1/* 2 * x86_64/AVX/AES-NI assembler implementation of Camellia 3 * 4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 */ 12 13/* 14 * Version licensed under 2-clause BSD License is available at: 15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz 16 */ 17 18#include <linux/linkage.h> 19#include <asm/frame.h> 20 21#define CAMELLIA_TABLE_BYTE_LEN 272 22 23/* struct camellia_ctx: */ 24#define key_table 0 25#define key_length CAMELLIA_TABLE_BYTE_LEN 26 27/* register macros */ 28#define CTX %rdi 29 30/********************************************************************** 31 16-way camellia 32 **********************************************************************/ 33#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ 34 vpand x, mask4bit, tmp0; \ 35 vpandn x, mask4bit, x; \ 36 vpsrld $4, x, x; \ 37 \ 38 vpshufb tmp0, lo_t, tmp0; \ 39 vpshufb x, hi_t, x; \ 40 vpxor tmp0, x, x; 41 42/* 43 * IN: 44 * x0..x7: byte-sliced AB state 45 * mem_cd: register pointer storing CD state 46 * key: index for key material 47 * OUT: 48 * x0..x7: new byte-sliced CD state 49 */ 50#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ 51 t7, mem_cd, key) \ 52 /* \ 53 * S-function with AES subbytes \ 54 */ \ 55 vmovdqa .Linv_shift_row(%rip), t4; \ 56 vbroadcastss .L0f0f0f0f(%rip), t7; \ 57 vmovdqa .Lpre_tf_lo_s1(%rip), t0; \ 58 vmovdqa .Lpre_tf_hi_s1(%rip), t1; \ 59 \ 60 /* AES inverse shift rows */ \ 61 vpshufb t4, x0, x0; \ 62 vpshufb t4, x7, x7; \ 63 vpshufb t4, x1, x1; \ 64 vpshufb t4, x4, x4; \ 65 vpshufb t4, x2, x2; \ 66 vpshufb t4, x5, x5; \ 67 vpshufb t4, x3, x3; \ 68 vpshufb t4, x6, x6; \ 69 \ 70 /* prefilter sboxes 1, 2 and 3 */ \ 71 vmovdqa .Lpre_tf_lo_s4(%rip), t2; \ 72 vmovdqa .Lpre_tf_hi_s4(%rip), t3; \ 73 filter_8bit(x0, t0, t1, t7, t6); \ 74 filter_8bit(x7, t0, t1, t7, t6); \ 75 filter_8bit(x1, t0, t1, t7, t6); \ 76 filter_8bit(x4, t0, t1, t7, t6); \ 77 filter_8bit(x2, t0, t1, t7, t6); \ 78 filter_8bit(x5, t0, t1, t7, t6); \ 79 \ 80 /* prefilter sbox 4 */ \ 81 vpxor t4, t4, t4; \ 82 filter_8bit(x3, t2, t3, t7, t6); \ 83 filter_8bit(x6, t2, t3, t7, t6); \ 84 \ 85 /* AES subbytes + AES shift rows */ \ 86 vmovdqa .Lpost_tf_lo_s1(%rip), t0; \ 87 vmovdqa .Lpost_tf_hi_s1(%rip), t1; \ 88 vaesenclast t4, x0, x0; \ 89 vaesenclast t4, x7, x7; \ 90 vaesenclast t4, x1, x1; \ 91 vaesenclast t4, x4, x4; \ 92 vaesenclast t4, x2, x2; \ 93 vaesenclast t4, x5, x5; \ 94 vaesenclast t4, x3, x3; \ 95 vaesenclast t4, x6, x6; \ 96 \ 97 /* postfilter sboxes 1 and 4 */ \ 98 vmovdqa .Lpost_tf_lo_s3(%rip), t2; \ 99 vmovdqa .Lpost_tf_hi_s3(%rip), t3; \ 100 filter_8bit(x0, t0, t1, t7, t6); \ 101 filter_8bit(x7, t0, t1, t7, t6); \ 102 filter_8bit(x3, t0, t1, t7, t6); \ 103 filter_8bit(x6, t0, t1, t7, t6); \ 104 \ 105 /* postfilter sbox 3 */ \ 106 vmovdqa .Lpost_tf_lo_s2(%rip), t4; \ 107 vmovdqa .Lpost_tf_hi_s2(%rip), t5; \ 108 filter_8bit(x2, t2, t3, t7, t6); \ 109 filter_8bit(x5, t2, t3, t7, t6); \ 110 \ 111 vpxor t6, t6, t6; \ 112 vmovq key, t0; \ 113 \ 114 /* postfilter sbox 2 */ \ 115 filter_8bit(x1, t4, t5, t7, t2); \ 116 filter_8bit(x4, t4, t5, t7, t2); \ 117 \ 118 vpsrldq $5, t0, t5; \ 119 vpsrldq $1, t0, t1; \ 120 vpsrldq $2, t0, t2; \ 121 vpsrldq $3, t0, t3; \ 122 vpsrldq $4, t0, t4; \ 123 vpshufb t6, t0, t0; \ 124 vpshufb t6, t1, t1; \ 125 vpshufb t6, t2, t2; \ 126 vpshufb t6, t3, t3; \ 127 vpshufb t6, t4, t4; \ 128 vpsrldq $2, t5, t7; \ 129 vpshufb t6, t7, t7; \ 130 \ 131 /* \ 132 * P-function \ 133 */ \ 134 vpxor x5, x0, x0; \ 135 vpxor x6, x1, x1; \ 136 vpxor x7, x2, x2; \ 137 vpxor x4, x3, x3; \ 138 \ 139 vpxor x2, x4, x4; \ 140 vpxor x3, x5, x5; \ 141 vpxor x0, x6, x6; \ 142 vpxor x1, x7, x7; \ 143 \ 144 vpxor x7, x0, x0; \ 145 vpxor x4, x1, x1; \ 146 vpxor x5, x2, x2; \ 147 vpxor x6, x3, x3; \ 148 \ 149 vpxor x3, x4, x4; \ 150 vpxor x0, x5, x5; \ 151 vpxor x1, x6, x6; \ 152 vpxor x2, x7, x7; /* note: high and low parts swapped */ \ 153 \ 154 /* \ 155 * Add key material and result to CD (x becomes new CD) \ 156 */ \ 157 \ 158 vpxor t3, x4, x4; \ 159 vpxor 0 * 16(mem_cd), x4, x4; \ 160 \ 161 vpxor t2, x5, x5; \ 162 vpxor 1 * 16(mem_cd), x5, x5; \ 163 \ 164 vpsrldq $1, t5, t3; \ 165 vpshufb t6, t5, t5; \ 166 vpshufb t6, t3, t6; \ 167 \ 168 vpxor t1, x6, x6; \ 169 vpxor 2 * 16(mem_cd), x6, x6; \ 170 \ 171 vpxor t0, x7, x7; \ 172 vpxor 3 * 16(mem_cd), x7, x7; \ 173 \ 174 vpxor t7, x0, x0; \ 175 vpxor 4 * 16(mem_cd), x0, x0; \ 176 \ 177 vpxor t6, x1, x1; \ 178 vpxor 5 * 16(mem_cd), x1, x1; \ 179 \ 180 vpxor t5, x2, x2; \ 181 vpxor 6 * 16(mem_cd), x2, x2; \ 182 \ 183 vpxor t4, x3, x3; \ 184 vpxor 7 * 16(mem_cd), x3, x3; 185 186/* 187 * Size optimization... with inlined roundsm16, binary would be over 5 times 188 * larger and would only be 0.5% faster (on sandy-bridge). 189 */ 190.align 8 191SYM_FUNC_START_LOCAL(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 192 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 193 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, 194 %rcx, (%r9)); 195 RET; 196SYM_FUNC_END(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 197 198.align 8 199SYM_FUNC_START_LOCAL(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 200 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3, 201 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11, 202 %rax, (%r9)); 203 RET; 204SYM_FUNC_END(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 205 206/* 207 * IN/OUT: 208 * x0..x7: byte-sliced AB state preloaded 209 * mem_ab: byte-sliced AB state in memory 210 * mem_cb: byte-sliced CD state in memory 211 */ 212#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 213 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ 214 leaq (key_table + (i) * 8)(CTX), %r9; \ 215 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ 216 \ 217 vmovdqu x4, 0 * 16(mem_cd); \ 218 vmovdqu x5, 1 * 16(mem_cd); \ 219 vmovdqu x6, 2 * 16(mem_cd); \ 220 vmovdqu x7, 3 * 16(mem_cd); \ 221 vmovdqu x0, 4 * 16(mem_cd); \ 222 vmovdqu x1, 5 * 16(mem_cd); \ 223 vmovdqu x2, 6 * 16(mem_cd); \ 224 vmovdqu x3, 7 * 16(mem_cd); \ 225 \ 226 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ 227 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ 228 \ 229 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); 230 231#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ 232 233#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ 234 /* Store new AB state */ \ 235 vmovdqu x0, 0 * 16(mem_ab); \ 236 vmovdqu x1, 1 * 16(mem_ab); \ 237 vmovdqu x2, 2 * 16(mem_ab); \ 238 vmovdqu x3, 3 * 16(mem_ab); \ 239 vmovdqu x4, 4 * 16(mem_ab); \ 240 vmovdqu x5, 5 * 16(mem_ab); \ 241 vmovdqu x6, 6 * 16(mem_ab); \ 242 vmovdqu x7, 7 * 16(mem_ab); 243 244#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 245 y6, y7, mem_ab, mem_cd, i) \ 246 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 247 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ 248 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 249 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ 250 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 251 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); 252 253#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 254 y6, y7, mem_ab, mem_cd, i) \ 255 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 256 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ 257 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 258 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ 259 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 260 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); 261 262/* 263 * IN: 264 * v0..3: byte-sliced 32-bit integers 265 * OUT: 266 * v0..3: (IN <<< 1) 267 */ 268#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \ 269 vpcmpgtb v0, zero, t0; \ 270 vpaddb v0, v0, v0; \ 271 vpabsb t0, t0; \ 272 \ 273 vpcmpgtb v1, zero, t1; \ 274 vpaddb v1, v1, v1; \ 275 vpabsb t1, t1; \ 276 \ 277 vpcmpgtb v2, zero, t2; \ 278 vpaddb v2, v2, v2; \ 279 vpabsb t2, t2; \ 280 \ 281 vpor t0, v1, v1; \ 282 \ 283 vpcmpgtb v3, zero, t0; \ 284 vpaddb v3, v3, v3; \ 285 vpabsb t0, t0; \ 286 \ 287 vpor t1, v2, v2; \ 288 vpor t2, v3, v3; \ 289 vpor t0, v0, v0; 290 291/* 292 * IN: 293 * r: byte-sliced AB state in memory 294 * l: byte-sliced CD state in memory 295 * OUT: 296 * x0..x7: new byte-sliced CD state 297 */ 298#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ 299 tt1, tt2, tt3, kll, klr, krl, krr) \ 300 /* \ 301 * t0 = kll; \ 302 * t0 &= ll; \ 303 * lr ^= rol32(t0, 1); \ 304 */ \ 305 vpxor tt0, tt0, tt0; \ 306 vmovd kll, t0; \ 307 vpshufb tt0, t0, t3; \ 308 vpsrldq $1, t0, t0; \ 309 vpshufb tt0, t0, t2; \ 310 vpsrldq $1, t0, t0; \ 311 vpshufb tt0, t0, t1; \ 312 vpsrldq $1, t0, t0; \ 313 vpshufb tt0, t0, t0; \ 314 \ 315 vpand l0, t0, t0; \ 316 vpand l1, t1, t1; \ 317 vpand l2, t2, t2; \ 318 vpand l3, t3, t3; \ 319 \ 320 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 321 \ 322 vpxor l4, t0, l4; \ 323 vmovdqu l4, 4 * 16(l); \ 324 vpxor l5, t1, l5; \ 325 vmovdqu l5, 5 * 16(l); \ 326 vpxor l6, t2, l6; \ 327 vmovdqu l6, 6 * 16(l); \ 328 vpxor l7, t3, l7; \ 329 vmovdqu l7, 7 * 16(l); \ 330 \ 331 /* \ 332 * t2 = krr; \ 333 * t2 |= rr; \ 334 * rl ^= t2; \ 335 */ \ 336 \ 337 vmovd krr, t0; \ 338 vpshufb tt0, t0, t3; \ 339 vpsrldq $1, t0, t0; \ 340 vpshufb tt0, t0, t2; \ 341 vpsrldq $1, t0, t0; \ 342 vpshufb tt0, t0, t1; \ 343 vpsrldq $1, t0, t0; \ 344 vpshufb tt0, t0, t0; \ 345 \ 346 vpor 4 * 16(r), t0, t0; \ 347 vpor 5 * 16(r), t1, t1; \ 348 vpor 6 * 16(r), t2, t2; \ 349 vpor 7 * 16(r), t3, t3; \ 350 \ 351 vpxor 0 * 16(r), t0, t0; \ 352 vpxor 1 * 16(r), t1, t1; \ 353 vpxor 2 * 16(r), t2, t2; \ 354 vpxor 3 * 16(r), t3, t3; \ 355 vmovdqu t0, 0 * 16(r); \ 356 vmovdqu t1, 1 * 16(r); \ 357 vmovdqu t2, 2 * 16(r); \ 358 vmovdqu t3, 3 * 16(r); \ 359 \ 360 /* \ 361 * t2 = krl; \ 362 * t2 &= rl; \ 363 * rr ^= rol32(t2, 1); \ 364 */ \ 365 vmovd krl, t0; \ 366 vpshufb tt0, t0, t3; \ 367 vpsrldq $1, t0, t0; \ 368 vpshufb tt0, t0, t2; \ 369 vpsrldq $1, t0, t0; \ 370 vpshufb tt0, t0, t1; \ 371 vpsrldq $1, t0, t0; \ 372 vpshufb tt0, t0, t0; \ 373 \ 374 vpand 0 * 16(r), t0, t0; \ 375 vpand 1 * 16(r), t1, t1; \ 376 vpand 2 * 16(r), t2, t2; \ 377 vpand 3 * 16(r), t3, t3; \ 378 \ 379 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 380 \ 381 vpxor 4 * 16(r), t0, t0; \ 382 vpxor 5 * 16(r), t1, t1; \ 383 vpxor 6 * 16(r), t2, t2; \ 384 vpxor 7 * 16(r), t3, t3; \ 385 vmovdqu t0, 4 * 16(r); \ 386 vmovdqu t1, 5 * 16(r); \ 387 vmovdqu t2, 6 * 16(r); \ 388 vmovdqu t3, 7 * 16(r); \ 389 \ 390 /* \ 391 * t0 = klr; \ 392 * t0 |= lr; \ 393 * ll ^= t0; \ 394 */ \ 395 \ 396 vmovd klr, t0; \ 397 vpshufb tt0, t0, t3; \ 398 vpsrldq $1, t0, t0; \ 399 vpshufb tt0, t0, t2; \ 400 vpsrldq $1, t0, t0; \ 401 vpshufb tt0, t0, t1; \ 402 vpsrldq $1, t0, t0; \ 403 vpshufb tt0, t0, t0; \ 404 \ 405 vpor l4, t0, t0; \ 406 vpor l5, t1, t1; \ 407 vpor l6, t2, t2; \ 408 vpor l7, t3, t3; \ 409 \ 410 vpxor l0, t0, l0; \ 411 vmovdqu l0, 0 * 16(l); \ 412 vpxor l1, t1, l1; \ 413 vmovdqu l1, 1 * 16(l); \ 414 vpxor l2, t2, l2; \ 415 vmovdqu l2, 2 * 16(l); \ 416 vpxor l3, t3, l3; \ 417 vmovdqu l3, 3 * 16(l); 418 419#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 420 vpunpckhdq x1, x0, t2; \ 421 vpunpckldq x1, x0, x0; \ 422 \ 423 vpunpckldq x3, x2, t1; \ 424 vpunpckhdq x3, x2, x2; \ 425 \ 426 vpunpckhqdq t1, x0, x1; \ 427 vpunpcklqdq t1, x0, x0; \ 428 \ 429 vpunpckhqdq x2, t2, x3; \ 430 vpunpcklqdq x2, t2, x2; 431 432#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \ 433 b3, c3, d3, st0, st1) \ 434 vmovdqu d2, st0; \ 435 vmovdqu d3, st1; \ 436 transpose_4x4(a0, a1, a2, a3, d2, d3); \ 437 transpose_4x4(b0, b1, b2, b3, d2, d3); \ 438 vmovdqu st0, d2; \ 439 vmovdqu st1, d3; \ 440 \ 441 vmovdqu a0, st0; \ 442 vmovdqu a1, st1; \ 443 transpose_4x4(c0, c1, c2, c3, a0, a1); \ 444 transpose_4x4(d0, d1, d2, d3, a0, a1); \ 445 \ 446 vmovdqu .Lshufb_16x16b(%rip), a0; \ 447 vmovdqu st1, a1; \ 448 vpshufb a0, a2, a2; \ 449 vpshufb a0, a3, a3; \ 450 vpshufb a0, b0, b0; \ 451 vpshufb a0, b1, b1; \ 452 vpshufb a0, b2, b2; \ 453 vpshufb a0, b3, b3; \ 454 vpshufb a0, a1, a1; \ 455 vpshufb a0, c0, c0; \ 456 vpshufb a0, c1, c1; \ 457 vpshufb a0, c2, c2; \ 458 vpshufb a0, c3, c3; \ 459 vpshufb a0, d0, d0; \ 460 vpshufb a0, d1, d1; \ 461 vpshufb a0, d2, d2; \ 462 vpshufb a0, d3, d3; \ 463 vmovdqu d3, st1; \ 464 vmovdqu st0, d3; \ 465 vpshufb a0, d3, a0; \ 466 vmovdqu d2, st0; \ 467 \ 468 transpose_4x4(a0, b0, c0, d0, d2, d3); \ 469 transpose_4x4(a1, b1, c1, d1, d2, d3); \ 470 vmovdqu st0, d2; \ 471 vmovdqu st1, d3; \ 472 \ 473 vmovdqu b0, st0; \ 474 vmovdqu b1, st1; \ 475 transpose_4x4(a2, b2, c2, d2, b0, b1); \ 476 transpose_4x4(a3, b3, c3, d3, b0, b1); \ 477 vmovdqu st0, b0; \ 478 vmovdqu st1, b1; \ 479 /* does not adjust output bytes inside vectors */ 480 481/* load blocks to registers and apply pre-whitening */ 482#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 483 y6, y7, rio, key) \ 484 vmovq key, x0; \ 485 vpshufb .Lpack_bswap(%rip), x0, x0; \ 486 \ 487 vpxor 0 * 16(rio), x0, y7; \ 488 vpxor 1 * 16(rio), x0, y6; \ 489 vpxor 2 * 16(rio), x0, y5; \ 490 vpxor 3 * 16(rio), x0, y4; \ 491 vpxor 4 * 16(rio), x0, y3; \ 492 vpxor 5 * 16(rio), x0, y2; \ 493 vpxor 6 * 16(rio), x0, y1; \ 494 vpxor 7 * 16(rio), x0, y0; \ 495 vpxor 8 * 16(rio), x0, x7; \ 496 vpxor 9 * 16(rio), x0, x6; \ 497 vpxor 10 * 16(rio), x0, x5; \ 498 vpxor 11 * 16(rio), x0, x4; \ 499 vpxor 12 * 16(rio), x0, x3; \ 500 vpxor 13 * 16(rio), x0, x2; \ 501 vpxor 14 * 16(rio), x0, x1; \ 502 vpxor 15 * 16(rio), x0, x0; 503 504/* byteslice pre-whitened blocks and store to temporary memory */ 505#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 506 y6, y7, mem_ab, mem_cd) \ 507 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 508 y5, y6, y7, (mem_ab), (mem_cd)); \ 509 \ 510 vmovdqu x0, 0 * 16(mem_ab); \ 511 vmovdqu x1, 1 * 16(mem_ab); \ 512 vmovdqu x2, 2 * 16(mem_ab); \ 513 vmovdqu x3, 3 * 16(mem_ab); \ 514 vmovdqu x4, 4 * 16(mem_ab); \ 515 vmovdqu x5, 5 * 16(mem_ab); \ 516 vmovdqu x6, 6 * 16(mem_ab); \ 517 vmovdqu x7, 7 * 16(mem_ab); \ 518 vmovdqu y0, 0 * 16(mem_cd); \ 519 vmovdqu y1, 1 * 16(mem_cd); \ 520 vmovdqu y2, 2 * 16(mem_cd); \ 521 vmovdqu y3, 3 * 16(mem_cd); \ 522 vmovdqu y4, 4 * 16(mem_cd); \ 523 vmovdqu y5, 5 * 16(mem_cd); \ 524 vmovdqu y6, 6 * 16(mem_cd); \ 525 vmovdqu y7, 7 * 16(mem_cd); 526 527/* de-byteslice, apply post-whitening and store blocks */ 528#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 529 y5, y6, y7, key, stack_tmp0, stack_tmp1) \ 530 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \ 531 y7, x3, x7, stack_tmp0, stack_tmp1); \ 532 \ 533 vmovdqu x0, stack_tmp0; \ 534 \ 535 vmovq key, x0; \ 536 vpshufb .Lpack_bswap(%rip), x0, x0; \ 537 \ 538 vpxor x0, y7, y7; \ 539 vpxor x0, y6, y6; \ 540 vpxor x0, y5, y5; \ 541 vpxor x0, y4, y4; \ 542 vpxor x0, y3, y3; \ 543 vpxor x0, y2, y2; \ 544 vpxor x0, y1, y1; \ 545 vpxor x0, y0, y0; \ 546 vpxor x0, x7, x7; \ 547 vpxor x0, x6, x6; \ 548 vpxor x0, x5, x5; \ 549 vpxor x0, x4, x4; \ 550 vpxor x0, x3, x3; \ 551 vpxor x0, x2, x2; \ 552 vpxor x0, x1, x1; \ 553 vpxor stack_tmp0, x0, x0; 554 555#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 556 y6, y7, rio) \ 557 vmovdqu x0, 0 * 16(rio); \ 558 vmovdqu x1, 1 * 16(rio); \ 559 vmovdqu x2, 2 * 16(rio); \ 560 vmovdqu x3, 3 * 16(rio); \ 561 vmovdqu x4, 4 * 16(rio); \ 562 vmovdqu x5, 5 * 16(rio); \ 563 vmovdqu x6, 6 * 16(rio); \ 564 vmovdqu x7, 7 * 16(rio); \ 565 vmovdqu y0, 8 * 16(rio); \ 566 vmovdqu y1, 9 * 16(rio); \ 567 vmovdqu y2, 10 * 16(rio); \ 568 vmovdqu y3, 11 * 16(rio); \ 569 vmovdqu y4, 12 * 16(rio); \ 570 vmovdqu y5, 13 * 16(rio); \ 571 vmovdqu y6, 14 * 16(rio); \ 572 vmovdqu y7, 15 * 16(rio); 573 574 575/* NB: section is mergeable, all elements must be aligned 16-byte blocks */ 576.section .rodata.cst16, "aM", @progbits, 16 577.align 16 578 579#define SHUFB_BYTES(idx) \ 580 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) 581 582.Lshufb_16x16b: 583 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3); 584 585.Lpack_bswap: 586 .long 0x00010203 587 .long 0x04050607 588 .long 0x80808080 589 .long 0x80808080 590 591/* 592 * pre-SubByte transform 593 * 594 * pre-lookup for sbox1, sbox2, sbox3: 595 * swap_bitendianness( 596 * isom_map_camellia_to_aes( 597 * camellia_f( 598 * swap_bitendianess(in) 599 * ) 600 * ) 601 * ) 602 * 603 * (note: '⊕ 0xc5' inside camellia_f()) 604 */ 605.Lpre_tf_lo_s1: 606 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 607 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 608.Lpre_tf_hi_s1: 609 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a 610 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 611 612/* 613 * pre-SubByte transform 614 * 615 * pre-lookup for sbox4: 616 * swap_bitendianness( 617 * isom_map_camellia_to_aes( 618 * camellia_f( 619 * swap_bitendianess(in <<< 1) 620 * ) 621 * ) 622 * ) 623 * 624 * (note: '⊕ 0xc5' inside camellia_f()) 625 */ 626.Lpre_tf_lo_s4: 627 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 628 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 629.Lpre_tf_hi_s4: 630 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 631 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf 632 633/* 634 * post-SubByte transform 635 * 636 * post-lookup for sbox1, sbox4: 637 * swap_bitendianness( 638 * camellia_h( 639 * isom_map_aes_to_camellia( 640 * swap_bitendianness( 641 * aes_inverse_affine_transform(in) 642 * ) 643 * ) 644 * ) 645 * ) 646 * 647 * (note: '⊕ 0x6e' inside camellia_h()) 648 */ 649.Lpost_tf_lo_s1: 650 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 651 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 652.Lpost_tf_hi_s1: 653 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 654 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c 655 656/* 657 * post-SubByte transform 658 * 659 * post-lookup for sbox2: 660 * swap_bitendianness( 661 * camellia_h( 662 * isom_map_aes_to_camellia( 663 * swap_bitendianness( 664 * aes_inverse_affine_transform(in) 665 * ) 666 * ) 667 * ) 668 * ) <<< 1 669 * 670 * (note: '⊕ 0x6e' inside camellia_h()) 671 */ 672.Lpost_tf_lo_s2: 673 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 674 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 675.Lpost_tf_hi_s2: 676 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 677 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 678 679/* 680 * post-SubByte transform 681 * 682 * post-lookup for sbox3: 683 * swap_bitendianness( 684 * camellia_h( 685 * isom_map_aes_to_camellia( 686 * swap_bitendianness( 687 * aes_inverse_affine_transform(in) 688 * ) 689 * ) 690 * ) 691 * ) >>> 1 692 * 693 * (note: '⊕ 0x6e' inside camellia_h()) 694 */ 695.Lpost_tf_lo_s3: 696 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 697 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 698.Lpost_tf_hi_s3: 699 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 700 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 701 702/* For isolating SubBytes from AESENCLAST, inverse shift row */ 703.Linv_shift_row: 704 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 705 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 706 707/* 4-bit mask */ 708.section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4 709.align 4 710.L0f0f0f0f: 711 .long 0x0f0f0f0f 712 713.text 714 715SYM_FUNC_START_LOCAL(__camellia_enc_blk16) 716 /* input: 717 * %rdi: ctx, CTX 718 * %rax: temporary storage, 256 bytes 719 * %xmm0..%xmm15: 16 plaintext blocks 720 * output: 721 * %xmm0..%xmm15: 16 encrypted blocks, order swapped: 722 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 723 */ 724 FRAME_BEGIN 725 726 leaq 8 * 16(%rax), %rcx; 727 728 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 729 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 730 %xmm15, %rax, %rcx); 731 732 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 733 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 734 %xmm15, %rax, %rcx, 0); 735 736 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 737 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 738 %xmm15, 739 ((key_table + (8) * 8) + 0)(CTX), 740 ((key_table + (8) * 8) + 4)(CTX), 741 ((key_table + (8) * 8) + 8)(CTX), 742 ((key_table + (8) * 8) + 12)(CTX)); 743 744 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 745 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 746 %xmm15, %rax, %rcx, 8); 747 748 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 749 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 750 %xmm15, 751 ((key_table + (16) * 8) + 0)(CTX), 752 ((key_table + (16) * 8) + 4)(CTX), 753 ((key_table + (16) * 8) + 8)(CTX), 754 ((key_table + (16) * 8) + 12)(CTX)); 755 756 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 757 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 758 %xmm15, %rax, %rcx, 16); 759 760 movl $24, %r8d; 761 cmpl $16, key_length(CTX); 762 jne .Lenc_max32; 763 764.Lenc_done: 765 /* load CD for output */ 766 vmovdqu 0 * 16(%rcx), %xmm8; 767 vmovdqu 1 * 16(%rcx), %xmm9; 768 vmovdqu 2 * 16(%rcx), %xmm10; 769 vmovdqu 3 * 16(%rcx), %xmm11; 770 vmovdqu 4 * 16(%rcx), %xmm12; 771 vmovdqu 5 * 16(%rcx), %xmm13; 772 vmovdqu 6 * 16(%rcx), %xmm14; 773 vmovdqu 7 * 16(%rcx), %xmm15; 774 775 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 776 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 777 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax)); 778 779 FRAME_END 780 RET; 781 782.align 8 783.Lenc_max32: 784 movl $32, %r8d; 785 786 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 787 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 788 %xmm15, 789 ((key_table + (24) * 8) + 0)(CTX), 790 ((key_table + (24) * 8) + 4)(CTX), 791 ((key_table + (24) * 8) + 8)(CTX), 792 ((key_table + (24) * 8) + 12)(CTX)); 793 794 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 795 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 796 %xmm15, %rax, %rcx, 24); 797 798 jmp .Lenc_done; 799SYM_FUNC_END(__camellia_enc_blk16) 800 801SYM_FUNC_START_LOCAL(__camellia_dec_blk16) 802 /* input: 803 * %rdi: ctx, CTX 804 * %rax: temporary storage, 256 bytes 805 * %r8d: 24 for 16 byte key, 32 for larger 806 * %xmm0..%xmm15: 16 encrypted blocks 807 * output: 808 * %xmm0..%xmm15: 16 plaintext blocks, order swapped: 809 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 810 */ 811 FRAME_BEGIN 812 813 leaq 8 * 16(%rax), %rcx; 814 815 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 816 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 817 %xmm15, %rax, %rcx); 818 819 cmpl $32, %r8d; 820 je .Ldec_max32; 821 822.Ldec_max24: 823 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 824 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 825 %xmm15, %rax, %rcx, 16); 826 827 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 828 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 829 %xmm15, 830 ((key_table + (16) * 8) + 8)(CTX), 831 ((key_table + (16) * 8) + 12)(CTX), 832 ((key_table + (16) * 8) + 0)(CTX), 833 ((key_table + (16) * 8) + 4)(CTX)); 834 835 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 836 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 837 %xmm15, %rax, %rcx, 8); 838 839 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 840 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 841 %xmm15, 842 ((key_table + (8) * 8) + 8)(CTX), 843 ((key_table + (8) * 8) + 12)(CTX), 844 ((key_table + (8) * 8) + 0)(CTX), 845 ((key_table + (8) * 8) + 4)(CTX)); 846 847 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 848 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 849 %xmm15, %rax, %rcx, 0); 850 851 /* load CD for output */ 852 vmovdqu 0 * 16(%rcx), %xmm8; 853 vmovdqu 1 * 16(%rcx), %xmm9; 854 vmovdqu 2 * 16(%rcx), %xmm10; 855 vmovdqu 3 * 16(%rcx), %xmm11; 856 vmovdqu 4 * 16(%rcx), %xmm12; 857 vmovdqu 5 * 16(%rcx), %xmm13; 858 vmovdqu 6 * 16(%rcx), %xmm14; 859 vmovdqu 7 * 16(%rcx), %xmm15; 860 861 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 862 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 863 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax)); 864 865 FRAME_END 866 RET; 867 868.align 8 869.Ldec_max32: 870 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 871 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 872 %xmm15, %rax, %rcx, 24); 873 874 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 875 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 876 %xmm15, 877 ((key_table + (24) * 8) + 8)(CTX), 878 ((key_table + (24) * 8) + 12)(CTX), 879 ((key_table + (24) * 8) + 0)(CTX), 880 ((key_table + (24) * 8) + 4)(CTX)); 881 882 jmp .Ldec_max24; 883SYM_FUNC_END(__camellia_dec_blk16) 884 885SYM_FUNC_START(camellia_ecb_enc_16way) 886 /* input: 887 * %rdi: ctx, CTX 888 * %rsi: dst (16 blocks) 889 * %rdx: src (16 blocks) 890 */ 891 FRAME_BEGIN 892 893 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 894 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 895 %xmm15, %rdx, (key_table)(CTX)); 896 897 /* now dst can be used as temporary buffer (even in src == dst case) */ 898 movq %rsi, %rax; 899 900 call __camellia_enc_blk16; 901 902 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 903 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 904 %xmm8, %rsi); 905 906 FRAME_END 907 RET; 908SYM_FUNC_END(camellia_ecb_enc_16way) 909 910SYM_FUNC_START(camellia_ecb_dec_16way) 911 /* input: 912 * %rdi: ctx, CTX 913 * %rsi: dst (16 blocks) 914 * %rdx: src (16 blocks) 915 */ 916 FRAME_BEGIN 917 918 cmpl $16, key_length(CTX); 919 movl $32, %r8d; 920 movl $24, %eax; 921 cmovel %eax, %r8d; /* max */ 922 923 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 924 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 925 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 926 927 /* now dst can be used as temporary buffer (even in src == dst case) */ 928 movq %rsi, %rax; 929 930 call __camellia_dec_blk16; 931 932 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 933 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 934 %xmm8, %rsi); 935 936 FRAME_END 937 RET; 938SYM_FUNC_END(camellia_ecb_dec_16way) 939 940SYM_FUNC_START(camellia_cbc_dec_16way) 941 /* input: 942 * %rdi: ctx, CTX 943 * %rsi: dst (16 blocks) 944 * %rdx: src (16 blocks) 945 */ 946 FRAME_BEGIN 947 948 cmpl $16, key_length(CTX); 949 movl $32, %r8d; 950 movl $24, %eax; 951 cmovel %eax, %r8d; /* max */ 952 953 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 954 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 955 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 956 957 /* 958 * dst might still be in-use (in case dst == src), so use stack for 959 * temporary storage. 960 */ 961 subq $(16 * 16), %rsp; 962 movq %rsp, %rax; 963 964 call __camellia_dec_blk16; 965 966 addq $(16 * 16), %rsp; 967 968 vpxor (0 * 16)(%rdx), %xmm6, %xmm6; 969 vpxor (1 * 16)(%rdx), %xmm5, %xmm5; 970 vpxor (2 * 16)(%rdx), %xmm4, %xmm4; 971 vpxor (3 * 16)(%rdx), %xmm3, %xmm3; 972 vpxor (4 * 16)(%rdx), %xmm2, %xmm2; 973 vpxor (5 * 16)(%rdx), %xmm1, %xmm1; 974 vpxor (6 * 16)(%rdx), %xmm0, %xmm0; 975 vpxor (7 * 16)(%rdx), %xmm15, %xmm15; 976 vpxor (8 * 16)(%rdx), %xmm14, %xmm14; 977 vpxor (9 * 16)(%rdx), %xmm13, %xmm13; 978 vpxor (10 * 16)(%rdx), %xmm12, %xmm12; 979 vpxor (11 * 16)(%rdx), %xmm11, %xmm11; 980 vpxor (12 * 16)(%rdx), %xmm10, %xmm10; 981 vpxor (13 * 16)(%rdx), %xmm9, %xmm9; 982 vpxor (14 * 16)(%rdx), %xmm8, %xmm8; 983 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 984 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 985 %xmm8, %rsi); 986 987 FRAME_END 988 RET; 989SYM_FUNC_END(camellia_cbc_dec_16way) 990