *crcp = crc_pcl(data, len, *crcp); 183 kernel_fpu_end(); 184 } else 185 *crcp = crc32c_intel_le_hw(*crcp, data, len); 186 return 0; 187 } 188 189 static int __crc32c_pcl_intel_finup(u32 *crcp, const u8 *data, unsigned int len, 190 u8 *out) 191 { 192 if (len >= CRC32C_PCL_BREAKEVEN && irq_fpu_usable()) { 193 kernel_fpu_begin(); 194 *(__le32 *)out = ~cpu_to_le32(crc_pcl(data, len, *crcp)); 195 kernel_fpu_end(); 196 } else 197 *(__le32 *)out = 198 ~cpu_to_le32(crc32c_intel_le_hw(*crcp, data, len)); 199 return 0; 200 } 201 202 static int crc32c_pcl_intel_finup(struct shash_desc *desc, const u8 *data, 203 unsigned int len, u8 *out) 204 { 205 return __crc32c_pcl_intel_finup(shash_desc_ctx(desc), data, len, out); 206 } 207 208 static int crc32c_pcl_intel_digest(struct shash_desc *desc, const u8 *data, 209 unsigned int len, u8 *out) 210 { 211 return __crc32c_pcl_intel_finup(crypto_shash_ctx(desc->tfm), data, len, 212 out); 213 } 214 #endif /* CONFIG_X86_64 */ 215 216 static struct shash_alg alg = { 217 .setkey = crc32c_intel_setkey, 218 .init = crc32c_intel_init, 219 .update = crc32c_intel_update, 220 .final = crc32c_intel_final, 221 .finup = crc32c_intel_finup, 222 .digest = crc32c_intel_digest, 223 .descsize = sizeof(u32), 224 .digestsize = CHKSUM_DIGEST_SIZE, 225 .base = { 226 .cra_name = "crc32c", 227 .cra_driver_name = "crc32c-intel", 228 .cra_priority = 200, 229 .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, 230 .cra_blocksize = CHKSUM_BLOCK_SIZE, 231 .cra_ctxsize = sizeof(u32), 232 .cra_module = THIS_MODULE, 233 .cra_init = crc32c_intel_cra_init, 234 } 235 }; 236 237 static const struct x86_cpu_id crc32c_cpu_id[] = { 238 X86_FEATURE_MATCH(X86_FEATURE_XMM4_2), 239 {} 240 }; 241 MODULE_DEVICE_TABLE(x86cpu, crc32c_cpu_id); 242 243 static int __init crc32c_intel_mod_init(void) 244 { 245 if (!x86_match_cpu(crc32c_cpu_id)) 246 return -ENODEV; 247 #ifdef CONFIG_X86_64 248 if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) { 249 alg.update = crc32c_pcl_intel_update; 250 alg.finup = crc32c_pcl_intel_finup; 251 alg.digest = crc32c_pcl_intel_digest; 252 } 253 #endif 254 return crypto_register_shash(&alg); 255 } 256 257 static void __exit crc32c_intel_mod_fini(void) 258 { 259 crypto_unregister_shash(&alg); 260 } 261 262 module_init(crc32c_intel_mod_init); 263 module_exit(crc32c_intel_mod_fini); 264 265 MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.com>"); 266 MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware."); 267 MODULE_LICENSE("GPL"); 268 269 MODULE_ALIAS_CRYPTO("crc32c"); 270 MODULE_ALIAS_CRYPTO("crc32c-intel"); 271