xref: /openbmc/linux/arch/x86/crypto/aesni-intel_glue.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/module.h>
25 #include <linux/err.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aes.h>
28 #include <crypto/cryptd.h>
29 #include <crypto/ctr.h>
30 #include <crypto/b128ops.h>
31 #include <crypto/gcm.h>
32 #include <crypto/xts.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/fpu/api.h>
35 #include <asm/crypto/aes.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/simd.h>
39 #include <crypto/internal/skcipher.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 
47 #define AESNI_ALIGN	16
48 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
49 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
50 #define RFC4106_HASH_SUBKEY_SIZE 16
51 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
52 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
53 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
54 
55 /* This data is stored at the end of the crypto_tfm struct.
56  * It's a type of per "session" data storage location.
57  * This needs to be 16 byte aligned.
58  */
59 struct aesni_rfc4106_gcm_ctx {
60 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
61 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
62 	u8 nonce[4];
63 };
64 
65 struct generic_gcmaes_ctx {
66 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
67 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
68 };
69 
70 struct aesni_xts_ctx {
71 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
72 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
73 };
74 
75 #define GCM_BLOCK_LEN 16
76 
77 struct gcm_context_data {
78 	/* init, update and finalize context data */
79 	u8 aad_hash[GCM_BLOCK_LEN];
80 	u64 aad_length;
81 	u64 in_length;
82 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
83 	u8 orig_IV[GCM_BLOCK_LEN];
84 	u8 current_counter[GCM_BLOCK_LEN];
85 	u64 partial_block_len;
86 	u64 unused;
87 	u8 hash_keys[GCM_BLOCK_LEN * 8];
88 };
89 
90 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
91 			     unsigned int key_len);
92 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 			  const u8 *in);
94 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 			  const u8 *in);
96 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
97 			      const u8 *in, unsigned int len);
98 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
99 			      const u8 *in, unsigned int len);
100 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
101 			      const u8 *in, unsigned int len, u8 *iv);
102 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
103 			      const u8 *in, unsigned int len, u8 *iv);
104 
105 int crypto_fpu_init(void);
106 void crypto_fpu_exit(void);
107 
108 #define AVX_GEN2_OPTSIZE 640
109 #define AVX_GEN4_OPTSIZE 4096
110 
111 #ifdef CONFIG_X86_64
112 
113 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
114 			      const u8 *in, unsigned int len, u8 *iv);
115 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
116 			      const u8 *in, unsigned int len, u8 *iv);
117 
118 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
119 				 const u8 *in, bool enc, u8 *iv);
120 
121 /* asmlinkage void aesni_gcm_enc()
122  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
123  * struct gcm_context_data.  May be uninitialized.
124  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
125  * const u8 *in, Plaintext input
126  * unsigned long plaintext_len, Length of data in bytes for encryption.
127  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
128  *         16-byte aligned pointer.
129  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
130  * const u8 *aad, Additional Authentication Data (AAD)
131  * unsigned long aad_len, Length of AAD in bytes.
132  * u8 *auth_tag, Authenticated Tag output.
133  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
134  *          Valid values are 16 (most likely), 12 or 8.
135  */
136 asmlinkage void aesni_gcm_enc(void *ctx,
137 			struct gcm_context_data *gdata, u8 *out,
138 			const u8 *in, unsigned long plaintext_len, u8 *iv,
139 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
140 			u8 *auth_tag, unsigned long auth_tag_len);
141 
142 /* asmlinkage void aesni_gcm_dec()
143  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
144  * struct gcm_context_data.  May be uninitialized.
145  * u8 *out, Plaintext output. Decrypt in-place is allowed.
146  * const u8 *in, Ciphertext input
147  * unsigned long ciphertext_len, Length of data in bytes for decryption.
148  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
149  *         16-byte aligned pointer.
150  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
151  * const u8 *aad, Additional Authentication Data (AAD)
152  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
153  * to be 8 or 12 bytes
154  * u8 *auth_tag, Authenticated Tag output.
155  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
156  * Valid values are 16 (most likely), 12 or 8.
157  */
158 asmlinkage void aesni_gcm_dec(void *ctx,
159 			struct gcm_context_data *gdata, u8 *out,
160 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
161 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
162 			u8 *auth_tag, unsigned long auth_tag_len);
163 
164 /* Scatter / Gather routines, with args similar to above */
165 asmlinkage void aesni_gcm_init(void *ctx,
166 			       struct gcm_context_data *gdata,
167 			       u8 *iv,
168 			       u8 *hash_subkey, const u8 *aad,
169 			       unsigned long aad_len);
170 asmlinkage void aesni_gcm_enc_update(void *ctx,
171 				     struct gcm_context_data *gdata, u8 *out,
172 				     const u8 *in, unsigned long plaintext_len);
173 asmlinkage void aesni_gcm_dec_update(void *ctx,
174 				     struct gcm_context_data *gdata, u8 *out,
175 				     const u8 *in,
176 				     unsigned long ciphertext_len);
177 asmlinkage void aesni_gcm_finalize(void *ctx,
178 				   struct gcm_context_data *gdata,
179 				   u8 *auth_tag, unsigned long auth_tag_len);
180 
181 #ifdef CONFIG_AS_AVX
182 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
183 		void *keys, u8 *out, unsigned int num_bytes);
184 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
185 		void *keys, u8 *out, unsigned int num_bytes);
186 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
187 		void *keys, u8 *out, unsigned int num_bytes);
188 /*
189  * asmlinkage void aesni_gcm_precomp_avx_gen2()
190  * gcm_data *my_ctx_data, context data
191  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
192  */
193 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
194 
195 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
196 			const u8 *in, unsigned long plaintext_len, u8 *iv,
197 			const u8 *aad, unsigned long aad_len,
198 			u8 *auth_tag, unsigned long auth_tag_len);
199 
200 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
201 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
202 			const u8 *aad, unsigned long aad_len,
203 			u8 *auth_tag, unsigned long auth_tag_len);
204 
205 static void aesni_gcm_enc_avx(void *ctx,
206 			struct gcm_context_data *data, u8 *out,
207 			const u8 *in, unsigned long plaintext_len, u8 *iv,
208 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
209 			u8 *auth_tag, unsigned long auth_tag_len)
210 {
211         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
212 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
213 		aesni_gcm_enc(ctx, data, out, in,
214 			plaintext_len, iv, hash_subkey, aad,
215 			aad_len, auth_tag, auth_tag_len);
216 	} else {
217 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
218 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
219 					aad_len, auth_tag, auth_tag_len);
220 	}
221 }
222 
223 static void aesni_gcm_dec_avx(void *ctx,
224 			struct gcm_context_data *data, u8 *out,
225 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
226 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
227 			u8 *auth_tag, unsigned long auth_tag_len)
228 {
229         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
230 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
231 		aesni_gcm_dec(ctx, data, out, in,
232 			ciphertext_len, iv, hash_subkey, aad,
233 			aad_len, auth_tag, auth_tag_len);
234 	} else {
235 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
236 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
237 					aad_len, auth_tag, auth_tag_len);
238 	}
239 }
240 #endif
241 
242 #ifdef CONFIG_AS_AVX2
243 /*
244  * asmlinkage void aesni_gcm_precomp_avx_gen4()
245  * gcm_data *my_ctx_data, context data
246  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
247  */
248 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
249 
250 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
251 			const u8 *in, unsigned long plaintext_len, u8 *iv,
252 			const u8 *aad, unsigned long aad_len,
253 			u8 *auth_tag, unsigned long auth_tag_len);
254 
255 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
256 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
257 			const u8 *aad, unsigned long aad_len,
258 			u8 *auth_tag, unsigned long auth_tag_len);
259 
260 static void aesni_gcm_enc_avx2(void *ctx,
261 			struct gcm_context_data *data, u8 *out,
262 			const u8 *in, unsigned long plaintext_len, u8 *iv,
263 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
264 			u8 *auth_tag, unsigned long auth_tag_len)
265 {
266        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
267 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
268 		aesni_gcm_enc(ctx, data, out, in,
269 			      plaintext_len, iv, hash_subkey, aad,
270 			      aad_len, auth_tag, auth_tag_len);
271 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
272 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
273 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
274 					aad_len, auth_tag, auth_tag_len);
275 	} else {
276 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
277 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
278 					aad_len, auth_tag, auth_tag_len);
279 	}
280 }
281 
282 static void aesni_gcm_dec_avx2(void *ctx,
283 	struct gcm_context_data *data, u8 *out,
284 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
285 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
286 			u8 *auth_tag, unsigned long auth_tag_len)
287 {
288        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
289 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
290 		aesni_gcm_dec(ctx, data, out, in,
291 			      ciphertext_len, iv, hash_subkey,
292 			      aad, aad_len, auth_tag, auth_tag_len);
293 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
294 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
295 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
296 					aad_len, auth_tag, auth_tag_len);
297 	} else {
298 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
299 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
300 					aad_len, auth_tag, auth_tag_len);
301 	}
302 }
303 #endif
304 
305 static void (*aesni_gcm_enc_tfm)(void *ctx,
306 				 struct gcm_context_data *data, u8 *out,
307 				 const u8 *in, unsigned long plaintext_len,
308 				 u8 *iv, u8 *hash_subkey, const u8 *aad,
309 				 unsigned long aad_len, u8 *auth_tag,
310 				 unsigned long auth_tag_len);
311 
312 static void (*aesni_gcm_dec_tfm)(void *ctx,
313 				 struct gcm_context_data *data, u8 *out,
314 				 const u8 *in, unsigned long ciphertext_len,
315 				 u8 *iv, u8 *hash_subkey, const u8 *aad,
316 				 unsigned long aad_len, u8 *auth_tag,
317 				 unsigned long auth_tag_len);
318 
319 static inline struct
320 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
321 {
322 	unsigned long align = AESNI_ALIGN;
323 
324 	if (align <= crypto_tfm_ctx_alignment())
325 		align = 1;
326 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
327 }
328 
329 static inline struct
330 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
331 {
332 	unsigned long align = AESNI_ALIGN;
333 
334 	if (align <= crypto_tfm_ctx_alignment())
335 		align = 1;
336 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
337 }
338 #endif
339 
340 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
341 {
342 	unsigned long addr = (unsigned long)raw_ctx;
343 	unsigned long align = AESNI_ALIGN;
344 
345 	if (align <= crypto_tfm_ctx_alignment())
346 		align = 1;
347 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
348 }
349 
350 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
351 			      const u8 *in_key, unsigned int key_len)
352 {
353 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
354 	u32 *flags = &tfm->crt_flags;
355 	int err;
356 
357 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
358 	    key_len != AES_KEYSIZE_256) {
359 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
360 		return -EINVAL;
361 	}
362 
363 	if (!irq_fpu_usable())
364 		err = crypto_aes_expand_key(ctx, in_key, key_len);
365 	else {
366 		kernel_fpu_begin();
367 		err = aesni_set_key(ctx, in_key, key_len);
368 		kernel_fpu_end();
369 	}
370 
371 	return err;
372 }
373 
374 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
375 		       unsigned int key_len)
376 {
377 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
378 }
379 
380 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
381 {
382 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
383 
384 	if (!irq_fpu_usable())
385 		crypto_aes_encrypt_x86(ctx, dst, src);
386 	else {
387 		kernel_fpu_begin();
388 		aesni_enc(ctx, dst, src);
389 		kernel_fpu_end();
390 	}
391 }
392 
393 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
394 {
395 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
396 
397 	if (!irq_fpu_usable())
398 		crypto_aes_decrypt_x86(ctx, dst, src);
399 	else {
400 		kernel_fpu_begin();
401 		aesni_dec(ctx, dst, src);
402 		kernel_fpu_end();
403 	}
404 }
405 
406 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
407 {
408 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
409 
410 	aesni_enc(ctx, dst, src);
411 }
412 
413 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
414 {
415 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
416 
417 	aesni_dec(ctx, dst, src);
418 }
419 
420 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
421 			         unsigned int len)
422 {
423 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
424 				  crypto_skcipher_ctx(tfm), key, len);
425 }
426 
427 static int ecb_encrypt(struct skcipher_request *req)
428 {
429 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
431 	struct skcipher_walk walk;
432 	unsigned int nbytes;
433 	int err;
434 
435 	err = skcipher_walk_virt(&walk, req, true);
436 
437 	kernel_fpu_begin();
438 	while ((nbytes = walk.nbytes)) {
439 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
440 			      nbytes & AES_BLOCK_MASK);
441 		nbytes &= AES_BLOCK_SIZE - 1;
442 		err = skcipher_walk_done(&walk, nbytes);
443 	}
444 	kernel_fpu_end();
445 
446 	return err;
447 }
448 
449 static int ecb_decrypt(struct skcipher_request *req)
450 {
451 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
452 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
453 	struct skcipher_walk walk;
454 	unsigned int nbytes;
455 	int err;
456 
457 	err = skcipher_walk_virt(&walk, req, true);
458 
459 	kernel_fpu_begin();
460 	while ((nbytes = walk.nbytes)) {
461 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
462 			      nbytes & AES_BLOCK_MASK);
463 		nbytes &= AES_BLOCK_SIZE - 1;
464 		err = skcipher_walk_done(&walk, nbytes);
465 	}
466 	kernel_fpu_end();
467 
468 	return err;
469 }
470 
471 static int cbc_encrypt(struct skcipher_request *req)
472 {
473 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
474 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
475 	struct skcipher_walk walk;
476 	unsigned int nbytes;
477 	int err;
478 
479 	err = skcipher_walk_virt(&walk, req, true);
480 
481 	kernel_fpu_begin();
482 	while ((nbytes = walk.nbytes)) {
483 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
484 			      nbytes & AES_BLOCK_MASK, walk.iv);
485 		nbytes &= AES_BLOCK_SIZE - 1;
486 		err = skcipher_walk_done(&walk, nbytes);
487 	}
488 	kernel_fpu_end();
489 
490 	return err;
491 }
492 
493 static int cbc_decrypt(struct skcipher_request *req)
494 {
495 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
496 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
497 	struct skcipher_walk walk;
498 	unsigned int nbytes;
499 	int err;
500 
501 	err = skcipher_walk_virt(&walk, req, true);
502 
503 	kernel_fpu_begin();
504 	while ((nbytes = walk.nbytes)) {
505 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
506 			      nbytes & AES_BLOCK_MASK, walk.iv);
507 		nbytes &= AES_BLOCK_SIZE - 1;
508 		err = skcipher_walk_done(&walk, nbytes);
509 	}
510 	kernel_fpu_end();
511 
512 	return err;
513 }
514 
515 #ifdef CONFIG_X86_64
516 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
517 			    struct skcipher_walk *walk)
518 {
519 	u8 *ctrblk = walk->iv;
520 	u8 keystream[AES_BLOCK_SIZE];
521 	u8 *src = walk->src.virt.addr;
522 	u8 *dst = walk->dst.virt.addr;
523 	unsigned int nbytes = walk->nbytes;
524 
525 	aesni_enc(ctx, keystream, ctrblk);
526 	crypto_xor_cpy(dst, keystream, src, nbytes);
527 
528 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
529 }
530 
531 #ifdef CONFIG_AS_AVX
532 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
533 			      const u8 *in, unsigned int len, u8 *iv)
534 {
535 	/*
536 	 * based on key length, override with the by8 version
537 	 * of ctr mode encryption/decryption for improved performance
538 	 * aes_set_key_common() ensures that key length is one of
539 	 * {128,192,256}
540 	 */
541 	if (ctx->key_length == AES_KEYSIZE_128)
542 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
543 	else if (ctx->key_length == AES_KEYSIZE_192)
544 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
545 	else
546 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
547 }
548 #endif
549 
550 static int ctr_crypt(struct skcipher_request *req)
551 {
552 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
553 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
554 	struct skcipher_walk walk;
555 	unsigned int nbytes;
556 	int err;
557 
558 	err = skcipher_walk_virt(&walk, req, true);
559 
560 	kernel_fpu_begin();
561 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
562 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
563 			              nbytes & AES_BLOCK_MASK, walk.iv);
564 		nbytes &= AES_BLOCK_SIZE - 1;
565 		err = skcipher_walk_done(&walk, nbytes);
566 	}
567 	if (walk.nbytes) {
568 		ctr_crypt_final(ctx, &walk);
569 		err = skcipher_walk_done(&walk, 0);
570 	}
571 	kernel_fpu_end();
572 
573 	return err;
574 }
575 
576 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
577 			    unsigned int keylen)
578 {
579 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
580 	int err;
581 
582 	err = xts_verify_key(tfm, key, keylen);
583 	if (err)
584 		return err;
585 
586 	keylen /= 2;
587 
588 	/* first half of xts-key is for crypt */
589 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
590 				 key, keylen);
591 	if (err)
592 		return err;
593 
594 	/* second half of xts-key is for tweak */
595 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
596 				  key + keylen, keylen);
597 }
598 
599 
600 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
601 {
602 	aesni_enc(ctx, out, in);
603 }
604 
605 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
606 {
607 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
608 }
609 
610 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
611 {
612 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
613 }
614 
615 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
616 {
617 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
618 }
619 
620 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
621 {
622 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
623 }
624 
625 static const struct common_glue_ctx aesni_enc_xts = {
626 	.num_funcs = 2,
627 	.fpu_blocks_limit = 1,
628 
629 	.funcs = { {
630 		.num_blocks = 8,
631 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
632 	}, {
633 		.num_blocks = 1,
634 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
635 	} }
636 };
637 
638 static const struct common_glue_ctx aesni_dec_xts = {
639 	.num_funcs = 2,
640 	.fpu_blocks_limit = 1,
641 
642 	.funcs = { {
643 		.num_blocks = 8,
644 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
645 	}, {
646 		.num_blocks = 1,
647 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
648 	} }
649 };
650 
651 static int xts_encrypt(struct skcipher_request *req)
652 {
653 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
654 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
655 
656 	return glue_xts_req_128bit(&aesni_enc_xts, req,
657 				   XTS_TWEAK_CAST(aesni_xts_tweak),
658 				   aes_ctx(ctx->raw_tweak_ctx),
659 				   aes_ctx(ctx->raw_crypt_ctx));
660 }
661 
662 static int xts_decrypt(struct skcipher_request *req)
663 {
664 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
665 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
666 
667 	return glue_xts_req_128bit(&aesni_dec_xts, req,
668 				   XTS_TWEAK_CAST(aesni_xts_tweak),
669 				   aes_ctx(ctx->raw_tweak_ctx),
670 				   aes_ctx(ctx->raw_crypt_ctx));
671 }
672 
673 static int rfc4106_init(struct crypto_aead *aead)
674 {
675 	struct cryptd_aead *cryptd_tfm;
676 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
677 
678 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
679 				       CRYPTO_ALG_INTERNAL,
680 				       CRYPTO_ALG_INTERNAL);
681 	if (IS_ERR(cryptd_tfm))
682 		return PTR_ERR(cryptd_tfm);
683 
684 	*ctx = cryptd_tfm;
685 	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
686 	return 0;
687 }
688 
689 static void rfc4106_exit(struct crypto_aead *aead)
690 {
691 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
692 
693 	cryptd_free_aead(*ctx);
694 }
695 
696 static int
697 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
698 {
699 	struct crypto_cipher *tfm;
700 	int ret;
701 
702 	tfm = crypto_alloc_cipher("aes", 0, 0);
703 	if (IS_ERR(tfm))
704 		return PTR_ERR(tfm);
705 
706 	ret = crypto_cipher_setkey(tfm, key, key_len);
707 	if (ret)
708 		goto out_free_cipher;
709 
710 	/* Clear the data in the hash sub key container to zero.*/
711 	/* We want to cipher all zeros to create the hash sub key. */
712 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
713 
714 	crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
715 
716 out_free_cipher:
717 	crypto_free_cipher(tfm);
718 	return ret;
719 }
720 
721 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
722 				  unsigned int key_len)
723 {
724 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
725 
726 	if (key_len < 4) {
727 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
728 		return -EINVAL;
729 	}
730 	/*Account for 4 byte nonce at the end.*/
731 	key_len -= 4;
732 
733 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
734 
735 	return aes_set_key_common(crypto_aead_tfm(aead),
736 				  &ctx->aes_key_expanded, key, key_len) ?:
737 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
738 }
739 
740 static int gcmaes_wrapper_set_key(struct crypto_aead *parent, const u8 *key,
741 				  unsigned int key_len)
742 {
743 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
744 	struct cryptd_aead *cryptd_tfm = *ctx;
745 
746 	return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
747 }
748 
749 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
750 				       unsigned int authsize)
751 {
752 	switch (authsize) {
753 	case 8:
754 	case 12:
755 	case 16:
756 		break;
757 	default:
758 		return -EINVAL;
759 	}
760 
761 	return 0;
762 }
763 
764 /* This is the Integrity Check Value (aka the authentication tag length and can
765  * be 8, 12 or 16 bytes long. */
766 static int gcmaes_wrapper_set_authsize(struct crypto_aead *parent,
767 				       unsigned int authsize)
768 {
769 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
770 	struct cryptd_aead *cryptd_tfm = *ctx;
771 
772 	return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
773 }
774 
775 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
776 				       unsigned int authsize)
777 {
778 	switch (authsize) {
779 	case 4:
780 	case 8:
781 	case 12:
782 	case 13:
783 	case 14:
784 	case 15:
785 	case 16:
786 		break;
787 	default:
788 		return -EINVAL;
789 	}
790 
791 	return 0;
792 }
793 
794 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
795 			      unsigned int assoclen, u8 *hash_subkey,
796 			      u8 *iv, void *aes_ctx)
797 {
798 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
799 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
800 	struct gcm_context_data data AESNI_ALIGN_ATTR;
801 	struct scatter_walk dst_sg_walk = {};
802 	unsigned long left = req->cryptlen;
803 	unsigned long len, srclen, dstlen;
804 	struct scatter_walk assoc_sg_walk;
805 	struct scatter_walk src_sg_walk;
806 	struct scatterlist src_start[2];
807 	struct scatterlist dst_start[2];
808 	struct scatterlist *src_sg;
809 	struct scatterlist *dst_sg;
810 	u8 *src, *dst, *assoc;
811 	u8 *assocmem = NULL;
812 	u8 authTag[16];
813 
814 	if (!enc)
815 		left -= auth_tag_len;
816 
817 	/* Linearize assoc, if not already linear */
818 	if (req->src->length >= assoclen && req->src->length &&
819 		(!PageHighMem(sg_page(req->src)) ||
820 			req->src->offset + req->src->length < PAGE_SIZE)) {
821 		scatterwalk_start(&assoc_sg_walk, req->src);
822 		assoc = scatterwalk_map(&assoc_sg_walk);
823 	} else {
824 		/* assoc can be any length, so must be on heap */
825 		assocmem = kmalloc(assoclen, GFP_ATOMIC);
826 		if (unlikely(!assocmem))
827 			return -ENOMEM;
828 		assoc = assocmem;
829 
830 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
831 	}
832 
833 	src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
834 	scatterwalk_start(&src_sg_walk, src_sg);
835 	if (req->src != req->dst) {
836 		dst_sg = scatterwalk_ffwd(dst_start, req->dst, req->assoclen);
837 		scatterwalk_start(&dst_sg_walk, dst_sg);
838 	}
839 
840 	kernel_fpu_begin();
841 	aesni_gcm_init(aes_ctx, &data, iv,
842 		hash_subkey, assoc, assoclen);
843 	if (req->src != req->dst) {
844 		while (left) {
845 			src = scatterwalk_map(&src_sg_walk);
846 			dst = scatterwalk_map(&dst_sg_walk);
847 			srclen = scatterwalk_clamp(&src_sg_walk, left);
848 			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
849 			len = min(srclen, dstlen);
850 			if (len) {
851 				if (enc)
852 					aesni_gcm_enc_update(aes_ctx, &data,
853 							     dst, src, len);
854 				else
855 					aesni_gcm_dec_update(aes_ctx, &data,
856 							     dst, src, len);
857 			}
858 			left -= len;
859 
860 			scatterwalk_unmap(src);
861 			scatterwalk_unmap(dst);
862 			scatterwalk_advance(&src_sg_walk, len);
863 			scatterwalk_advance(&dst_sg_walk, len);
864 			scatterwalk_done(&src_sg_walk, 0, left);
865 			scatterwalk_done(&dst_sg_walk, 1, left);
866 		}
867 	} else {
868 		while (left) {
869 			dst = src = scatterwalk_map(&src_sg_walk);
870 			len = scatterwalk_clamp(&src_sg_walk, left);
871 			if (len) {
872 				if (enc)
873 					aesni_gcm_enc_update(aes_ctx, &data,
874 							     src, src, len);
875 				else
876 					aesni_gcm_dec_update(aes_ctx, &data,
877 							     src, src, len);
878 			}
879 			left -= len;
880 			scatterwalk_unmap(src);
881 			scatterwalk_advance(&src_sg_walk, len);
882 			scatterwalk_done(&src_sg_walk, 1, left);
883 		}
884 	}
885 	aesni_gcm_finalize(aes_ctx, &data, authTag, auth_tag_len);
886 	kernel_fpu_end();
887 
888 	if (!assocmem)
889 		scatterwalk_unmap(assoc);
890 	else
891 		kfree(assocmem);
892 
893 	if (!enc) {
894 		u8 authTagMsg[16];
895 
896 		/* Copy out original authTag */
897 		scatterwalk_map_and_copy(authTagMsg, req->src,
898 					 req->assoclen + req->cryptlen -
899 					 auth_tag_len,
900 					 auth_tag_len, 0);
901 
902 		/* Compare generated tag with passed in tag. */
903 		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
904 			-EBADMSG : 0;
905 	}
906 
907 	/* Copy in the authTag */
908 	scatterwalk_map_and_copy(authTag, req->dst,
909 				 req->assoclen + req->cryptlen,
910 				 auth_tag_len, 1);
911 
912 	return 0;
913 }
914 
915 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
916 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
917 {
918 	u8 one_entry_in_sg = 0;
919 	u8 *src, *dst, *assoc;
920 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
921 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
922 	struct scatter_walk src_sg_walk;
923 	struct scatter_walk dst_sg_walk = {};
924 	struct gcm_context_data data AESNI_ALIGN_ATTR;
925 
926 	if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
927 		aesni_gcm_enc_tfm == aesni_gcm_enc ||
928 		req->cryptlen < AVX_GEN2_OPTSIZE) {
929 		return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
930 					  aes_ctx);
931 	}
932 	if (sg_is_last(req->src) &&
933 	    (!PageHighMem(sg_page(req->src)) ||
934 	    req->src->offset + req->src->length <= PAGE_SIZE) &&
935 	    sg_is_last(req->dst) &&
936 	    (!PageHighMem(sg_page(req->dst)) ||
937 	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
938 		one_entry_in_sg = 1;
939 		scatterwalk_start(&src_sg_walk, req->src);
940 		assoc = scatterwalk_map(&src_sg_walk);
941 		src = assoc + req->assoclen;
942 		dst = src;
943 		if (unlikely(req->src != req->dst)) {
944 			scatterwalk_start(&dst_sg_walk, req->dst);
945 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
946 		}
947 	} else {
948 		/* Allocate memory for src, dst, assoc */
949 		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
950 			GFP_ATOMIC);
951 		if (unlikely(!assoc))
952 			return -ENOMEM;
953 		scatterwalk_map_and_copy(assoc, req->src, 0,
954 					 req->assoclen + req->cryptlen, 0);
955 		src = assoc + req->assoclen;
956 		dst = src;
957 	}
958 
959 	kernel_fpu_begin();
960 	aesni_gcm_enc_tfm(aes_ctx, &data, dst, src, req->cryptlen, iv,
961 			  hash_subkey, assoc, assoclen,
962 			  dst + req->cryptlen, auth_tag_len);
963 	kernel_fpu_end();
964 
965 	/* The authTag (aka the Integrity Check Value) needs to be written
966 	 * back to the packet. */
967 	if (one_entry_in_sg) {
968 		if (unlikely(req->src != req->dst)) {
969 			scatterwalk_unmap(dst - req->assoclen);
970 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
971 			scatterwalk_done(&dst_sg_walk, 1, 0);
972 		}
973 		scatterwalk_unmap(assoc);
974 		scatterwalk_advance(&src_sg_walk, req->src->length);
975 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
976 	} else {
977 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
978 					 req->cryptlen + auth_tag_len, 1);
979 		kfree(assoc);
980 	}
981 	return 0;
982 }
983 
984 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
985 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
986 {
987 	u8 one_entry_in_sg = 0;
988 	u8 *src, *dst, *assoc;
989 	unsigned long tempCipherLen = 0;
990 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
991 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
992 	u8 authTag[16];
993 	struct scatter_walk src_sg_walk;
994 	struct scatter_walk dst_sg_walk = {};
995 	struct gcm_context_data data AESNI_ALIGN_ATTR;
996 	int retval = 0;
997 
998 	if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
999 		aesni_gcm_enc_tfm == aesni_gcm_enc ||
1000 		req->cryptlen < AVX_GEN2_OPTSIZE) {
1001 		return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
1002 					  aes_ctx);
1003 	}
1004 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1005 
1006 	if (sg_is_last(req->src) &&
1007 	    (!PageHighMem(sg_page(req->src)) ||
1008 	    req->src->offset + req->src->length <= PAGE_SIZE) &&
1009 	    sg_is_last(req->dst) && req->dst->length &&
1010 	    (!PageHighMem(sg_page(req->dst)) ||
1011 	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
1012 		one_entry_in_sg = 1;
1013 		scatterwalk_start(&src_sg_walk, req->src);
1014 		assoc = scatterwalk_map(&src_sg_walk);
1015 		src = assoc + req->assoclen;
1016 		dst = src;
1017 		if (unlikely(req->src != req->dst)) {
1018 			scatterwalk_start(&dst_sg_walk, req->dst);
1019 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
1020 		}
1021 	} else {
1022 		/* Allocate memory for src, dst, assoc */
1023 		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1024 		if (!assoc)
1025 			return -ENOMEM;
1026 		scatterwalk_map_and_copy(assoc, req->src, 0,
1027 					 req->assoclen + req->cryptlen, 0);
1028 		src = assoc + req->assoclen;
1029 		dst = src;
1030 	}
1031 
1032 
1033 	kernel_fpu_begin();
1034 	aesni_gcm_dec_tfm(aes_ctx, &data, dst, src, tempCipherLen, iv,
1035 			  hash_subkey, assoc, assoclen,
1036 			  authTag, auth_tag_len);
1037 	kernel_fpu_end();
1038 
1039 	/* Compare generated tag with passed in tag. */
1040 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1041 		-EBADMSG : 0;
1042 
1043 	if (one_entry_in_sg) {
1044 		if (unlikely(req->src != req->dst)) {
1045 			scatterwalk_unmap(dst - req->assoclen);
1046 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
1047 			scatterwalk_done(&dst_sg_walk, 1, 0);
1048 		}
1049 		scatterwalk_unmap(assoc);
1050 		scatterwalk_advance(&src_sg_walk, req->src->length);
1051 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1052 	} else {
1053 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1054 					 tempCipherLen, 1);
1055 		kfree(assoc);
1056 	}
1057 	return retval;
1058 
1059 }
1060 
1061 static int helper_rfc4106_encrypt(struct aead_request *req)
1062 {
1063 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1064 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1065 	void *aes_ctx = &(ctx->aes_key_expanded);
1066 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1067 	unsigned int i;
1068 	__be32 counter = cpu_to_be32(1);
1069 
1070 	/* Assuming we are supporting rfc4106 64-bit extended */
1071 	/* sequence numbers We need to have the AAD length equal */
1072 	/* to 16 or 20 bytes */
1073 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
1074 		return -EINVAL;
1075 
1076 	/* IV below built */
1077 	for (i = 0; i < 4; i++)
1078 		*(iv+i) = ctx->nonce[i];
1079 	for (i = 0; i < 8; i++)
1080 		*(iv+4+i) = req->iv[i];
1081 	*((__be32 *)(iv+12)) = counter;
1082 
1083 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
1084 			      aes_ctx);
1085 }
1086 
1087 static int helper_rfc4106_decrypt(struct aead_request *req)
1088 {
1089 	__be32 counter = cpu_to_be32(1);
1090 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1091 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1092 	void *aes_ctx = &(ctx->aes_key_expanded);
1093 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1094 	unsigned int i;
1095 
1096 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
1097 		return -EINVAL;
1098 
1099 	/* Assuming we are supporting rfc4106 64-bit extended */
1100 	/* sequence numbers We need to have the AAD length */
1101 	/* equal to 16 or 20 bytes */
1102 
1103 	/* IV below built */
1104 	for (i = 0; i < 4; i++)
1105 		*(iv+i) = ctx->nonce[i];
1106 	for (i = 0; i < 8; i++)
1107 		*(iv+4+i) = req->iv[i];
1108 	*((__be32 *)(iv+12)) = counter;
1109 
1110 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
1111 			      aes_ctx);
1112 }
1113 
1114 static int gcmaes_wrapper_encrypt(struct aead_request *req)
1115 {
1116 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1117 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1118 	struct cryptd_aead *cryptd_tfm = *ctx;
1119 
1120 	tfm = &cryptd_tfm->base;
1121 	if (irq_fpu_usable() && (!in_atomic() ||
1122 				 !cryptd_aead_queued(cryptd_tfm)))
1123 		tfm = cryptd_aead_child(cryptd_tfm);
1124 
1125 	aead_request_set_tfm(req, tfm);
1126 
1127 	return crypto_aead_encrypt(req);
1128 }
1129 
1130 static int gcmaes_wrapper_decrypt(struct aead_request *req)
1131 {
1132 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1133 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1134 	struct cryptd_aead *cryptd_tfm = *ctx;
1135 
1136 	tfm = &cryptd_tfm->base;
1137 	if (irq_fpu_usable() && (!in_atomic() ||
1138 				 !cryptd_aead_queued(cryptd_tfm)))
1139 		tfm = cryptd_aead_child(cryptd_tfm);
1140 
1141 	aead_request_set_tfm(req, tfm);
1142 
1143 	return crypto_aead_decrypt(req);
1144 }
1145 #endif
1146 
1147 static struct crypto_alg aesni_algs[] = { {
1148 	.cra_name		= "aes",
1149 	.cra_driver_name	= "aes-aesni",
1150 	.cra_priority		= 300,
1151 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1152 	.cra_blocksize		= AES_BLOCK_SIZE,
1153 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1154 	.cra_module		= THIS_MODULE,
1155 	.cra_u	= {
1156 		.cipher	= {
1157 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1158 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1159 			.cia_setkey		= aes_set_key,
1160 			.cia_encrypt		= aes_encrypt,
1161 			.cia_decrypt		= aes_decrypt
1162 		}
1163 	}
1164 }, {
1165 	.cra_name		= "__aes",
1166 	.cra_driver_name	= "__aes-aesni",
1167 	.cra_priority		= 300,
1168 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1169 	.cra_blocksize		= AES_BLOCK_SIZE,
1170 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1171 	.cra_module		= THIS_MODULE,
1172 	.cra_u	= {
1173 		.cipher	= {
1174 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1175 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1176 			.cia_setkey		= aes_set_key,
1177 			.cia_encrypt		= __aes_encrypt,
1178 			.cia_decrypt		= __aes_decrypt
1179 		}
1180 	}
1181 } };
1182 
1183 static struct skcipher_alg aesni_skciphers[] = {
1184 	{
1185 		.base = {
1186 			.cra_name		= "__ecb(aes)",
1187 			.cra_driver_name	= "__ecb-aes-aesni",
1188 			.cra_priority		= 400,
1189 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1190 			.cra_blocksize		= AES_BLOCK_SIZE,
1191 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1192 			.cra_module		= THIS_MODULE,
1193 		},
1194 		.min_keysize	= AES_MIN_KEY_SIZE,
1195 		.max_keysize	= AES_MAX_KEY_SIZE,
1196 		.setkey		= aesni_skcipher_setkey,
1197 		.encrypt	= ecb_encrypt,
1198 		.decrypt	= ecb_decrypt,
1199 	}, {
1200 		.base = {
1201 			.cra_name		= "__cbc(aes)",
1202 			.cra_driver_name	= "__cbc-aes-aesni",
1203 			.cra_priority		= 400,
1204 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1205 			.cra_blocksize		= AES_BLOCK_SIZE,
1206 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1207 			.cra_module		= THIS_MODULE,
1208 		},
1209 		.min_keysize	= AES_MIN_KEY_SIZE,
1210 		.max_keysize	= AES_MAX_KEY_SIZE,
1211 		.ivsize		= AES_BLOCK_SIZE,
1212 		.setkey		= aesni_skcipher_setkey,
1213 		.encrypt	= cbc_encrypt,
1214 		.decrypt	= cbc_decrypt,
1215 #ifdef CONFIG_X86_64
1216 	}, {
1217 		.base = {
1218 			.cra_name		= "__ctr(aes)",
1219 			.cra_driver_name	= "__ctr-aes-aesni",
1220 			.cra_priority		= 400,
1221 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1222 			.cra_blocksize		= 1,
1223 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1224 			.cra_module		= THIS_MODULE,
1225 		},
1226 		.min_keysize	= AES_MIN_KEY_SIZE,
1227 		.max_keysize	= AES_MAX_KEY_SIZE,
1228 		.ivsize		= AES_BLOCK_SIZE,
1229 		.chunksize	= AES_BLOCK_SIZE,
1230 		.setkey		= aesni_skcipher_setkey,
1231 		.encrypt	= ctr_crypt,
1232 		.decrypt	= ctr_crypt,
1233 	}, {
1234 		.base = {
1235 			.cra_name		= "__xts(aes)",
1236 			.cra_driver_name	= "__xts-aes-aesni",
1237 			.cra_priority		= 401,
1238 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1239 			.cra_blocksize		= AES_BLOCK_SIZE,
1240 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1241 			.cra_module		= THIS_MODULE,
1242 		},
1243 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1244 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1245 		.ivsize		= AES_BLOCK_SIZE,
1246 		.setkey		= xts_aesni_setkey,
1247 		.encrypt	= xts_encrypt,
1248 		.decrypt	= xts_decrypt,
1249 #endif
1250 	}
1251 };
1252 
1253 static
1254 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1255 
1256 static struct {
1257 	const char *algname;
1258 	const char *drvname;
1259 	const char *basename;
1260 	struct simd_skcipher_alg *simd;
1261 } aesni_simd_skciphers2[] = {
1262 #if (defined(MODULE) && IS_ENABLED(CONFIG_CRYPTO_PCBC)) || \
1263     IS_BUILTIN(CONFIG_CRYPTO_PCBC)
1264 	{
1265 		.algname	= "pcbc(aes)",
1266 		.drvname	= "pcbc-aes-aesni",
1267 		.basename	= "fpu(pcbc(__aes-aesni))",
1268 	},
1269 #endif
1270 };
1271 
1272 #ifdef CONFIG_X86_64
1273 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1274 				  unsigned int key_len)
1275 {
1276 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
1277 
1278 	return aes_set_key_common(crypto_aead_tfm(aead),
1279 				  &ctx->aes_key_expanded, key, key_len) ?:
1280 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
1281 }
1282 
1283 static int generic_gcmaes_encrypt(struct aead_request *req)
1284 {
1285 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1286 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1287 	void *aes_ctx = &(ctx->aes_key_expanded);
1288 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1289 	__be32 counter = cpu_to_be32(1);
1290 
1291 	memcpy(iv, req->iv, 12);
1292 	*((__be32 *)(iv+12)) = counter;
1293 
1294 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1295 			      aes_ctx);
1296 }
1297 
1298 static int generic_gcmaes_decrypt(struct aead_request *req)
1299 {
1300 	__be32 counter = cpu_to_be32(1);
1301 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1302 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1303 	void *aes_ctx = &(ctx->aes_key_expanded);
1304 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1305 
1306 	memcpy(iv, req->iv, 12);
1307 	*((__be32 *)(iv+12)) = counter;
1308 
1309 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1310 			      aes_ctx);
1311 }
1312 
1313 static int generic_gcmaes_init(struct crypto_aead *aead)
1314 {
1315 	struct cryptd_aead *cryptd_tfm;
1316 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
1317 
1318 	cryptd_tfm = cryptd_alloc_aead("__driver-generic-gcm-aes-aesni",
1319 				       CRYPTO_ALG_INTERNAL,
1320 				       CRYPTO_ALG_INTERNAL);
1321 	if (IS_ERR(cryptd_tfm))
1322 		return PTR_ERR(cryptd_tfm);
1323 
1324 	*ctx = cryptd_tfm;
1325 	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
1326 
1327 	return 0;
1328 }
1329 
1330 static void generic_gcmaes_exit(struct crypto_aead *aead)
1331 {
1332 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
1333 
1334 	cryptd_free_aead(*ctx);
1335 }
1336 
1337 static struct aead_alg aesni_aead_algs[] = { {
1338 	.setkey			= common_rfc4106_set_key,
1339 	.setauthsize		= common_rfc4106_set_authsize,
1340 	.encrypt		= helper_rfc4106_encrypt,
1341 	.decrypt		= helper_rfc4106_decrypt,
1342 	.ivsize			= GCM_RFC4106_IV_SIZE,
1343 	.maxauthsize		= 16,
1344 	.base = {
1345 		.cra_name		= "__gcm-aes-aesni",
1346 		.cra_driver_name	= "__driver-gcm-aes-aesni",
1347 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1348 		.cra_blocksize		= 1,
1349 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1350 		.cra_alignmask		= AESNI_ALIGN - 1,
1351 		.cra_module		= THIS_MODULE,
1352 	},
1353 }, {
1354 	.init			= rfc4106_init,
1355 	.exit			= rfc4106_exit,
1356 	.setkey			= gcmaes_wrapper_set_key,
1357 	.setauthsize		= gcmaes_wrapper_set_authsize,
1358 	.encrypt		= gcmaes_wrapper_encrypt,
1359 	.decrypt		= gcmaes_wrapper_decrypt,
1360 	.ivsize			= GCM_RFC4106_IV_SIZE,
1361 	.maxauthsize		= 16,
1362 	.base = {
1363 		.cra_name		= "rfc4106(gcm(aes))",
1364 		.cra_driver_name	= "rfc4106-gcm-aesni",
1365 		.cra_priority		= 400,
1366 		.cra_flags		= CRYPTO_ALG_ASYNC,
1367 		.cra_blocksize		= 1,
1368 		.cra_ctxsize		= sizeof(struct cryptd_aead *),
1369 		.cra_module		= THIS_MODULE,
1370 	},
1371 }, {
1372 	.setkey			= generic_gcmaes_set_key,
1373 	.setauthsize		= generic_gcmaes_set_authsize,
1374 	.encrypt		= generic_gcmaes_encrypt,
1375 	.decrypt		= generic_gcmaes_decrypt,
1376 	.ivsize			= GCM_AES_IV_SIZE,
1377 	.maxauthsize		= 16,
1378 	.base = {
1379 		.cra_name		= "__generic-gcm-aes-aesni",
1380 		.cra_driver_name	= "__driver-generic-gcm-aes-aesni",
1381 		.cra_priority		= 0,
1382 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1383 		.cra_blocksize		= 1,
1384 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1385 		.cra_alignmask		= AESNI_ALIGN - 1,
1386 		.cra_module		= THIS_MODULE,
1387 	},
1388 }, {
1389 	.init			= generic_gcmaes_init,
1390 	.exit			= generic_gcmaes_exit,
1391 	.setkey			= gcmaes_wrapper_set_key,
1392 	.setauthsize		= gcmaes_wrapper_set_authsize,
1393 	.encrypt		= gcmaes_wrapper_encrypt,
1394 	.decrypt		= gcmaes_wrapper_decrypt,
1395 	.ivsize			= GCM_AES_IV_SIZE,
1396 	.maxauthsize		= 16,
1397 	.base = {
1398 		.cra_name		= "gcm(aes)",
1399 		.cra_driver_name	= "generic-gcm-aesni",
1400 		.cra_priority		= 400,
1401 		.cra_flags		= CRYPTO_ALG_ASYNC,
1402 		.cra_blocksize		= 1,
1403 		.cra_ctxsize		= sizeof(struct cryptd_aead *),
1404 		.cra_module		= THIS_MODULE,
1405 	},
1406 } };
1407 #else
1408 static struct aead_alg aesni_aead_algs[0];
1409 #endif
1410 
1411 
1412 static const struct x86_cpu_id aesni_cpu_id[] = {
1413 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1414 	{}
1415 };
1416 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1417 
1418 static void aesni_free_simds(void)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) &&
1423 		    aesni_simd_skciphers[i]; i++)
1424 		simd_skcipher_free(aesni_simd_skciphers[i]);
1425 
1426 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++)
1427 		if (aesni_simd_skciphers2[i].simd)
1428 			simd_skcipher_free(aesni_simd_skciphers2[i].simd);
1429 }
1430 
1431 static int __init aesni_init(void)
1432 {
1433 	struct simd_skcipher_alg *simd;
1434 	const char *basename;
1435 	const char *algname;
1436 	const char *drvname;
1437 	int err;
1438 	int i;
1439 
1440 	if (!x86_match_cpu(aesni_cpu_id))
1441 		return -ENODEV;
1442 #ifdef CONFIG_X86_64
1443 #ifdef CONFIG_AS_AVX2
1444 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1445 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1446 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1447 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1448 	} else
1449 #endif
1450 #ifdef CONFIG_AS_AVX
1451 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1452 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1453 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1454 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1455 	} else
1456 #endif
1457 	{
1458 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1459 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1460 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1461 	}
1462 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1463 #ifdef CONFIG_AS_AVX
1464 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1465 		/* optimize performance of ctr mode encryption transform */
1466 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1467 		pr_info("AES CTR mode by8 optimization enabled\n");
1468 	}
1469 #endif
1470 #endif
1471 
1472 	err = crypto_fpu_init();
1473 	if (err)
1474 		return err;
1475 
1476 	err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1477 	if (err)
1478 		goto fpu_exit;
1479 
1480 	err = crypto_register_skciphers(aesni_skciphers,
1481 					ARRAY_SIZE(aesni_skciphers));
1482 	if (err)
1483 		goto unregister_algs;
1484 
1485 	err = crypto_register_aeads(aesni_aead_algs,
1486 				    ARRAY_SIZE(aesni_aead_algs));
1487 	if (err)
1488 		goto unregister_skciphers;
1489 
1490 	for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) {
1491 		algname = aesni_skciphers[i].base.cra_name + 2;
1492 		drvname = aesni_skciphers[i].base.cra_driver_name + 2;
1493 		basename = aesni_skciphers[i].base.cra_driver_name;
1494 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1495 		err = PTR_ERR(simd);
1496 		if (IS_ERR(simd))
1497 			goto unregister_simds;
1498 
1499 		aesni_simd_skciphers[i] = simd;
1500 	}
1501 
1502 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++) {
1503 		algname = aesni_simd_skciphers2[i].algname;
1504 		drvname = aesni_simd_skciphers2[i].drvname;
1505 		basename = aesni_simd_skciphers2[i].basename;
1506 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1507 		err = PTR_ERR(simd);
1508 		if (IS_ERR(simd))
1509 			continue;
1510 
1511 		aesni_simd_skciphers2[i].simd = simd;
1512 	}
1513 
1514 	return 0;
1515 
1516 unregister_simds:
1517 	aesni_free_simds();
1518 	crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1519 unregister_skciphers:
1520 	crypto_unregister_skciphers(aesni_skciphers,
1521 				    ARRAY_SIZE(aesni_skciphers));
1522 unregister_algs:
1523 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1524 fpu_exit:
1525 	crypto_fpu_exit();
1526 	return err;
1527 }
1528 
1529 static void __exit aesni_exit(void)
1530 {
1531 	aesni_free_simds();
1532 	crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1533 	crypto_unregister_skciphers(aesni_skciphers,
1534 				    ARRAY_SIZE(aesni_skciphers));
1535 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1536 
1537 	crypto_fpu_exit();
1538 }
1539 
1540 late_initcall(aesni_init);
1541 module_exit(aesni_exit);
1542 
1543 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1544 MODULE_LICENSE("GPL");
1545 MODULE_ALIAS_CRYPTO("aes");
1546