1/*
2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13#include <linux/linkage.h>
14#include <asm/frame.h>
15
16#define CAMELLIA_TABLE_BYTE_LEN 272
17
18/* struct camellia_ctx: */
19#define key_table 0
20#define key_length CAMELLIA_TABLE_BYTE_LEN
21
22/* register macros */
23#define CTX %rdi
24#define RIO %r8
25
26/**********************************************************************
27  helper macros
28 **********************************************************************/
29#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
30	vpand x, mask4bit, tmp0; \
31	vpandn x, mask4bit, x; \
32	vpsrld $4, x, x; \
33	\
34	vpshufb tmp0, lo_t, tmp0; \
35	vpshufb x, hi_t, x; \
36	vpxor tmp0, x, x;
37
38#define ymm0_x xmm0
39#define ymm1_x xmm1
40#define ymm2_x xmm2
41#define ymm3_x xmm3
42#define ymm4_x xmm4
43#define ymm5_x xmm5
44#define ymm6_x xmm6
45#define ymm7_x xmm7
46#define ymm8_x xmm8
47#define ymm9_x xmm9
48#define ymm10_x xmm10
49#define ymm11_x xmm11
50#define ymm12_x xmm12
51#define ymm13_x xmm13
52#define ymm14_x xmm14
53#define ymm15_x xmm15
54
55/**********************************************************************
56  32-way camellia
57 **********************************************************************/
58
59/*
60 * IN:
61 *   x0..x7: byte-sliced AB state
62 *   mem_cd: register pointer storing CD state
63 *   key: index for key material
64 * OUT:
65 *   x0..x7: new byte-sliced CD state
66 */
67#define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
68		  t7, mem_cd, key) \
69	/* \
70	 * S-function with AES subbytes \
71	 */ \
72	vbroadcasti128 .Linv_shift_row, t4; \
73	vpbroadcastd .L0f0f0f0f, t7; \
74	vbroadcasti128 .Lpre_tf_lo_s1, t5; \
75	vbroadcasti128 .Lpre_tf_hi_s1, t6; \
76	vbroadcasti128 .Lpre_tf_lo_s4, t2; \
77	vbroadcasti128 .Lpre_tf_hi_s4, t3; \
78	\
79	/* AES inverse shift rows */ \
80	vpshufb t4, x0, x0; \
81	vpshufb t4, x7, x7; \
82	vpshufb t4, x3, x3; \
83	vpshufb t4, x6, x6; \
84	vpshufb t4, x2, x2; \
85	vpshufb t4, x5, x5; \
86	vpshufb t4, x1, x1; \
87	vpshufb t4, x4, x4; \
88	\
89	/* prefilter sboxes 1, 2 and 3 */ \
90	/* prefilter sbox 4 */ \
91	filter_8bit(x0, t5, t6, t7, t4); \
92	filter_8bit(x7, t5, t6, t7, t4); \
93	vextracti128 $1, x0, t0##_x; \
94	vextracti128 $1, x7, t1##_x; \
95	filter_8bit(x3, t2, t3, t7, t4); \
96	filter_8bit(x6, t2, t3, t7, t4); \
97	vextracti128 $1, x3, t3##_x; \
98	vextracti128 $1, x6, t2##_x; \
99	filter_8bit(x2, t5, t6, t7, t4); \
100	filter_8bit(x5, t5, t6, t7, t4); \
101	filter_8bit(x1, t5, t6, t7, t4); \
102	filter_8bit(x4, t5, t6, t7, t4); \
103	\
104	vpxor t4##_x, t4##_x, t4##_x; \
105	\
106	/* AES subbytes + AES shift rows */ \
107	vextracti128 $1, x2, t6##_x; \
108	vextracti128 $1, x5, t5##_x; \
109	vaesenclast t4##_x, x0##_x, x0##_x; \
110	vaesenclast t4##_x, t0##_x, t0##_x; \
111	vinserti128 $1, t0##_x, x0, x0; \
112	vaesenclast t4##_x, x7##_x, x7##_x; \
113	vaesenclast t4##_x, t1##_x, t1##_x; \
114	vinserti128 $1, t1##_x, x7, x7; \
115	vaesenclast t4##_x, x3##_x, x3##_x; \
116	vaesenclast t4##_x, t3##_x, t3##_x; \
117	vinserti128 $1, t3##_x, x3, x3; \
118	vaesenclast t4##_x, x6##_x, x6##_x; \
119	vaesenclast t4##_x, t2##_x, t2##_x; \
120	vinserti128 $1, t2##_x, x6, x6; \
121	vextracti128 $1, x1, t3##_x; \
122	vextracti128 $1, x4, t2##_x; \
123	vbroadcasti128 .Lpost_tf_lo_s1, t0; \
124	vbroadcasti128 .Lpost_tf_hi_s1, t1; \
125	vaesenclast t4##_x, x2##_x, x2##_x; \
126	vaesenclast t4##_x, t6##_x, t6##_x; \
127	vinserti128 $1, t6##_x, x2, x2; \
128	vaesenclast t4##_x, x5##_x, x5##_x; \
129	vaesenclast t4##_x, t5##_x, t5##_x; \
130	vinserti128 $1, t5##_x, x5, x5; \
131	vaesenclast t4##_x, x1##_x, x1##_x; \
132	vaesenclast t4##_x, t3##_x, t3##_x; \
133	vinserti128 $1, t3##_x, x1, x1; \
134	vaesenclast t4##_x, x4##_x, x4##_x; \
135	vaesenclast t4##_x, t2##_x, t2##_x; \
136	vinserti128 $1, t2##_x, x4, x4; \
137	\
138	/* postfilter sboxes 1 and 4 */ \
139	vbroadcasti128 .Lpost_tf_lo_s3, t2; \
140	vbroadcasti128 .Lpost_tf_hi_s3, t3; \
141	filter_8bit(x0, t0, t1, t7, t6); \
142	filter_8bit(x7, t0, t1, t7, t6); \
143	filter_8bit(x3, t0, t1, t7, t6); \
144	filter_8bit(x6, t0, t1, t7, t6); \
145	\
146	/* postfilter sbox 3 */ \
147	vbroadcasti128 .Lpost_tf_lo_s2, t4; \
148	vbroadcasti128 .Lpost_tf_hi_s2, t5; \
149	filter_8bit(x2, t2, t3, t7, t6); \
150	filter_8bit(x5, t2, t3, t7, t6); \
151	\
152	vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
153	\
154	/* postfilter sbox 2 */ \
155	filter_8bit(x1, t4, t5, t7, t2); \
156	filter_8bit(x4, t4, t5, t7, t2); \
157	vpxor t7, t7, t7; \
158	\
159	vpsrldq $1, t0, t1; \
160	vpsrldq $2, t0, t2; \
161	vpshufb t7, t1, t1; \
162	vpsrldq $3, t0, t3; \
163	\
164	/* P-function */ \
165	vpxor x5, x0, x0; \
166	vpxor x6, x1, x1; \
167	vpxor x7, x2, x2; \
168	vpxor x4, x3, x3; \
169	\
170	vpshufb t7, t2, t2; \
171	vpsrldq $4, t0, t4; \
172	vpshufb t7, t3, t3; \
173	vpsrldq $5, t0, t5; \
174	vpshufb t7, t4, t4; \
175	\
176	vpxor x2, x4, x4; \
177	vpxor x3, x5, x5; \
178	vpxor x0, x6, x6; \
179	vpxor x1, x7, x7; \
180	\
181	vpsrldq $6, t0, t6; \
182	vpshufb t7, t5, t5; \
183	vpshufb t7, t6, t6; \
184	\
185	vpxor x7, x0, x0; \
186	vpxor x4, x1, x1; \
187	vpxor x5, x2, x2; \
188	vpxor x6, x3, x3; \
189	\
190	vpxor x3, x4, x4; \
191	vpxor x0, x5, x5; \
192	vpxor x1, x6, x6; \
193	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
194	\
195	/* Add key material and result to CD (x becomes new CD) */ \
196	\
197	vpxor t6, x1, x1; \
198	vpxor 5 * 32(mem_cd), x1, x1; \
199	\
200	vpsrldq $7, t0, t6; \
201	vpshufb t7, t0, t0; \
202	vpshufb t7, t6, t7; \
203	\
204	vpxor t7, x0, x0; \
205	vpxor 4 * 32(mem_cd), x0, x0; \
206	\
207	vpxor t5, x2, x2; \
208	vpxor 6 * 32(mem_cd), x2, x2; \
209	\
210	vpxor t4, x3, x3; \
211	vpxor 7 * 32(mem_cd), x3, x3; \
212	\
213	vpxor t3, x4, x4; \
214	vpxor 0 * 32(mem_cd), x4, x4; \
215	\
216	vpxor t2, x5, x5; \
217	vpxor 1 * 32(mem_cd), x5, x5; \
218	\
219	vpxor t1, x6, x6; \
220	vpxor 2 * 32(mem_cd), x6, x6; \
221	\
222	vpxor t0, x7, x7; \
223	vpxor 3 * 32(mem_cd), x7, x7;
224
225/*
226 * Size optimization... with inlined roundsm32 binary would be over 5 times
227 * larger and would only marginally faster.
228 */
229.align 8
230roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
231	roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
232		  %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
233		  %rcx, (%r9));
234	ret;
235ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
236
237.align 8
238roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
239	roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
240		  %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
241		  %rax, (%r9));
242	ret;
243ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
244
245/*
246 * IN/OUT:
247 *  x0..x7: byte-sliced AB state preloaded
248 *  mem_ab: byte-sliced AB state in memory
249 *  mem_cb: byte-sliced CD state in memory
250 */
251#define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
252		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
253	leaq (key_table + (i) * 8)(CTX), %r9; \
254	call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
255	\
256	vmovdqu x0, 4 * 32(mem_cd); \
257	vmovdqu x1, 5 * 32(mem_cd); \
258	vmovdqu x2, 6 * 32(mem_cd); \
259	vmovdqu x3, 7 * 32(mem_cd); \
260	vmovdqu x4, 0 * 32(mem_cd); \
261	vmovdqu x5, 1 * 32(mem_cd); \
262	vmovdqu x6, 2 * 32(mem_cd); \
263	vmovdqu x7, 3 * 32(mem_cd); \
264	\
265	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
266	call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
267	\
268	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
269
270#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
271
272#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
273	/* Store new AB state */ \
274	vmovdqu x4, 4 * 32(mem_ab); \
275	vmovdqu x5, 5 * 32(mem_ab); \
276	vmovdqu x6, 6 * 32(mem_ab); \
277	vmovdqu x7, 7 * 32(mem_ab); \
278	vmovdqu x0, 0 * 32(mem_ab); \
279	vmovdqu x1, 1 * 32(mem_ab); \
280	vmovdqu x2, 2 * 32(mem_ab); \
281	vmovdqu x3, 3 * 32(mem_ab);
282
283#define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
284		      y6, y7, mem_ab, mem_cd, i) \
285	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
286		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
287	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
288		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
289	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
290		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
291
292#define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
293		      y6, y7, mem_ab, mem_cd, i) \
294	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
295		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
296	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
297		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
298	two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
299		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
300
301/*
302 * IN:
303 *  v0..3: byte-sliced 32-bit integers
304 * OUT:
305 *  v0..3: (IN <<< 1)
306 */
307#define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
308	vpcmpgtb v0, zero, t0; \
309	vpaddb v0, v0, v0; \
310	vpabsb t0, t0; \
311	\
312	vpcmpgtb v1, zero, t1; \
313	vpaddb v1, v1, v1; \
314	vpabsb t1, t1; \
315	\
316	vpcmpgtb v2, zero, t2; \
317	vpaddb v2, v2, v2; \
318	vpabsb t2, t2; \
319	\
320	vpor t0, v1, v1; \
321	\
322	vpcmpgtb v3, zero, t0; \
323	vpaddb v3, v3, v3; \
324	vpabsb t0, t0; \
325	\
326	vpor t1, v2, v2; \
327	vpor t2, v3, v3; \
328	vpor t0, v0, v0;
329
330/*
331 * IN:
332 *   r: byte-sliced AB state in memory
333 *   l: byte-sliced CD state in memory
334 * OUT:
335 *   x0..x7: new byte-sliced CD state
336 */
337#define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
338	      tt1, tt2, tt3, kll, klr, krl, krr) \
339	/* \
340	 * t0 = kll; \
341	 * t0 &= ll; \
342	 * lr ^= rol32(t0, 1); \
343	 */ \
344	vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
345	vpxor tt0, tt0, tt0; \
346	vpshufb tt0, t0, t3; \
347	vpsrldq $1, t0, t0; \
348	vpshufb tt0, t0, t2; \
349	vpsrldq $1, t0, t0; \
350	vpshufb tt0, t0, t1; \
351	vpsrldq $1, t0, t0; \
352	vpshufb tt0, t0, t0; \
353	\
354	vpand l0, t0, t0; \
355	vpand l1, t1, t1; \
356	vpand l2, t2, t2; \
357	vpand l3, t3, t3; \
358	\
359	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
360	\
361	vpxor l4, t0, l4; \
362	vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
363	vmovdqu l4, 4 * 32(l); \
364	vpxor l5, t1, l5; \
365	vmovdqu l5, 5 * 32(l); \
366	vpxor l6, t2, l6; \
367	vmovdqu l6, 6 * 32(l); \
368	vpxor l7, t3, l7; \
369	vmovdqu l7, 7 * 32(l); \
370	\
371	/* \
372	 * t2 = krr; \
373	 * t2 |= rr; \
374	 * rl ^= t2; \
375	 */ \
376	\
377	vpshufb tt0, t0, t3; \
378	vpsrldq $1, t0, t0; \
379	vpshufb tt0, t0, t2; \
380	vpsrldq $1, t0, t0; \
381	vpshufb tt0, t0, t1; \
382	vpsrldq $1, t0, t0; \
383	vpshufb tt0, t0, t0; \
384	\
385	vpor 4 * 32(r), t0, t0; \
386	vpor 5 * 32(r), t1, t1; \
387	vpor 6 * 32(r), t2, t2; \
388	vpor 7 * 32(r), t3, t3; \
389	\
390	vpxor 0 * 32(r), t0, t0; \
391	vpxor 1 * 32(r), t1, t1; \
392	vpxor 2 * 32(r), t2, t2; \
393	vpxor 3 * 32(r), t3, t3; \
394	vmovdqu t0, 0 * 32(r); \
395	vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
396	vmovdqu t1, 1 * 32(r); \
397	vmovdqu t2, 2 * 32(r); \
398	vmovdqu t3, 3 * 32(r); \
399	\
400	/* \
401	 * t2 = krl; \
402	 * t2 &= rl; \
403	 * rr ^= rol32(t2, 1); \
404	 */ \
405	vpshufb tt0, t0, t3; \
406	vpsrldq $1, t0, t0; \
407	vpshufb tt0, t0, t2; \
408	vpsrldq $1, t0, t0; \
409	vpshufb tt0, t0, t1; \
410	vpsrldq $1, t0, t0; \
411	vpshufb tt0, t0, t0; \
412	\
413	vpand 0 * 32(r), t0, t0; \
414	vpand 1 * 32(r), t1, t1; \
415	vpand 2 * 32(r), t2, t2; \
416	vpand 3 * 32(r), t3, t3; \
417	\
418	rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
419	\
420	vpxor 4 * 32(r), t0, t0; \
421	vpxor 5 * 32(r), t1, t1; \
422	vpxor 6 * 32(r), t2, t2; \
423	vpxor 7 * 32(r), t3, t3; \
424	vmovdqu t0, 4 * 32(r); \
425	vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
426	vmovdqu t1, 5 * 32(r); \
427	vmovdqu t2, 6 * 32(r); \
428	vmovdqu t3, 7 * 32(r); \
429	\
430	/* \
431	 * t0 = klr; \
432	 * t0 |= lr; \
433	 * ll ^= t0; \
434	 */ \
435	\
436	vpshufb tt0, t0, t3; \
437	vpsrldq $1, t0, t0; \
438	vpshufb tt0, t0, t2; \
439	vpsrldq $1, t0, t0; \
440	vpshufb tt0, t0, t1; \
441	vpsrldq $1, t0, t0; \
442	vpshufb tt0, t0, t0; \
443	\
444	vpor l4, t0, t0; \
445	vpor l5, t1, t1; \
446	vpor l6, t2, t2; \
447	vpor l7, t3, t3; \
448	\
449	vpxor l0, t0, l0; \
450	vmovdqu l0, 0 * 32(l); \
451	vpxor l1, t1, l1; \
452	vmovdqu l1, 1 * 32(l); \
453	vpxor l2, t2, l2; \
454	vmovdqu l2, 2 * 32(l); \
455	vpxor l3, t3, l3; \
456	vmovdqu l3, 3 * 32(l);
457
458#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
459	vpunpckhdq x1, x0, t2; \
460	vpunpckldq x1, x0, x0; \
461	\
462	vpunpckldq x3, x2, t1; \
463	vpunpckhdq x3, x2, x2; \
464	\
465	vpunpckhqdq t1, x0, x1; \
466	vpunpcklqdq t1, x0, x0; \
467	\
468	vpunpckhqdq x2, t2, x3; \
469	vpunpcklqdq x2, t2, x2;
470
471#define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
472			      a3, b3, c3, d3, st0, st1) \
473	vmovdqu d2, st0; \
474	vmovdqu d3, st1; \
475	transpose_4x4(a0, a1, a2, a3, d2, d3); \
476	transpose_4x4(b0, b1, b2, b3, d2, d3); \
477	vmovdqu st0, d2; \
478	vmovdqu st1, d3; \
479	\
480	vmovdqu a0, st0; \
481	vmovdqu a1, st1; \
482	transpose_4x4(c0, c1, c2, c3, a0, a1); \
483	transpose_4x4(d0, d1, d2, d3, a0, a1); \
484	\
485	vbroadcasti128 .Lshufb_16x16b, a0; \
486	vmovdqu st1, a1; \
487	vpshufb a0, a2, a2; \
488	vpshufb a0, a3, a3; \
489	vpshufb a0, b0, b0; \
490	vpshufb a0, b1, b1; \
491	vpshufb a0, b2, b2; \
492	vpshufb a0, b3, b3; \
493	vpshufb a0, a1, a1; \
494	vpshufb a0, c0, c0; \
495	vpshufb a0, c1, c1; \
496	vpshufb a0, c2, c2; \
497	vpshufb a0, c3, c3; \
498	vpshufb a0, d0, d0; \
499	vpshufb a0, d1, d1; \
500	vpshufb a0, d2, d2; \
501	vpshufb a0, d3, d3; \
502	vmovdqu d3, st1; \
503	vmovdqu st0, d3; \
504	vpshufb a0, d3, a0; \
505	vmovdqu d2, st0; \
506	\
507	transpose_4x4(a0, b0, c0, d0, d2, d3); \
508	transpose_4x4(a1, b1, c1, d1, d2, d3); \
509	vmovdqu st0, d2; \
510	vmovdqu st1, d3; \
511	\
512	vmovdqu b0, st0; \
513	vmovdqu b1, st1; \
514	transpose_4x4(a2, b2, c2, d2, b0, b1); \
515	transpose_4x4(a3, b3, c3, d3, b0, b1); \
516	vmovdqu st0, b0; \
517	vmovdqu st1, b1; \
518	/* does not adjust output bytes inside vectors */
519
520/* load blocks to registers and apply pre-whitening */
521#define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
522		     y6, y7, rio, key) \
523	vpbroadcastq key, x0; \
524	vpshufb .Lpack_bswap, x0, x0; \
525	\
526	vpxor 0 * 32(rio), x0, y7; \
527	vpxor 1 * 32(rio), x0, y6; \
528	vpxor 2 * 32(rio), x0, y5; \
529	vpxor 3 * 32(rio), x0, y4; \
530	vpxor 4 * 32(rio), x0, y3; \
531	vpxor 5 * 32(rio), x0, y2; \
532	vpxor 6 * 32(rio), x0, y1; \
533	vpxor 7 * 32(rio), x0, y0; \
534	vpxor 8 * 32(rio), x0, x7; \
535	vpxor 9 * 32(rio), x0, x6; \
536	vpxor 10 * 32(rio), x0, x5; \
537	vpxor 11 * 32(rio), x0, x4; \
538	vpxor 12 * 32(rio), x0, x3; \
539	vpxor 13 * 32(rio), x0, x2; \
540	vpxor 14 * 32(rio), x0, x1; \
541	vpxor 15 * 32(rio), x0, x0;
542
543/* byteslice pre-whitened blocks and store to temporary memory */
544#define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
545		      y6, y7, mem_ab, mem_cd) \
546	byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
547			      y4, y5, y6, y7, (mem_ab), (mem_cd)); \
548	\
549	vmovdqu x0, 0 * 32(mem_ab); \
550	vmovdqu x1, 1 * 32(mem_ab); \
551	vmovdqu x2, 2 * 32(mem_ab); \
552	vmovdqu x3, 3 * 32(mem_ab); \
553	vmovdqu x4, 4 * 32(mem_ab); \
554	vmovdqu x5, 5 * 32(mem_ab); \
555	vmovdqu x6, 6 * 32(mem_ab); \
556	vmovdqu x7, 7 * 32(mem_ab); \
557	vmovdqu y0, 0 * 32(mem_cd); \
558	vmovdqu y1, 1 * 32(mem_cd); \
559	vmovdqu y2, 2 * 32(mem_cd); \
560	vmovdqu y3, 3 * 32(mem_cd); \
561	vmovdqu y4, 4 * 32(mem_cd); \
562	vmovdqu y5, 5 * 32(mem_cd); \
563	vmovdqu y6, 6 * 32(mem_cd); \
564	vmovdqu y7, 7 * 32(mem_cd);
565
566/* de-byteslice, apply post-whitening and store blocks */
567#define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
568		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
569	byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
570			      y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
571	\
572	vmovdqu x0, stack_tmp0; \
573	\
574	vpbroadcastq key, x0; \
575	vpshufb .Lpack_bswap, x0, x0; \
576	\
577	vpxor x0, y7, y7; \
578	vpxor x0, y6, y6; \
579	vpxor x0, y5, y5; \
580	vpxor x0, y4, y4; \
581	vpxor x0, y3, y3; \
582	vpxor x0, y2, y2; \
583	vpxor x0, y1, y1; \
584	vpxor x0, y0, y0; \
585	vpxor x0, x7, x7; \
586	vpxor x0, x6, x6; \
587	vpxor x0, x5, x5; \
588	vpxor x0, x4, x4; \
589	vpxor x0, x3, x3; \
590	vpxor x0, x2, x2; \
591	vpxor x0, x1, x1; \
592	vpxor stack_tmp0, x0, x0;
593
594#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
595		     y6, y7, rio) \
596	vmovdqu x0, 0 * 32(rio); \
597	vmovdqu x1, 1 * 32(rio); \
598	vmovdqu x2, 2 * 32(rio); \
599	vmovdqu x3, 3 * 32(rio); \
600	vmovdqu x4, 4 * 32(rio); \
601	vmovdqu x5, 5 * 32(rio); \
602	vmovdqu x6, 6 * 32(rio); \
603	vmovdqu x7, 7 * 32(rio); \
604	vmovdqu y0, 8 * 32(rio); \
605	vmovdqu y1, 9 * 32(rio); \
606	vmovdqu y2, 10 * 32(rio); \
607	vmovdqu y3, 11 * 32(rio); \
608	vmovdqu y4, 12 * 32(rio); \
609	vmovdqu y5, 13 * 32(rio); \
610	vmovdqu y6, 14 * 32(rio); \
611	vmovdqu y7, 15 * 32(rio);
612
613
614.section	.rodata.cst32.shufb_16x16b, "aM", @progbits, 32
615.align 32
616#define SHUFB_BYTES(idx) \
617	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
618.Lshufb_16x16b:
619	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
620	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
621
622.section	.rodata.cst32.pack_bswap, "aM", @progbits, 32
623.align 32
624.Lpack_bswap:
625	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
626	.long 0x00010203, 0x04050607, 0x80808080, 0x80808080
627
628/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
629.section	.rodata.cst16, "aM", @progbits, 16
630.align 16
631
632/* For CTR-mode IV byteswap */
633.Lbswap128_mask:
634	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
635
636/* For XTS mode */
637.Lxts_gf128mul_and_shl1_mask_0:
638	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
639.Lxts_gf128mul_and_shl1_mask_1:
640	.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
641
642/*
643 * pre-SubByte transform
644 *
645 * pre-lookup for sbox1, sbox2, sbox3:
646 *   swap_bitendianness(
647 *       isom_map_camellia_to_aes(
648 *           camellia_f(
649 *               swap_bitendianess(in)
650 *           )
651 *       )
652 *   )
653 *
654 * (note: '⊕ 0xc5' inside camellia_f())
655 */
656.Lpre_tf_lo_s1:
657	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
658	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
659.Lpre_tf_hi_s1:
660	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
661	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
662
663/*
664 * pre-SubByte transform
665 *
666 * pre-lookup for sbox4:
667 *   swap_bitendianness(
668 *       isom_map_camellia_to_aes(
669 *           camellia_f(
670 *               swap_bitendianess(in <<< 1)
671 *           )
672 *       )
673 *   )
674 *
675 * (note: '⊕ 0xc5' inside camellia_f())
676 */
677.Lpre_tf_lo_s4:
678	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
679	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
680.Lpre_tf_hi_s4:
681	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
682	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
683
684/*
685 * post-SubByte transform
686 *
687 * post-lookup for sbox1, sbox4:
688 *  swap_bitendianness(
689 *      camellia_h(
690 *          isom_map_aes_to_camellia(
691 *              swap_bitendianness(
692 *                  aes_inverse_affine_transform(in)
693 *              )
694 *          )
695 *      )
696 *  )
697 *
698 * (note: '⊕ 0x6e' inside camellia_h())
699 */
700.Lpost_tf_lo_s1:
701	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
702	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
703.Lpost_tf_hi_s1:
704	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
705	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
706
707/*
708 * post-SubByte transform
709 *
710 * post-lookup for sbox2:
711 *  swap_bitendianness(
712 *      camellia_h(
713 *          isom_map_aes_to_camellia(
714 *              swap_bitendianness(
715 *                  aes_inverse_affine_transform(in)
716 *              )
717 *          )
718 *      )
719 *  ) <<< 1
720 *
721 * (note: '⊕ 0x6e' inside camellia_h())
722 */
723.Lpost_tf_lo_s2:
724	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
725	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
726.Lpost_tf_hi_s2:
727	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
728	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
729
730/*
731 * post-SubByte transform
732 *
733 * post-lookup for sbox3:
734 *  swap_bitendianness(
735 *      camellia_h(
736 *          isom_map_aes_to_camellia(
737 *              swap_bitendianness(
738 *                  aes_inverse_affine_transform(in)
739 *              )
740 *          )
741 *      )
742 *  ) >>> 1
743 *
744 * (note: '⊕ 0x6e' inside camellia_h())
745 */
746.Lpost_tf_lo_s3:
747	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
748	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
749.Lpost_tf_hi_s3:
750	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
751	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
752
753/* For isolating SubBytes from AESENCLAST, inverse shift row */
754.Linv_shift_row:
755	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
756	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
757
758.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
759.align 4
760/* 4-bit mask */
761.L0f0f0f0f:
762	.long 0x0f0f0f0f
763
764.text
765
766.align 8
767__camellia_enc_blk32:
768	/* input:
769	 *	%rdi: ctx, CTX
770	 *	%rax: temporary storage, 512 bytes
771	 *	%ymm0..%ymm15: 32 plaintext blocks
772	 * output:
773	 *	%ymm0..%ymm15: 32 encrypted blocks, order swapped:
774	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
775	 */
776	FRAME_BEGIN
777
778	leaq 8 * 32(%rax), %rcx;
779
780	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
781		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
782		      %ymm15, %rax, %rcx);
783
784	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
785		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
786		     %ymm15, %rax, %rcx, 0);
787
788	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
789	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
790	      %ymm15,
791	      ((key_table + (8) * 8) + 0)(CTX),
792	      ((key_table + (8) * 8) + 4)(CTX),
793	      ((key_table + (8) * 8) + 8)(CTX),
794	      ((key_table + (8) * 8) + 12)(CTX));
795
796	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
797		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
798		     %ymm15, %rax, %rcx, 8);
799
800	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
801	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
802	      %ymm15,
803	      ((key_table + (16) * 8) + 0)(CTX),
804	      ((key_table + (16) * 8) + 4)(CTX),
805	      ((key_table + (16) * 8) + 8)(CTX),
806	      ((key_table + (16) * 8) + 12)(CTX));
807
808	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
809		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
810		     %ymm15, %rax, %rcx, 16);
811
812	movl $24, %r8d;
813	cmpl $16, key_length(CTX);
814	jne .Lenc_max32;
815
816.Lenc_done:
817	/* load CD for output */
818	vmovdqu 0 * 32(%rcx), %ymm8;
819	vmovdqu 1 * 32(%rcx), %ymm9;
820	vmovdqu 2 * 32(%rcx), %ymm10;
821	vmovdqu 3 * 32(%rcx), %ymm11;
822	vmovdqu 4 * 32(%rcx), %ymm12;
823	vmovdqu 5 * 32(%rcx), %ymm13;
824	vmovdqu 6 * 32(%rcx), %ymm14;
825	vmovdqu 7 * 32(%rcx), %ymm15;
826
827	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
828		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
829		    %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
830
831	FRAME_END
832	ret;
833
834.align 8
835.Lenc_max32:
836	movl $32, %r8d;
837
838	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
839	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
840	      %ymm15,
841	      ((key_table + (24) * 8) + 0)(CTX),
842	      ((key_table + (24) * 8) + 4)(CTX),
843	      ((key_table + (24) * 8) + 8)(CTX),
844	      ((key_table + (24) * 8) + 12)(CTX));
845
846	enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
847		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
848		     %ymm15, %rax, %rcx, 24);
849
850	jmp .Lenc_done;
851ENDPROC(__camellia_enc_blk32)
852
853.align 8
854__camellia_dec_blk32:
855	/* input:
856	 *	%rdi: ctx, CTX
857	 *	%rax: temporary storage, 512 bytes
858	 *	%r8d: 24 for 16 byte key, 32 for larger
859	 *	%ymm0..%ymm15: 16 encrypted blocks
860	 * output:
861	 *	%ymm0..%ymm15: 16 plaintext blocks, order swapped:
862	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
863	 */
864	FRAME_BEGIN
865
866	leaq 8 * 32(%rax), %rcx;
867
868	inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
869		      %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
870		      %ymm15, %rax, %rcx);
871
872	cmpl $32, %r8d;
873	je .Ldec_max32;
874
875.Ldec_max24:
876	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
877		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
878		     %ymm15, %rax, %rcx, 16);
879
880	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
881	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
882	      %ymm15,
883	      ((key_table + (16) * 8) + 8)(CTX),
884	      ((key_table + (16) * 8) + 12)(CTX),
885	      ((key_table + (16) * 8) + 0)(CTX),
886	      ((key_table + (16) * 8) + 4)(CTX));
887
888	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
889		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
890		     %ymm15, %rax, %rcx, 8);
891
892	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
893	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
894	      %ymm15,
895	      ((key_table + (8) * 8) + 8)(CTX),
896	      ((key_table + (8) * 8) + 12)(CTX),
897	      ((key_table + (8) * 8) + 0)(CTX),
898	      ((key_table + (8) * 8) + 4)(CTX));
899
900	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
901		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
902		     %ymm15, %rax, %rcx, 0);
903
904	/* load CD for output */
905	vmovdqu 0 * 32(%rcx), %ymm8;
906	vmovdqu 1 * 32(%rcx), %ymm9;
907	vmovdqu 2 * 32(%rcx), %ymm10;
908	vmovdqu 3 * 32(%rcx), %ymm11;
909	vmovdqu 4 * 32(%rcx), %ymm12;
910	vmovdqu 5 * 32(%rcx), %ymm13;
911	vmovdqu 6 * 32(%rcx), %ymm14;
912	vmovdqu 7 * 32(%rcx), %ymm15;
913
914	outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
915		    %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
916		    %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
917
918	FRAME_END
919	ret;
920
921.align 8
922.Ldec_max32:
923	dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
924		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
925		     %ymm15, %rax, %rcx, 24);
926
927	fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
928	      %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
929	      %ymm15,
930	      ((key_table + (24) * 8) + 8)(CTX),
931	      ((key_table + (24) * 8) + 12)(CTX),
932	      ((key_table + (24) * 8) + 0)(CTX),
933	      ((key_table + (24) * 8) + 4)(CTX));
934
935	jmp .Ldec_max24;
936ENDPROC(__camellia_dec_blk32)
937
938ENTRY(camellia_ecb_enc_32way)
939	/* input:
940	 *	%rdi: ctx, CTX
941	 *	%rsi: dst (32 blocks)
942	 *	%rdx: src (32 blocks)
943	 */
944	FRAME_BEGIN
945
946	vzeroupper;
947
948	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
949		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
950		     %ymm15, %rdx, (key_table)(CTX));
951
952	/* now dst can be used as temporary buffer (even in src == dst case) */
953	movq	%rsi, %rax;
954
955	call __camellia_enc_blk32;
956
957	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
958		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
959		     %ymm8, %rsi);
960
961	vzeroupper;
962
963	FRAME_END
964	ret;
965ENDPROC(camellia_ecb_enc_32way)
966
967ENTRY(camellia_ecb_dec_32way)
968	/* input:
969	 *	%rdi: ctx, CTX
970	 *	%rsi: dst (32 blocks)
971	 *	%rdx: src (32 blocks)
972	 */
973	FRAME_BEGIN
974
975	vzeroupper;
976
977	cmpl $16, key_length(CTX);
978	movl $32, %r8d;
979	movl $24, %eax;
980	cmovel %eax, %r8d; /* max */
981
982	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
983		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
984		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
985
986	/* now dst can be used as temporary buffer (even in src == dst case) */
987	movq	%rsi, %rax;
988
989	call __camellia_dec_blk32;
990
991	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
992		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
993		     %ymm8, %rsi);
994
995	vzeroupper;
996
997	FRAME_END
998	ret;
999ENDPROC(camellia_ecb_dec_32way)
1000
1001ENTRY(camellia_cbc_dec_32way)
1002	/* input:
1003	 *	%rdi: ctx, CTX
1004	 *	%rsi: dst (32 blocks)
1005	 *	%rdx: src (32 blocks)
1006	 */
1007	FRAME_BEGIN
1008
1009	vzeroupper;
1010
1011	cmpl $16, key_length(CTX);
1012	movl $32, %r8d;
1013	movl $24, %eax;
1014	cmovel %eax, %r8d; /* max */
1015
1016	inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1017		     %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1018		     %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1019
1020	movq %rsp, %r10;
1021	cmpq %rsi, %rdx;
1022	je .Lcbc_dec_use_stack;
1023
1024	/* dst can be used as temporary storage, src is not overwritten. */
1025	movq %rsi, %rax;
1026	jmp .Lcbc_dec_continue;
1027
1028.Lcbc_dec_use_stack:
1029	/*
1030	 * dst still in-use (because dst == src), so use stack for temporary
1031	 * storage.
1032	 */
1033	subq $(16 * 32), %rsp;
1034	movq %rsp, %rax;
1035
1036.Lcbc_dec_continue:
1037	call __camellia_dec_blk32;
1038
1039	vmovdqu %ymm7, (%rax);
1040	vpxor %ymm7, %ymm7, %ymm7;
1041	vinserti128 $1, (%rdx), %ymm7, %ymm7;
1042	vpxor (%rax), %ymm7, %ymm7;
1043	movq %r10, %rsp;
1044	vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1045	vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1046	vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1047	vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1048	vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1049	vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1050	vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1051	vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1052	vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1053	vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1054	vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1055	vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1056	vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1057	vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1058	vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1059	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1060		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1061		     %ymm8, %rsi);
1062
1063	vzeroupper;
1064
1065	FRAME_END
1066	ret;
1067ENDPROC(camellia_cbc_dec_32way)
1068
1069#define inc_le128(x, minus_one, tmp) \
1070	vpcmpeqq minus_one, x, tmp; \
1071	vpsubq minus_one, x, x; \
1072	vpslldq $8, tmp, tmp; \
1073	vpsubq tmp, x, x;
1074
1075#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1076	vpcmpeqq minus_one, x, tmp1; \
1077	vpcmpeqq minus_two, x, tmp2; \
1078	vpsubq minus_two, x, x; \
1079	vpor tmp2, tmp1, tmp1; \
1080	vpslldq $8, tmp1, tmp1; \
1081	vpsubq tmp1, x, x;
1082
1083ENTRY(camellia_ctr_32way)
1084	/* input:
1085	 *	%rdi: ctx, CTX
1086	 *	%rsi: dst (32 blocks)
1087	 *	%rdx: src (32 blocks)
1088	 *	%rcx: iv (little endian, 128bit)
1089	 */
1090	FRAME_BEGIN
1091
1092	vzeroupper;
1093
1094	movq %rsp, %r10;
1095	cmpq %rsi, %rdx;
1096	je .Lctr_use_stack;
1097
1098	/* dst can be used as temporary storage, src is not overwritten. */
1099	movq %rsi, %rax;
1100	jmp .Lctr_continue;
1101
1102.Lctr_use_stack:
1103	subq $(16 * 32), %rsp;
1104	movq %rsp, %rax;
1105
1106.Lctr_continue:
1107	vpcmpeqd %ymm15, %ymm15, %ymm15;
1108	vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1109	vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1110
1111	/* load IV and byteswap */
1112	vmovdqu (%rcx), %xmm0;
1113	vmovdqa %xmm0, %xmm1;
1114	inc_le128(%xmm0, %xmm15, %xmm14);
1115	vbroadcasti128 .Lbswap128_mask, %ymm14;
1116	vinserti128 $1, %xmm0, %ymm1, %ymm0;
1117	vpshufb %ymm14, %ymm0, %ymm13;
1118	vmovdqu %ymm13, 15 * 32(%rax);
1119
1120	/* construct IVs */
1121	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1122	vpshufb %ymm14, %ymm0, %ymm13;
1123	vmovdqu %ymm13, 14 * 32(%rax);
1124	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1125	vpshufb %ymm14, %ymm0, %ymm13;
1126	vmovdqu %ymm13, 13 * 32(%rax);
1127	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1128	vpshufb %ymm14, %ymm0, %ymm13;
1129	vmovdqu %ymm13, 12 * 32(%rax);
1130	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1131	vpshufb %ymm14, %ymm0, %ymm13;
1132	vmovdqu %ymm13, 11 * 32(%rax);
1133	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134	vpshufb %ymm14, %ymm0, %ymm10;
1135	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136	vpshufb %ymm14, %ymm0, %ymm9;
1137	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1138	vpshufb %ymm14, %ymm0, %ymm8;
1139	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1140	vpshufb %ymm14, %ymm0, %ymm7;
1141	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1142	vpshufb %ymm14, %ymm0, %ymm6;
1143	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1144	vpshufb %ymm14, %ymm0, %ymm5;
1145	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1146	vpshufb %ymm14, %ymm0, %ymm4;
1147	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1148	vpshufb %ymm14, %ymm0, %ymm3;
1149	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1150	vpshufb %ymm14, %ymm0, %ymm2;
1151	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1152	vpshufb %ymm14, %ymm0, %ymm1;
1153	add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1154	vextracti128 $1, %ymm0, %xmm13;
1155	vpshufb %ymm14, %ymm0, %ymm0;
1156	inc_le128(%xmm13, %xmm15, %xmm14);
1157	vmovdqu %xmm13, (%rcx);
1158
1159	/* inpack32_pre: */
1160	vpbroadcastq (key_table)(CTX), %ymm15;
1161	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1162	vpxor %ymm0, %ymm15, %ymm0;
1163	vpxor %ymm1, %ymm15, %ymm1;
1164	vpxor %ymm2, %ymm15, %ymm2;
1165	vpxor %ymm3, %ymm15, %ymm3;
1166	vpxor %ymm4, %ymm15, %ymm4;
1167	vpxor %ymm5, %ymm15, %ymm5;
1168	vpxor %ymm6, %ymm15, %ymm6;
1169	vpxor %ymm7, %ymm15, %ymm7;
1170	vpxor %ymm8, %ymm15, %ymm8;
1171	vpxor %ymm9, %ymm15, %ymm9;
1172	vpxor %ymm10, %ymm15, %ymm10;
1173	vpxor 11 * 32(%rax), %ymm15, %ymm11;
1174	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1175	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1176	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1177	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1178
1179	call __camellia_enc_blk32;
1180
1181	movq %r10, %rsp;
1182
1183	vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1184	vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1185	vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1186	vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1187	vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1188	vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1189	vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1190	vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1191	vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1192	vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1193	vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1194	vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1195	vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1196	vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1197	vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1198	vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1199	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1200		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1201		     %ymm8, %rsi);
1202
1203	vzeroupper;
1204
1205	FRAME_END
1206	ret;
1207ENDPROC(camellia_ctr_32way)
1208
1209#define gf128mul_x_ble(iv, mask, tmp) \
1210	vpsrad $31, iv, tmp; \
1211	vpaddq iv, iv, iv; \
1212	vpshufd $0x13, tmp, tmp; \
1213	vpand mask, tmp, tmp; \
1214	vpxor tmp, iv, iv;
1215
1216#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1217	vpsrad $31, iv, tmp0; \
1218	vpaddq iv, iv, tmp1; \
1219	vpsllq $2, iv, iv; \
1220	vpshufd $0x13, tmp0, tmp0; \
1221	vpsrad $31, tmp1, tmp1; \
1222	vpand mask2, tmp0, tmp0; \
1223	vpshufd $0x13, tmp1, tmp1; \
1224	vpxor tmp0, iv, iv; \
1225	vpand mask1, tmp1, tmp1; \
1226	vpxor tmp1, iv, iv;
1227
1228.align 8
1229camellia_xts_crypt_32way:
1230	/* input:
1231	 *	%rdi: ctx, CTX
1232	 *	%rsi: dst (32 blocks)
1233	 *	%rdx: src (32 blocks)
1234	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1235	 *	%r8: index for input whitening key
1236	 *	%r9: pointer to  __camellia_enc_blk32 or __camellia_dec_blk32
1237	 */
1238	FRAME_BEGIN
1239
1240	vzeroupper;
1241
1242	subq $(16 * 32), %rsp;
1243	movq %rsp, %rax;
1244
1245	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1246
1247	/* load IV and construct second IV */
1248	vmovdqu (%rcx), %xmm0;
1249	vmovdqa %xmm0, %xmm15;
1250	gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1251	vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1252	vinserti128 $1, %xmm0, %ymm15, %ymm0;
1253	vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1254	vmovdqu %ymm15, 15 * 32(%rax);
1255	vmovdqu %ymm0, 0 * 32(%rsi);
1256
1257	/* construct IVs */
1258	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1259	vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1260	vmovdqu %ymm15, 14 * 32(%rax);
1261	vmovdqu %ymm0, 1 * 32(%rsi);
1262
1263	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1264	vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1265	vmovdqu %ymm15, 13 * 32(%rax);
1266	vmovdqu %ymm0, 2 * 32(%rsi);
1267
1268	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1269	vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1270	vmovdqu %ymm15, 12 * 32(%rax);
1271	vmovdqu %ymm0, 3 * 32(%rsi);
1272
1273	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274	vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1275	vmovdqu %ymm0, 4 * 32(%rsi);
1276
1277	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278	vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1279	vmovdqu %ymm0, 5 * 32(%rsi);
1280
1281	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282	vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1283	vmovdqu %ymm0, 6 * 32(%rsi);
1284
1285	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286	vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1287	vmovdqu %ymm0, 7 * 32(%rsi);
1288
1289	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290	vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1291	vmovdqu %ymm0, 8 * 32(%rsi);
1292
1293	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294	vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1295	vmovdqu %ymm0, 9 * 32(%rsi);
1296
1297	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298	vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1299	vmovdqu %ymm0, 10 * 32(%rsi);
1300
1301	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1302	vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1303	vmovdqu %ymm0, 11 * 32(%rsi);
1304
1305	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1306	vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1307	vmovdqu %ymm0, 12 * 32(%rsi);
1308
1309	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1310	vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1311	vmovdqu %ymm0, 13 * 32(%rsi);
1312
1313	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1314	vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1315	vmovdqu %ymm0, 14 * 32(%rsi);
1316
1317	gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1318	vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1319	vmovdqu %ymm15, 0 * 32(%rax);
1320	vmovdqu %ymm0, 15 * 32(%rsi);
1321
1322	vextracti128 $1, %ymm0, %xmm0;
1323	gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1324	vmovdqu %xmm0, (%rcx);
1325
1326	/* inpack32_pre: */
1327	vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1328	vpshufb .Lpack_bswap, %ymm15, %ymm15;
1329	vpxor 0 * 32(%rax), %ymm15, %ymm0;
1330	vpxor %ymm1, %ymm15, %ymm1;
1331	vpxor %ymm2, %ymm15, %ymm2;
1332	vpxor %ymm3, %ymm15, %ymm3;
1333	vpxor %ymm4, %ymm15, %ymm4;
1334	vpxor %ymm5, %ymm15, %ymm5;
1335	vpxor %ymm6, %ymm15, %ymm6;
1336	vpxor %ymm7, %ymm15, %ymm7;
1337	vpxor %ymm8, %ymm15, %ymm8;
1338	vpxor %ymm9, %ymm15, %ymm9;
1339	vpxor %ymm10, %ymm15, %ymm10;
1340	vpxor %ymm11, %ymm15, %ymm11;
1341	vpxor 12 * 32(%rax), %ymm15, %ymm12;
1342	vpxor 13 * 32(%rax), %ymm15, %ymm13;
1343	vpxor 14 * 32(%rax), %ymm15, %ymm14;
1344	vpxor 15 * 32(%rax), %ymm15, %ymm15;
1345
1346	call *%r9;
1347
1348	addq $(16 * 32), %rsp;
1349
1350	vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1351	vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1352	vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1353	vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1354	vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1355	vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1356	vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1357	vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1358	vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1359	vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1360	vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1361	vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1362	vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1363	vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1364	vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1365	vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1366	write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1367		     %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1368		     %ymm8, %rsi);
1369
1370	vzeroupper;
1371
1372	FRAME_END
1373	ret;
1374ENDPROC(camellia_xts_crypt_32way)
1375
1376ENTRY(camellia_xts_enc_32way)
1377	/* input:
1378	 *	%rdi: ctx, CTX
1379	 *	%rsi: dst (32 blocks)
1380	 *	%rdx: src (32 blocks)
1381	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1382	 */
1383
1384	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1385
1386	leaq __camellia_enc_blk32, %r9;
1387
1388	jmp camellia_xts_crypt_32way;
1389ENDPROC(camellia_xts_enc_32way)
1390
1391ENTRY(camellia_xts_dec_32way)
1392	/* input:
1393	 *	%rdi: ctx, CTX
1394	 *	%rsi: dst (32 blocks)
1395	 *	%rdx: src (32 blocks)
1396	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1397	 */
1398
1399	cmpl $16, key_length(CTX);
1400	movl $32, %r8d;
1401	movl $24, %eax;
1402	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1403
1404	leaq __camellia_dec_blk32, %r9;
1405
1406	jmp camellia_xts_crypt_32way;
1407ENDPROC(camellia_xts_dec_32way)
1408