1/* 2 * x86_64/AVX2/AES-NI assembler implementation of Camellia 3 * 4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 */ 12 13#include <linux/linkage.h> 14 15#define CAMELLIA_TABLE_BYTE_LEN 272 16 17/* struct camellia_ctx: */ 18#define key_table 0 19#define key_length CAMELLIA_TABLE_BYTE_LEN 20 21/* register macros */ 22#define CTX %rdi 23#define RIO %r8 24 25/********************************************************************** 26 helper macros 27 **********************************************************************/ 28#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ 29 vpand x, mask4bit, tmp0; \ 30 vpandn x, mask4bit, x; \ 31 vpsrld $4, x, x; \ 32 \ 33 vpshufb tmp0, lo_t, tmp0; \ 34 vpshufb x, hi_t, x; \ 35 vpxor tmp0, x, x; 36 37#define ymm0_x xmm0 38#define ymm1_x xmm1 39#define ymm2_x xmm2 40#define ymm3_x xmm3 41#define ymm4_x xmm4 42#define ymm5_x xmm5 43#define ymm6_x xmm6 44#define ymm7_x xmm7 45#define ymm8_x xmm8 46#define ymm9_x xmm9 47#define ymm10_x xmm10 48#define ymm11_x xmm11 49#define ymm12_x xmm12 50#define ymm13_x xmm13 51#define ymm14_x xmm14 52#define ymm15_x xmm15 53 54/* 55 * AES-NI instructions do not support ymmX registers, so we need splitting and 56 * merging. 57 */ 58#define vaesenclast256(zero, yreg, tmp) \ 59 vextracti128 $1, yreg, tmp##_x; \ 60 vaesenclast zero##_x, yreg##_x, yreg##_x; \ 61 vaesenclast zero##_x, tmp##_x, tmp##_x; \ 62 vinserti128 $1, tmp##_x, yreg, yreg; 63 64/********************************************************************** 65 32-way camellia 66 **********************************************************************/ 67 68/* 69 * IN: 70 * x0..x7: byte-sliced AB state 71 * mem_cd: register pointer storing CD state 72 * key: index for key material 73 * OUT: 74 * x0..x7: new byte-sliced CD state 75 */ 76#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ 77 t7, mem_cd, key) \ 78 /* \ 79 * S-function with AES subbytes \ 80 */ \ 81 vbroadcasti128 .Linv_shift_row, t4; \ 82 vpbroadcastb .L0f0f0f0f, t7; \ 83 vbroadcasti128 .Lpre_tf_lo_s1, t0; \ 84 vbroadcasti128 .Lpre_tf_hi_s1, t1; \ 85 \ 86 /* AES inverse shift rows */ \ 87 vpshufb t4, x0, x0; \ 88 vpshufb t4, x7, x7; \ 89 vpshufb t4, x1, x1; \ 90 vpshufb t4, x4, x4; \ 91 vpshufb t4, x2, x2; \ 92 vpshufb t4, x5, x5; \ 93 vpshufb t4, x3, x3; \ 94 vpshufb t4, x6, x6; \ 95 \ 96 /* prefilter sboxes 1, 2 and 3 */ \ 97 vbroadcasti128 .Lpre_tf_lo_s4, t2; \ 98 vbroadcasti128 .Lpre_tf_hi_s4, t3; \ 99 filter_8bit(x0, t0, t1, t7, t6); \ 100 filter_8bit(x7, t0, t1, t7, t6); \ 101 filter_8bit(x1, t0, t1, t7, t6); \ 102 filter_8bit(x4, t0, t1, t7, t6); \ 103 filter_8bit(x2, t0, t1, t7, t6); \ 104 filter_8bit(x5, t0, t1, t7, t6); \ 105 \ 106 /* prefilter sbox 4 */ \ 107 vpxor t4##_x, t4##_x, t4##_x; \ 108 filter_8bit(x3, t2, t3, t7, t6); \ 109 filter_8bit(x6, t2, t3, t7, t6); \ 110 \ 111 /* AES subbytes + AES shift rows */ \ 112 vbroadcasti128 .Lpost_tf_lo_s1, t0; \ 113 vbroadcasti128 .Lpost_tf_hi_s1, t1; \ 114 vaesenclast256(t4, x0, t5); \ 115 vaesenclast256(t4, x7, t5); \ 116 vaesenclast256(t4, x1, t5); \ 117 vaesenclast256(t4, x4, t5); \ 118 vaesenclast256(t4, x2, t5); \ 119 vaesenclast256(t4, x5, t5); \ 120 vaesenclast256(t4, x3, t5); \ 121 vaesenclast256(t4, x6, t5); \ 122 \ 123 /* postfilter sboxes 1 and 4 */ \ 124 vbroadcasti128 .Lpost_tf_lo_s3, t2; \ 125 vbroadcasti128 .Lpost_tf_hi_s3, t3; \ 126 filter_8bit(x0, t0, t1, t7, t6); \ 127 filter_8bit(x7, t0, t1, t7, t6); \ 128 filter_8bit(x3, t0, t1, t7, t6); \ 129 filter_8bit(x6, t0, t1, t7, t6); \ 130 \ 131 /* postfilter sbox 3 */ \ 132 vbroadcasti128 .Lpost_tf_lo_s2, t4; \ 133 vbroadcasti128 .Lpost_tf_hi_s2, t5; \ 134 filter_8bit(x2, t2, t3, t7, t6); \ 135 filter_8bit(x5, t2, t3, t7, t6); \ 136 \ 137 vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \ 138 \ 139 /* postfilter sbox 2 */ \ 140 filter_8bit(x1, t4, t5, t7, t2); \ 141 filter_8bit(x4, t4, t5, t7, t2); \ 142 \ 143 vpsrldq $1, t0, t1; \ 144 vpsrldq $2, t0, t2; \ 145 vpsrldq $3, t0, t3; \ 146 vpsrldq $4, t0, t4; \ 147 vpsrldq $5, t0, t5; \ 148 vpsrldq $6, t0, t6; \ 149 vpsrldq $7, t0, t7; \ 150 vpbroadcastb t0##_x, t0; \ 151 vpbroadcastb t1##_x, t1; \ 152 vpbroadcastb t2##_x, t2; \ 153 vpbroadcastb t3##_x, t3; \ 154 vpbroadcastb t4##_x, t4; \ 155 vpbroadcastb t6##_x, t6; \ 156 vpbroadcastb t5##_x, t5; \ 157 vpbroadcastb t7##_x, t7; \ 158 \ 159 /* P-function */ \ 160 vpxor x5, x0, x0; \ 161 vpxor x6, x1, x1; \ 162 vpxor x7, x2, x2; \ 163 vpxor x4, x3, x3; \ 164 \ 165 vpxor x2, x4, x4; \ 166 vpxor x3, x5, x5; \ 167 vpxor x0, x6, x6; \ 168 vpxor x1, x7, x7; \ 169 \ 170 vpxor x7, x0, x0; \ 171 vpxor x4, x1, x1; \ 172 vpxor x5, x2, x2; \ 173 vpxor x6, x3, x3; \ 174 \ 175 vpxor x3, x4, x4; \ 176 vpxor x0, x5, x5; \ 177 vpxor x1, x6, x6; \ 178 vpxor x2, x7, x7; /* note: high and low parts swapped */ \ 179 \ 180 /* Add key material and result to CD (x becomes new CD) */ \ 181 \ 182 vpxor t7, x0, x0; \ 183 vpxor 4 * 32(mem_cd), x0, x0; \ 184 \ 185 vpxor t6, x1, x1; \ 186 vpxor 5 * 32(mem_cd), x1, x1; \ 187 \ 188 vpxor t5, x2, x2; \ 189 vpxor 6 * 32(mem_cd), x2, x2; \ 190 \ 191 vpxor t4, x3, x3; \ 192 vpxor 7 * 32(mem_cd), x3, x3; \ 193 \ 194 vpxor t3, x4, x4; \ 195 vpxor 0 * 32(mem_cd), x4, x4; \ 196 \ 197 vpxor t2, x5, x5; \ 198 vpxor 1 * 32(mem_cd), x5, x5; \ 199 \ 200 vpxor t1, x6, x6; \ 201 vpxor 2 * 32(mem_cd), x6, x6; \ 202 \ 203 vpxor t0, x7, x7; \ 204 vpxor 3 * 32(mem_cd), x7, x7; 205 206/* 207 * Size optimization... with inlined roundsm16 binary would be over 5 times 208 * larger and would only marginally faster. 209 */ 210.align 8 211roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd: 212 roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 213 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15, 214 %rcx, (%r9)); 215 ret; 216ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 217 218.align 8 219roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab: 220 roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3, 221 %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11, 222 %rax, (%r9)); 223 ret; 224ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 225 226/* 227 * IN/OUT: 228 * x0..x7: byte-sliced AB state preloaded 229 * mem_ab: byte-sliced AB state in memory 230 * mem_cb: byte-sliced CD state in memory 231 */ 232#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 233 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ 234 leaq (key_table + (i) * 8)(CTX), %r9; \ 235 call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ 236 \ 237 vmovdqu x0, 4 * 32(mem_cd); \ 238 vmovdqu x1, 5 * 32(mem_cd); \ 239 vmovdqu x2, 6 * 32(mem_cd); \ 240 vmovdqu x3, 7 * 32(mem_cd); \ 241 vmovdqu x4, 0 * 32(mem_cd); \ 242 vmovdqu x5, 1 * 32(mem_cd); \ 243 vmovdqu x6, 2 * 32(mem_cd); \ 244 vmovdqu x7, 3 * 32(mem_cd); \ 245 \ 246 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ 247 call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ 248 \ 249 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); 250 251#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ 252 253#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ 254 /* Store new AB state */ \ 255 vmovdqu x4, 4 * 32(mem_ab); \ 256 vmovdqu x5, 5 * 32(mem_ab); \ 257 vmovdqu x6, 6 * 32(mem_ab); \ 258 vmovdqu x7, 7 * 32(mem_ab); \ 259 vmovdqu x0, 0 * 32(mem_ab); \ 260 vmovdqu x1, 1 * 32(mem_ab); \ 261 vmovdqu x2, 2 * 32(mem_ab); \ 262 vmovdqu x3, 3 * 32(mem_ab); 263 264#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 265 y6, y7, mem_ab, mem_cd, i) \ 266 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 267 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ 268 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 269 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ 270 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 271 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); 272 273#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 274 y6, y7, mem_ab, mem_cd, i) \ 275 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 276 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ 277 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 278 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ 279 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 280 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); 281 282/* 283 * IN: 284 * v0..3: byte-sliced 32-bit integers 285 * OUT: 286 * v0..3: (IN <<< 1) 287 */ 288#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \ 289 vpcmpgtb v0, zero, t0; \ 290 vpaddb v0, v0, v0; \ 291 vpabsb t0, t0; \ 292 \ 293 vpcmpgtb v1, zero, t1; \ 294 vpaddb v1, v1, v1; \ 295 vpabsb t1, t1; \ 296 \ 297 vpcmpgtb v2, zero, t2; \ 298 vpaddb v2, v2, v2; \ 299 vpabsb t2, t2; \ 300 \ 301 vpor t0, v1, v1; \ 302 \ 303 vpcmpgtb v3, zero, t0; \ 304 vpaddb v3, v3, v3; \ 305 vpabsb t0, t0; \ 306 \ 307 vpor t1, v2, v2; \ 308 vpor t2, v3, v3; \ 309 vpor t0, v0, v0; 310 311/* 312 * IN: 313 * r: byte-sliced AB state in memory 314 * l: byte-sliced CD state in memory 315 * OUT: 316 * x0..x7: new byte-sliced CD state 317 */ 318#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ 319 tt1, tt2, tt3, kll, klr, krl, krr) \ 320 /* \ 321 * t0 = kll; \ 322 * t0 &= ll; \ 323 * lr ^= rol32(t0, 1); \ 324 */ \ 325 vpbroadcastd kll, t0; /* only lowest 32-bit used */ \ 326 vpxor tt0, tt0, tt0; \ 327 vpbroadcastb t0##_x, t3; \ 328 vpsrldq $1, t0, t0; \ 329 vpbroadcastb t0##_x, t2; \ 330 vpsrldq $1, t0, t0; \ 331 vpbroadcastb t0##_x, t1; \ 332 vpsrldq $1, t0, t0; \ 333 vpbroadcastb t0##_x, t0; \ 334 \ 335 vpand l0, t0, t0; \ 336 vpand l1, t1, t1; \ 337 vpand l2, t2, t2; \ 338 vpand l3, t3, t3; \ 339 \ 340 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 341 \ 342 vpxor l4, t0, l4; \ 343 vmovdqu l4, 4 * 32(l); \ 344 vpxor l5, t1, l5; \ 345 vmovdqu l5, 5 * 32(l); \ 346 vpxor l6, t2, l6; \ 347 vmovdqu l6, 6 * 32(l); \ 348 vpxor l7, t3, l7; \ 349 vmovdqu l7, 7 * 32(l); \ 350 \ 351 /* \ 352 * t2 = krr; \ 353 * t2 |= rr; \ 354 * rl ^= t2; \ 355 */ \ 356 \ 357 vpbroadcastd krr, t0; /* only lowest 32-bit used */ \ 358 vpbroadcastb t0##_x, t3; \ 359 vpsrldq $1, t0, t0; \ 360 vpbroadcastb t0##_x, t2; \ 361 vpsrldq $1, t0, t0; \ 362 vpbroadcastb t0##_x, t1; \ 363 vpsrldq $1, t0, t0; \ 364 vpbroadcastb t0##_x, t0; \ 365 \ 366 vpor 4 * 32(r), t0, t0; \ 367 vpor 5 * 32(r), t1, t1; \ 368 vpor 6 * 32(r), t2, t2; \ 369 vpor 7 * 32(r), t3, t3; \ 370 \ 371 vpxor 0 * 32(r), t0, t0; \ 372 vpxor 1 * 32(r), t1, t1; \ 373 vpxor 2 * 32(r), t2, t2; \ 374 vpxor 3 * 32(r), t3, t3; \ 375 vmovdqu t0, 0 * 32(r); \ 376 vmovdqu t1, 1 * 32(r); \ 377 vmovdqu t2, 2 * 32(r); \ 378 vmovdqu t3, 3 * 32(r); \ 379 \ 380 /* \ 381 * t2 = krl; \ 382 * t2 &= rl; \ 383 * rr ^= rol32(t2, 1); \ 384 */ \ 385 vpbroadcastd krl, t0; /* only lowest 32-bit used */ \ 386 vpbroadcastb t0##_x, t3; \ 387 vpsrldq $1, t0, t0; \ 388 vpbroadcastb t0##_x, t2; \ 389 vpsrldq $1, t0, t0; \ 390 vpbroadcastb t0##_x, t1; \ 391 vpsrldq $1, t0, t0; \ 392 vpbroadcastb t0##_x, t0; \ 393 \ 394 vpand 0 * 32(r), t0, t0; \ 395 vpand 1 * 32(r), t1, t1; \ 396 vpand 2 * 32(r), t2, t2; \ 397 vpand 3 * 32(r), t3, t3; \ 398 \ 399 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 400 \ 401 vpxor 4 * 32(r), t0, t0; \ 402 vpxor 5 * 32(r), t1, t1; \ 403 vpxor 6 * 32(r), t2, t2; \ 404 vpxor 7 * 32(r), t3, t3; \ 405 vmovdqu t0, 4 * 32(r); \ 406 vmovdqu t1, 5 * 32(r); \ 407 vmovdqu t2, 6 * 32(r); \ 408 vmovdqu t3, 7 * 32(r); \ 409 \ 410 /* \ 411 * t0 = klr; \ 412 * t0 |= lr; \ 413 * ll ^= t0; \ 414 */ \ 415 \ 416 vpbroadcastd klr, t0; /* only lowest 32-bit used */ \ 417 vpbroadcastb t0##_x, t3; \ 418 vpsrldq $1, t0, t0; \ 419 vpbroadcastb t0##_x, t2; \ 420 vpsrldq $1, t0, t0; \ 421 vpbroadcastb t0##_x, t1; \ 422 vpsrldq $1, t0, t0; \ 423 vpbroadcastb t0##_x, t0; \ 424 \ 425 vpor l4, t0, t0; \ 426 vpor l5, t1, t1; \ 427 vpor l6, t2, t2; \ 428 vpor l7, t3, t3; \ 429 \ 430 vpxor l0, t0, l0; \ 431 vmovdqu l0, 0 * 32(l); \ 432 vpxor l1, t1, l1; \ 433 vmovdqu l1, 1 * 32(l); \ 434 vpxor l2, t2, l2; \ 435 vmovdqu l2, 2 * 32(l); \ 436 vpxor l3, t3, l3; \ 437 vmovdqu l3, 3 * 32(l); 438 439#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 440 vpunpckhdq x1, x0, t2; \ 441 vpunpckldq x1, x0, x0; \ 442 \ 443 vpunpckldq x3, x2, t1; \ 444 vpunpckhdq x3, x2, x2; \ 445 \ 446 vpunpckhqdq t1, x0, x1; \ 447 vpunpcklqdq t1, x0, x0; \ 448 \ 449 vpunpckhqdq x2, t2, x3; \ 450 vpunpcklqdq x2, t2, x2; 451 452#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \ 453 a3, b3, c3, d3, st0, st1) \ 454 vmovdqu d2, st0; \ 455 vmovdqu d3, st1; \ 456 transpose_4x4(a0, a1, a2, a3, d2, d3); \ 457 transpose_4x4(b0, b1, b2, b3, d2, d3); \ 458 vmovdqu st0, d2; \ 459 vmovdqu st1, d3; \ 460 \ 461 vmovdqu a0, st0; \ 462 vmovdqu a1, st1; \ 463 transpose_4x4(c0, c1, c2, c3, a0, a1); \ 464 transpose_4x4(d0, d1, d2, d3, a0, a1); \ 465 \ 466 vbroadcasti128 .Lshufb_16x16b, a0; \ 467 vmovdqu st1, a1; \ 468 vpshufb a0, a2, a2; \ 469 vpshufb a0, a3, a3; \ 470 vpshufb a0, b0, b0; \ 471 vpshufb a0, b1, b1; \ 472 vpshufb a0, b2, b2; \ 473 vpshufb a0, b3, b3; \ 474 vpshufb a0, a1, a1; \ 475 vpshufb a0, c0, c0; \ 476 vpshufb a0, c1, c1; \ 477 vpshufb a0, c2, c2; \ 478 vpshufb a0, c3, c3; \ 479 vpshufb a0, d0, d0; \ 480 vpshufb a0, d1, d1; \ 481 vpshufb a0, d2, d2; \ 482 vpshufb a0, d3, d3; \ 483 vmovdqu d3, st1; \ 484 vmovdqu st0, d3; \ 485 vpshufb a0, d3, a0; \ 486 vmovdqu d2, st0; \ 487 \ 488 transpose_4x4(a0, b0, c0, d0, d2, d3); \ 489 transpose_4x4(a1, b1, c1, d1, d2, d3); \ 490 vmovdqu st0, d2; \ 491 vmovdqu st1, d3; \ 492 \ 493 vmovdqu b0, st0; \ 494 vmovdqu b1, st1; \ 495 transpose_4x4(a2, b2, c2, d2, b0, b1); \ 496 transpose_4x4(a3, b3, c3, d3, b0, b1); \ 497 vmovdqu st0, b0; \ 498 vmovdqu st1, b1; \ 499 /* does not adjust output bytes inside vectors */ 500 501/* load blocks to registers and apply pre-whitening */ 502#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 503 y6, y7, rio, key) \ 504 vpbroadcastq key, x0; \ 505 vpshufb .Lpack_bswap, x0, x0; \ 506 \ 507 vpxor 0 * 32(rio), x0, y7; \ 508 vpxor 1 * 32(rio), x0, y6; \ 509 vpxor 2 * 32(rio), x0, y5; \ 510 vpxor 3 * 32(rio), x0, y4; \ 511 vpxor 4 * 32(rio), x0, y3; \ 512 vpxor 5 * 32(rio), x0, y2; \ 513 vpxor 6 * 32(rio), x0, y1; \ 514 vpxor 7 * 32(rio), x0, y0; \ 515 vpxor 8 * 32(rio), x0, x7; \ 516 vpxor 9 * 32(rio), x0, x6; \ 517 vpxor 10 * 32(rio), x0, x5; \ 518 vpxor 11 * 32(rio), x0, x4; \ 519 vpxor 12 * 32(rio), x0, x3; \ 520 vpxor 13 * 32(rio), x0, x2; \ 521 vpxor 14 * 32(rio), x0, x1; \ 522 vpxor 15 * 32(rio), x0, x0; 523 524/* byteslice pre-whitened blocks and store to temporary memory */ 525#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 526 y6, y7, mem_ab, mem_cd) \ 527 byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \ 528 y4, y5, y6, y7, (mem_ab), (mem_cd)); \ 529 \ 530 vmovdqu x0, 0 * 32(mem_ab); \ 531 vmovdqu x1, 1 * 32(mem_ab); \ 532 vmovdqu x2, 2 * 32(mem_ab); \ 533 vmovdqu x3, 3 * 32(mem_ab); \ 534 vmovdqu x4, 4 * 32(mem_ab); \ 535 vmovdqu x5, 5 * 32(mem_ab); \ 536 vmovdqu x6, 6 * 32(mem_ab); \ 537 vmovdqu x7, 7 * 32(mem_ab); \ 538 vmovdqu y0, 0 * 32(mem_cd); \ 539 vmovdqu y1, 1 * 32(mem_cd); \ 540 vmovdqu y2, 2 * 32(mem_cd); \ 541 vmovdqu y3, 3 * 32(mem_cd); \ 542 vmovdqu y4, 4 * 32(mem_cd); \ 543 vmovdqu y5, 5 * 32(mem_cd); \ 544 vmovdqu y6, 6 * 32(mem_cd); \ 545 vmovdqu y7, 7 * 32(mem_cd); 546 547/* de-byteslice, apply post-whitening and store blocks */ 548#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 549 y5, y6, y7, key, stack_tmp0, stack_tmp1) \ 550 byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \ 551 y3, y7, x3, x7, stack_tmp0, stack_tmp1); \ 552 \ 553 vmovdqu x0, stack_tmp0; \ 554 \ 555 vpbroadcastq key, x0; \ 556 vpshufb .Lpack_bswap, x0, x0; \ 557 \ 558 vpxor x0, y7, y7; \ 559 vpxor x0, y6, y6; \ 560 vpxor x0, y5, y5; \ 561 vpxor x0, y4, y4; \ 562 vpxor x0, y3, y3; \ 563 vpxor x0, y2, y2; \ 564 vpxor x0, y1, y1; \ 565 vpxor x0, y0, y0; \ 566 vpxor x0, x7, x7; \ 567 vpxor x0, x6, x6; \ 568 vpxor x0, x5, x5; \ 569 vpxor x0, x4, x4; \ 570 vpxor x0, x3, x3; \ 571 vpxor x0, x2, x2; \ 572 vpxor x0, x1, x1; \ 573 vpxor stack_tmp0, x0, x0; 574 575#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 576 y6, y7, rio) \ 577 vmovdqu x0, 0 * 32(rio); \ 578 vmovdqu x1, 1 * 32(rio); \ 579 vmovdqu x2, 2 * 32(rio); \ 580 vmovdqu x3, 3 * 32(rio); \ 581 vmovdqu x4, 4 * 32(rio); \ 582 vmovdqu x5, 5 * 32(rio); \ 583 vmovdqu x6, 6 * 32(rio); \ 584 vmovdqu x7, 7 * 32(rio); \ 585 vmovdqu y0, 8 * 32(rio); \ 586 vmovdqu y1, 9 * 32(rio); \ 587 vmovdqu y2, 10 * 32(rio); \ 588 vmovdqu y3, 11 * 32(rio); \ 589 vmovdqu y4, 12 * 32(rio); \ 590 vmovdqu y5, 13 * 32(rio); \ 591 vmovdqu y6, 14 * 32(rio); \ 592 vmovdqu y7, 15 * 32(rio); 593 594.data 595.align 32 596 597#define SHUFB_BYTES(idx) \ 598 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) 599 600.Lshufb_16x16b: 601 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) 602 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3) 603 604.Lpack_bswap: 605 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 606 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080 607 608/* For CTR-mode IV byteswap */ 609.Lbswap128_mask: 610 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 611 612/* For XTS mode */ 613.Lxts_gf128mul_and_shl1_mask_0: 614 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 615.Lxts_gf128mul_and_shl1_mask_1: 616 .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 617 618/* 619 * pre-SubByte transform 620 * 621 * pre-lookup for sbox1, sbox2, sbox3: 622 * swap_bitendianness( 623 * isom_map_camellia_to_aes( 624 * camellia_f( 625 * swap_bitendianess(in) 626 * ) 627 * ) 628 * ) 629 * 630 * (note: '⊕ 0xc5' inside camellia_f()) 631 */ 632.Lpre_tf_lo_s1: 633 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 634 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 635.Lpre_tf_hi_s1: 636 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a 637 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 638 639/* 640 * pre-SubByte transform 641 * 642 * pre-lookup for sbox4: 643 * swap_bitendianness( 644 * isom_map_camellia_to_aes( 645 * camellia_f( 646 * swap_bitendianess(in <<< 1) 647 * ) 648 * ) 649 * ) 650 * 651 * (note: '⊕ 0xc5' inside camellia_f()) 652 */ 653.Lpre_tf_lo_s4: 654 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 655 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 656.Lpre_tf_hi_s4: 657 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 658 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf 659 660/* 661 * post-SubByte transform 662 * 663 * post-lookup for sbox1, sbox4: 664 * swap_bitendianness( 665 * camellia_h( 666 * isom_map_aes_to_camellia( 667 * swap_bitendianness( 668 * aes_inverse_affine_transform(in) 669 * ) 670 * ) 671 * ) 672 * ) 673 * 674 * (note: '⊕ 0x6e' inside camellia_h()) 675 */ 676.Lpost_tf_lo_s1: 677 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 678 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 679.Lpost_tf_hi_s1: 680 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 681 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c 682 683/* 684 * post-SubByte transform 685 * 686 * post-lookup for sbox2: 687 * swap_bitendianness( 688 * camellia_h( 689 * isom_map_aes_to_camellia( 690 * swap_bitendianness( 691 * aes_inverse_affine_transform(in) 692 * ) 693 * ) 694 * ) 695 * ) <<< 1 696 * 697 * (note: '⊕ 0x6e' inside camellia_h()) 698 */ 699.Lpost_tf_lo_s2: 700 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 701 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 702.Lpost_tf_hi_s2: 703 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 704 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 705 706/* 707 * post-SubByte transform 708 * 709 * post-lookup for sbox3: 710 * swap_bitendianness( 711 * camellia_h( 712 * isom_map_aes_to_camellia( 713 * swap_bitendianness( 714 * aes_inverse_affine_transform(in) 715 * ) 716 * ) 717 * ) 718 * ) >>> 1 719 * 720 * (note: '⊕ 0x6e' inside camellia_h()) 721 */ 722.Lpost_tf_lo_s3: 723 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 724 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 725.Lpost_tf_hi_s3: 726 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 727 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 728 729/* For isolating SubBytes from AESENCLAST, inverse shift row */ 730.Linv_shift_row: 731 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 732 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 733 734.align 4 735/* 4-bit mask */ 736.L0f0f0f0f: 737 .long 0x0f0f0f0f 738 739.text 740 741.align 8 742__camellia_enc_blk32: 743 /* input: 744 * %rdi: ctx, CTX 745 * %rax: temporary storage, 512 bytes 746 * %ymm0..%ymm15: 32 plaintext blocks 747 * output: 748 * %ymm0..%ymm15: 32 encrypted blocks, order swapped: 749 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 750 */ 751 752 leaq 8 * 32(%rax), %rcx; 753 754 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 755 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 756 %ymm15, %rax, %rcx); 757 758 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 759 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 760 %ymm15, %rax, %rcx, 0); 761 762 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 763 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 764 %ymm15, 765 ((key_table + (8) * 8) + 0)(CTX), 766 ((key_table + (8) * 8) + 4)(CTX), 767 ((key_table + (8) * 8) + 8)(CTX), 768 ((key_table + (8) * 8) + 12)(CTX)); 769 770 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 771 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 772 %ymm15, %rax, %rcx, 8); 773 774 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 775 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 776 %ymm15, 777 ((key_table + (16) * 8) + 0)(CTX), 778 ((key_table + (16) * 8) + 4)(CTX), 779 ((key_table + (16) * 8) + 8)(CTX), 780 ((key_table + (16) * 8) + 12)(CTX)); 781 782 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 783 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 784 %ymm15, %rax, %rcx, 16); 785 786 movl $24, %r8d; 787 cmpl $16, key_length(CTX); 788 jne .Lenc_max32; 789 790.Lenc_done: 791 /* load CD for output */ 792 vmovdqu 0 * 32(%rcx), %ymm8; 793 vmovdqu 1 * 32(%rcx), %ymm9; 794 vmovdqu 2 * 32(%rcx), %ymm10; 795 vmovdqu 3 * 32(%rcx), %ymm11; 796 vmovdqu 4 * 32(%rcx), %ymm12; 797 vmovdqu 5 * 32(%rcx), %ymm13; 798 vmovdqu 6 * 32(%rcx), %ymm14; 799 vmovdqu 7 * 32(%rcx), %ymm15; 800 801 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 802 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 803 %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax)); 804 805 ret; 806 807.align 8 808.Lenc_max32: 809 movl $32, %r8d; 810 811 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 812 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 813 %ymm15, 814 ((key_table + (24) * 8) + 0)(CTX), 815 ((key_table + (24) * 8) + 4)(CTX), 816 ((key_table + (24) * 8) + 8)(CTX), 817 ((key_table + (24) * 8) + 12)(CTX)); 818 819 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 820 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 821 %ymm15, %rax, %rcx, 24); 822 823 jmp .Lenc_done; 824ENDPROC(__camellia_enc_blk32) 825 826.align 8 827__camellia_dec_blk32: 828 /* input: 829 * %rdi: ctx, CTX 830 * %rax: temporary storage, 512 bytes 831 * %r8d: 24 for 16 byte key, 32 for larger 832 * %ymm0..%ymm15: 16 encrypted blocks 833 * output: 834 * %ymm0..%ymm15: 16 plaintext blocks, order swapped: 835 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 836 */ 837 838 leaq 8 * 32(%rax), %rcx; 839 840 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 841 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 842 %ymm15, %rax, %rcx); 843 844 cmpl $32, %r8d; 845 je .Ldec_max32; 846 847.Ldec_max24: 848 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 849 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 850 %ymm15, %rax, %rcx, 16); 851 852 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 853 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 854 %ymm15, 855 ((key_table + (16) * 8) + 8)(CTX), 856 ((key_table + (16) * 8) + 12)(CTX), 857 ((key_table + (16) * 8) + 0)(CTX), 858 ((key_table + (16) * 8) + 4)(CTX)); 859 860 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 861 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 862 %ymm15, %rax, %rcx, 8); 863 864 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 865 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 866 %ymm15, 867 ((key_table + (8) * 8) + 8)(CTX), 868 ((key_table + (8) * 8) + 12)(CTX), 869 ((key_table + (8) * 8) + 0)(CTX), 870 ((key_table + (8) * 8) + 4)(CTX)); 871 872 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 873 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 874 %ymm15, %rax, %rcx, 0); 875 876 /* load CD for output */ 877 vmovdqu 0 * 32(%rcx), %ymm8; 878 vmovdqu 1 * 32(%rcx), %ymm9; 879 vmovdqu 2 * 32(%rcx), %ymm10; 880 vmovdqu 3 * 32(%rcx), %ymm11; 881 vmovdqu 4 * 32(%rcx), %ymm12; 882 vmovdqu 5 * 32(%rcx), %ymm13; 883 vmovdqu 6 * 32(%rcx), %ymm14; 884 vmovdqu 7 * 32(%rcx), %ymm15; 885 886 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 887 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 888 %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax)); 889 890 ret; 891 892.align 8 893.Ldec_max32: 894 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 895 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 896 %ymm15, %rax, %rcx, 24); 897 898 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 899 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 900 %ymm15, 901 ((key_table + (24) * 8) + 8)(CTX), 902 ((key_table + (24) * 8) + 12)(CTX), 903 ((key_table + (24) * 8) + 0)(CTX), 904 ((key_table + (24) * 8) + 4)(CTX)); 905 906 jmp .Ldec_max24; 907ENDPROC(__camellia_dec_blk32) 908 909ENTRY(camellia_ecb_enc_32way) 910 /* input: 911 * %rdi: ctx, CTX 912 * %rsi: dst (32 blocks) 913 * %rdx: src (32 blocks) 914 */ 915 916 vzeroupper; 917 918 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 919 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 920 %ymm15, %rdx, (key_table)(CTX)); 921 922 /* now dst can be used as temporary buffer (even in src == dst case) */ 923 movq %rsi, %rax; 924 925 call __camellia_enc_blk32; 926 927 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 928 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 929 %ymm8, %rsi); 930 931 vzeroupper; 932 933 ret; 934ENDPROC(camellia_ecb_enc_32way) 935 936ENTRY(camellia_ecb_dec_32way) 937 /* input: 938 * %rdi: ctx, CTX 939 * %rsi: dst (32 blocks) 940 * %rdx: src (32 blocks) 941 */ 942 943 vzeroupper; 944 945 cmpl $16, key_length(CTX); 946 movl $32, %r8d; 947 movl $24, %eax; 948 cmovel %eax, %r8d; /* max */ 949 950 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 951 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 952 %ymm15, %rdx, (key_table)(CTX, %r8, 8)); 953 954 /* now dst can be used as temporary buffer (even in src == dst case) */ 955 movq %rsi, %rax; 956 957 call __camellia_dec_blk32; 958 959 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 960 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 961 %ymm8, %rsi); 962 963 vzeroupper; 964 965 ret; 966ENDPROC(camellia_ecb_dec_32way) 967 968ENTRY(camellia_cbc_dec_32way) 969 /* input: 970 * %rdi: ctx, CTX 971 * %rsi: dst (32 blocks) 972 * %rdx: src (32 blocks) 973 */ 974 975 vzeroupper; 976 977 cmpl $16, key_length(CTX); 978 movl $32, %r8d; 979 movl $24, %eax; 980 cmovel %eax, %r8d; /* max */ 981 982 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7, 983 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, 984 %ymm15, %rdx, (key_table)(CTX, %r8, 8)); 985 986 movq %rsp, %r10; 987 cmpq %rsi, %rdx; 988 je .Lcbc_dec_use_stack; 989 990 /* dst can be used as temporary storage, src is not overwritten. */ 991 movq %rsi, %rax; 992 jmp .Lcbc_dec_continue; 993 994.Lcbc_dec_use_stack: 995 /* 996 * dst still in-use (because dst == src), so use stack for temporary 997 * storage. 998 */ 999 subq $(16 * 32), %rsp; 1000 movq %rsp, %rax; 1001 1002.Lcbc_dec_continue: 1003 call __camellia_dec_blk32; 1004 1005 vmovdqu %ymm7, (%rax); 1006 vpxor %ymm7, %ymm7, %ymm7; 1007 vinserti128 $1, (%rdx), %ymm7, %ymm7; 1008 vpxor (%rax), %ymm7, %ymm7; 1009 movq %r10, %rsp; 1010 vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6; 1011 vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5; 1012 vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4; 1013 vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3; 1014 vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2; 1015 vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1; 1016 vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0; 1017 vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15; 1018 vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14; 1019 vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13; 1020 vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12; 1021 vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11; 1022 vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10; 1023 vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9; 1024 vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8; 1025 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 1026 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 1027 %ymm8, %rsi); 1028 1029 vzeroupper; 1030 1031 ret; 1032ENDPROC(camellia_cbc_dec_32way) 1033 1034#define inc_le128(x, minus_one, tmp) \ 1035 vpcmpeqq minus_one, x, tmp; \ 1036 vpsubq minus_one, x, x; \ 1037 vpslldq $8, tmp, tmp; \ 1038 vpsubq tmp, x, x; 1039 1040#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \ 1041 vpcmpeqq minus_one, x, tmp1; \ 1042 vpcmpeqq minus_two, x, tmp2; \ 1043 vpsubq minus_two, x, x; \ 1044 vpor tmp2, tmp1, tmp1; \ 1045 vpslldq $8, tmp1, tmp1; \ 1046 vpsubq tmp1, x, x; 1047 1048ENTRY(camellia_ctr_32way) 1049 /* input: 1050 * %rdi: ctx, CTX 1051 * %rsi: dst (32 blocks) 1052 * %rdx: src (32 blocks) 1053 * %rcx: iv (little endian, 128bit) 1054 */ 1055 1056 vzeroupper; 1057 1058 movq %rsp, %r10; 1059 cmpq %rsi, %rdx; 1060 je .Lctr_use_stack; 1061 1062 /* dst can be used as temporary storage, src is not overwritten. */ 1063 movq %rsi, %rax; 1064 jmp .Lctr_continue; 1065 1066.Lctr_use_stack: 1067 subq $(16 * 32), %rsp; 1068 movq %rsp, %rax; 1069 1070.Lctr_continue: 1071 vpcmpeqd %ymm15, %ymm15, %ymm15; 1072 vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */ 1073 vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */ 1074 1075 /* load IV and byteswap */ 1076 vmovdqu (%rcx), %xmm0; 1077 vmovdqa %xmm0, %xmm1; 1078 inc_le128(%xmm0, %xmm15, %xmm14); 1079 vbroadcasti128 .Lbswap128_mask, %ymm14; 1080 vinserti128 $1, %xmm0, %ymm1, %ymm0; 1081 vpshufb %ymm14, %ymm0, %ymm13; 1082 vmovdqu %ymm13, 15 * 32(%rax); 1083 1084 /* construct IVs */ 1085 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */ 1086 vpshufb %ymm14, %ymm0, %ymm13; 1087 vmovdqu %ymm13, 14 * 32(%rax); 1088 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1089 vpshufb %ymm14, %ymm0, %ymm13; 1090 vmovdqu %ymm13, 13 * 32(%rax); 1091 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1092 vpshufb %ymm14, %ymm0, %ymm13; 1093 vmovdqu %ymm13, 12 * 32(%rax); 1094 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1095 vpshufb %ymm14, %ymm0, %ymm13; 1096 vmovdqu %ymm13, 11 * 32(%rax); 1097 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1098 vpshufb %ymm14, %ymm0, %ymm10; 1099 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1100 vpshufb %ymm14, %ymm0, %ymm9; 1101 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1102 vpshufb %ymm14, %ymm0, %ymm8; 1103 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1104 vpshufb %ymm14, %ymm0, %ymm7; 1105 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1106 vpshufb %ymm14, %ymm0, %ymm6; 1107 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1108 vpshufb %ymm14, %ymm0, %ymm5; 1109 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1110 vpshufb %ymm14, %ymm0, %ymm4; 1111 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1112 vpshufb %ymm14, %ymm0, %ymm3; 1113 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1114 vpshufb %ymm14, %ymm0, %ymm2; 1115 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1116 vpshufb %ymm14, %ymm0, %ymm1; 1117 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); 1118 vextracti128 $1, %ymm0, %xmm13; 1119 vpshufb %ymm14, %ymm0, %ymm0; 1120 inc_le128(%xmm13, %xmm15, %xmm14); 1121 vmovdqu %xmm13, (%rcx); 1122 1123 /* inpack32_pre: */ 1124 vpbroadcastq (key_table)(CTX), %ymm15; 1125 vpshufb .Lpack_bswap, %ymm15, %ymm15; 1126 vpxor %ymm0, %ymm15, %ymm0; 1127 vpxor %ymm1, %ymm15, %ymm1; 1128 vpxor %ymm2, %ymm15, %ymm2; 1129 vpxor %ymm3, %ymm15, %ymm3; 1130 vpxor %ymm4, %ymm15, %ymm4; 1131 vpxor %ymm5, %ymm15, %ymm5; 1132 vpxor %ymm6, %ymm15, %ymm6; 1133 vpxor %ymm7, %ymm15, %ymm7; 1134 vpxor %ymm8, %ymm15, %ymm8; 1135 vpxor %ymm9, %ymm15, %ymm9; 1136 vpxor %ymm10, %ymm15, %ymm10; 1137 vpxor 11 * 32(%rax), %ymm15, %ymm11; 1138 vpxor 12 * 32(%rax), %ymm15, %ymm12; 1139 vpxor 13 * 32(%rax), %ymm15, %ymm13; 1140 vpxor 14 * 32(%rax), %ymm15, %ymm14; 1141 vpxor 15 * 32(%rax), %ymm15, %ymm15; 1142 1143 call __camellia_enc_blk32; 1144 1145 movq %r10, %rsp; 1146 1147 vpxor 0 * 32(%rdx), %ymm7, %ymm7; 1148 vpxor 1 * 32(%rdx), %ymm6, %ymm6; 1149 vpxor 2 * 32(%rdx), %ymm5, %ymm5; 1150 vpxor 3 * 32(%rdx), %ymm4, %ymm4; 1151 vpxor 4 * 32(%rdx), %ymm3, %ymm3; 1152 vpxor 5 * 32(%rdx), %ymm2, %ymm2; 1153 vpxor 6 * 32(%rdx), %ymm1, %ymm1; 1154 vpxor 7 * 32(%rdx), %ymm0, %ymm0; 1155 vpxor 8 * 32(%rdx), %ymm15, %ymm15; 1156 vpxor 9 * 32(%rdx), %ymm14, %ymm14; 1157 vpxor 10 * 32(%rdx), %ymm13, %ymm13; 1158 vpxor 11 * 32(%rdx), %ymm12, %ymm12; 1159 vpxor 12 * 32(%rdx), %ymm11, %ymm11; 1160 vpxor 13 * 32(%rdx), %ymm10, %ymm10; 1161 vpxor 14 * 32(%rdx), %ymm9, %ymm9; 1162 vpxor 15 * 32(%rdx), %ymm8, %ymm8; 1163 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 1164 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 1165 %ymm8, %rsi); 1166 1167 vzeroupper; 1168 1169 ret; 1170ENDPROC(camellia_ctr_32way) 1171 1172#define gf128mul_x_ble(iv, mask, tmp) \ 1173 vpsrad $31, iv, tmp; \ 1174 vpaddq iv, iv, iv; \ 1175 vpshufd $0x13, tmp, tmp; \ 1176 vpand mask, tmp, tmp; \ 1177 vpxor tmp, iv, iv; 1178 1179#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \ 1180 vpsrad $31, iv, tmp0; \ 1181 vpaddq iv, iv, tmp1; \ 1182 vpsllq $2, iv, iv; \ 1183 vpshufd $0x13, tmp0, tmp0; \ 1184 vpsrad $31, tmp1, tmp1; \ 1185 vpand mask2, tmp0, tmp0; \ 1186 vpshufd $0x13, tmp1, tmp1; \ 1187 vpxor tmp0, iv, iv; \ 1188 vpand mask1, tmp1, tmp1; \ 1189 vpxor tmp1, iv, iv; 1190 1191.align 8 1192camellia_xts_crypt_32way: 1193 /* input: 1194 * %rdi: ctx, CTX 1195 * %rsi: dst (32 blocks) 1196 * %rdx: src (32 blocks) 1197 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 1198 * %r8: index for input whitening key 1199 * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32 1200 */ 1201 1202 vzeroupper; 1203 1204 subq $(16 * 32), %rsp; 1205 movq %rsp, %rax; 1206 1207 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12; 1208 1209 /* load IV and construct second IV */ 1210 vmovdqu (%rcx), %xmm0; 1211 vmovdqa %xmm0, %xmm15; 1212 gf128mul_x_ble(%xmm0, %xmm12, %xmm13); 1213 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13; 1214 vinserti128 $1, %xmm0, %ymm15, %ymm0; 1215 vpxor 0 * 32(%rdx), %ymm0, %ymm15; 1216 vmovdqu %ymm15, 15 * 32(%rax); 1217 vmovdqu %ymm0, 0 * 32(%rsi); 1218 1219 /* construct IVs */ 1220 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1221 vpxor 1 * 32(%rdx), %ymm0, %ymm15; 1222 vmovdqu %ymm15, 14 * 32(%rax); 1223 vmovdqu %ymm0, 1 * 32(%rsi); 1224 1225 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1226 vpxor 2 * 32(%rdx), %ymm0, %ymm15; 1227 vmovdqu %ymm15, 13 * 32(%rax); 1228 vmovdqu %ymm0, 2 * 32(%rsi); 1229 1230 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1231 vpxor 3 * 32(%rdx), %ymm0, %ymm15; 1232 vmovdqu %ymm15, 12 * 32(%rax); 1233 vmovdqu %ymm0, 3 * 32(%rsi); 1234 1235 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1236 vpxor 4 * 32(%rdx), %ymm0, %ymm11; 1237 vmovdqu %ymm0, 4 * 32(%rsi); 1238 1239 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1240 vpxor 5 * 32(%rdx), %ymm0, %ymm10; 1241 vmovdqu %ymm0, 5 * 32(%rsi); 1242 1243 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1244 vpxor 6 * 32(%rdx), %ymm0, %ymm9; 1245 vmovdqu %ymm0, 6 * 32(%rsi); 1246 1247 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1248 vpxor 7 * 32(%rdx), %ymm0, %ymm8; 1249 vmovdqu %ymm0, 7 * 32(%rsi); 1250 1251 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1252 vpxor 8 * 32(%rdx), %ymm0, %ymm7; 1253 vmovdqu %ymm0, 8 * 32(%rsi); 1254 1255 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1256 vpxor 9 * 32(%rdx), %ymm0, %ymm6; 1257 vmovdqu %ymm0, 9 * 32(%rsi); 1258 1259 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1260 vpxor 10 * 32(%rdx), %ymm0, %ymm5; 1261 vmovdqu %ymm0, 10 * 32(%rsi); 1262 1263 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1264 vpxor 11 * 32(%rdx), %ymm0, %ymm4; 1265 vmovdqu %ymm0, 11 * 32(%rsi); 1266 1267 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1268 vpxor 12 * 32(%rdx), %ymm0, %ymm3; 1269 vmovdqu %ymm0, 12 * 32(%rsi); 1270 1271 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1272 vpxor 13 * 32(%rdx), %ymm0, %ymm2; 1273 vmovdqu %ymm0, 13 * 32(%rsi); 1274 1275 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1276 vpxor 14 * 32(%rdx), %ymm0, %ymm1; 1277 vmovdqu %ymm0, 14 * 32(%rsi); 1278 1279 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15); 1280 vpxor 15 * 32(%rdx), %ymm0, %ymm15; 1281 vmovdqu %ymm15, 0 * 32(%rax); 1282 vmovdqu %ymm0, 15 * 32(%rsi); 1283 1284 vextracti128 $1, %ymm0, %xmm0; 1285 gf128mul_x_ble(%xmm0, %xmm12, %xmm15); 1286 vmovdqu %xmm0, (%rcx); 1287 1288 /* inpack32_pre: */ 1289 vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15; 1290 vpshufb .Lpack_bswap, %ymm15, %ymm15; 1291 vpxor 0 * 32(%rax), %ymm15, %ymm0; 1292 vpxor %ymm1, %ymm15, %ymm1; 1293 vpxor %ymm2, %ymm15, %ymm2; 1294 vpxor %ymm3, %ymm15, %ymm3; 1295 vpxor %ymm4, %ymm15, %ymm4; 1296 vpxor %ymm5, %ymm15, %ymm5; 1297 vpxor %ymm6, %ymm15, %ymm6; 1298 vpxor %ymm7, %ymm15, %ymm7; 1299 vpxor %ymm8, %ymm15, %ymm8; 1300 vpxor %ymm9, %ymm15, %ymm9; 1301 vpxor %ymm10, %ymm15, %ymm10; 1302 vpxor %ymm11, %ymm15, %ymm11; 1303 vpxor 12 * 32(%rax), %ymm15, %ymm12; 1304 vpxor 13 * 32(%rax), %ymm15, %ymm13; 1305 vpxor 14 * 32(%rax), %ymm15, %ymm14; 1306 vpxor 15 * 32(%rax), %ymm15, %ymm15; 1307 1308 call *%r9; 1309 1310 addq $(16 * 32), %rsp; 1311 1312 vpxor 0 * 32(%rsi), %ymm7, %ymm7; 1313 vpxor 1 * 32(%rsi), %ymm6, %ymm6; 1314 vpxor 2 * 32(%rsi), %ymm5, %ymm5; 1315 vpxor 3 * 32(%rsi), %ymm4, %ymm4; 1316 vpxor 4 * 32(%rsi), %ymm3, %ymm3; 1317 vpxor 5 * 32(%rsi), %ymm2, %ymm2; 1318 vpxor 6 * 32(%rsi), %ymm1, %ymm1; 1319 vpxor 7 * 32(%rsi), %ymm0, %ymm0; 1320 vpxor 8 * 32(%rsi), %ymm15, %ymm15; 1321 vpxor 9 * 32(%rsi), %ymm14, %ymm14; 1322 vpxor 10 * 32(%rsi), %ymm13, %ymm13; 1323 vpxor 11 * 32(%rsi), %ymm12, %ymm12; 1324 vpxor 12 * 32(%rsi), %ymm11, %ymm11; 1325 vpxor 13 * 32(%rsi), %ymm10, %ymm10; 1326 vpxor 14 * 32(%rsi), %ymm9, %ymm9; 1327 vpxor 15 * 32(%rsi), %ymm8, %ymm8; 1328 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0, 1329 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9, 1330 %ymm8, %rsi); 1331 1332 vzeroupper; 1333 1334 ret; 1335ENDPROC(camellia_xts_crypt_32way) 1336 1337ENTRY(camellia_xts_enc_32way) 1338 /* input: 1339 * %rdi: ctx, CTX 1340 * %rsi: dst (32 blocks) 1341 * %rdx: src (32 blocks) 1342 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 1343 */ 1344 1345 xorl %r8d, %r8d; /* input whitening key, 0 for enc */ 1346 1347 leaq __camellia_enc_blk32, %r9; 1348 1349 jmp camellia_xts_crypt_32way; 1350ENDPROC(camellia_xts_enc_32way) 1351 1352ENTRY(camellia_xts_dec_32way) 1353 /* input: 1354 * %rdi: ctx, CTX 1355 * %rsi: dst (32 blocks) 1356 * %rdx: src (32 blocks) 1357 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸)) 1358 */ 1359 1360 cmpl $16, key_length(CTX); 1361 movl $32, %r8d; 1362 movl $24, %eax; 1363 cmovel %eax, %r8d; /* input whitening key, last for dec */ 1364 1365 leaq __camellia_dec_blk32, %r9; 1366 1367 jmp camellia_xts_crypt_32way; 1368ENDPROC(camellia_xts_dec_32way) 1369