1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/i387.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 #if defined(CONFIG_CRYPTO_PCBC) || defined(CONFIG_CRYPTO_PCBC_MODULE)
47 #define HAS_PCBC
48 #endif
49 
50 /* This data is stored at the end of the crypto_tfm struct.
51  * It's a type of per "session" data storage location.
52  * This needs to be 16 byte aligned.
53  */
54 struct aesni_rfc4106_gcm_ctx {
55 	u8 hash_subkey[16];
56 	struct crypto_aes_ctx aes_key_expanded;
57 	u8 nonce[4];
58 	struct cryptd_aead *cryptd_tfm;
59 };
60 
61 struct aesni_gcm_set_hash_subkey_result {
62 	int err;
63 	struct completion completion;
64 };
65 
66 struct aesni_hash_subkey_req_data {
67 	u8 iv[16];
68 	struct aesni_gcm_set_hash_subkey_result result;
69 	struct scatterlist sg;
70 };
71 
72 #define AESNI_ALIGN	(16)
73 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
74 #define RFC4106_HASH_SUBKEY_SIZE 16
75 
76 struct aesni_lrw_ctx {
77 	struct lrw_table_ctx lrw_table;
78 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
79 };
80 
81 struct aesni_xts_ctx {
82 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
83 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
84 };
85 
86 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
87 			     unsigned int key_len);
88 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 			  const u8 *in);
90 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 			  const u8 *in);
92 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 			      const u8 *in, unsigned int len);
94 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len);
96 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
97 			      const u8 *in, unsigned int len, u8 *iv);
98 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
99 			      const u8 *in, unsigned int len, u8 *iv);
100 
101 int crypto_fpu_init(void);
102 void crypto_fpu_exit(void);
103 
104 #define AVX_GEN2_OPTSIZE 640
105 #define AVX_GEN4_OPTSIZE 4096
106 
107 #ifdef CONFIG_X86_64
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 			      const u8 *in, unsigned int len, u8 *iv);
110 
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 				 const u8 *in, bool enc, u8 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117  * const u8 *in, Plaintext input
118  * unsigned long plaintext_len, Length of data in bytes for encryption.
119  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
121  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125  *          is going to be 8 or 12 bytes
126  * u8 *auth_tag, Authenticated Tag output.
127  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128  *          Valid values are 16 (most likely), 12 or 8.
129  */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * u8 *out, Plaintext output. Decrypt in-place is allowed.
138  * const u8 *in, Ciphertext input
139  * unsigned long ciphertext_len, Length of data in bytes for decryption.
140  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
142  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 			u8 *auth_tag, unsigned long auth_tag_len);
155 
156 
157 #ifdef CONFIG_AS_AVX
158 /*
159  * asmlinkage void aesni_gcm_precomp_avx_gen2()
160  * gcm_data *my_ctx_data, context data
161  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
162  */
163 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
164 
165 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
166 			const u8 *in, unsigned long plaintext_len, u8 *iv,
167 			const u8 *aad, unsigned long aad_len,
168 			u8 *auth_tag, unsigned long auth_tag_len);
169 
170 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
171 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
172 			const u8 *aad, unsigned long aad_len,
173 			u8 *auth_tag, unsigned long auth_tag_len);
174 
175 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
176 			const u8 *in, unsigned long plaintext_len, u8 *iv,
177 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
178 			u8 *auth_tag, unsigned long auth_tag_len)
179 {
180 	if (plaintext_len < AVX_GEN2_OPTSIZE) {
181 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
182 				aad_len, auth_tag, auth_tag_len);
183 	} else {
184 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
185 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
186 					aad_len, auth_tag, auth_tag_len);
187 	}
188 }
189 
190 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
191 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
192 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
193 			u8 *auth_tag, unsigned long auth_tag_len)
194 {
195 	if (ciphertext_len < AVX_GEN2_OPTSIZE) {
196 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
197 				aad_len, auth_tag, auth_tag_len);
198 	} else {
199 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
200 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
201 					aad_len, auth_tag, auth_tag_len);
202 	}
203 }
204 #endif
205 
206 #ifdef CONFIG_AS_AVX2
207 /*
208  * asmlinkage void aesni_gcm_precomp_avx_gen4()
209  * gcm_data *my_ctx_data, context data
210  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
211  */
212 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
213 
214 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
215 			const u8 *in, unsigned long plaintext_len, u8 *iv,
216 			const u8 *aad, unsigned long aad_len,
217 			u8 *auth_tag, unsigned long auth_tag_len);
218 
219 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
220 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
221 			const u8 *aad, unsigned long aad_len,
222 			u8 *auth_tag, unsigned long auth_tag_len);
223 
224 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
225 			const u8 *in, unsigned long plaintext_len, u8 *iv,
226 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
227 			u8 *auth_tag, unsigned long auth_tag_len)
228 {
229 	if (plaintext_len < AVX_GEN2_OPTSIZE) {
230 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
231 				aad_len, auth_tag, auth_tag_len);
232 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
233 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
234 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
235 					aad_len, auth_tag, auth_tag_len);
236 	} else {
237 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
238 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
239 					aad_len, auth_tag, auth_tag_len);
240 	}
241 }
242 
243 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
244 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
245 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
246 			u8 *auth_tag, unsigned long auth_tag_len)
247 {
248 	if (ciphertext_len < AVX_GEN2_OPTSIZE) {
249 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
250 				aad, aad_len, auth_tag, auth_tag_len);
251 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
252 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
253 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
254 					aad_len, auth_tag, auth_tag_len);
255 	} else {
256 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
257 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
258 					aad_len, auth_tag, auth_tag_len);
259 	}
260 }
261 #endif
262 
263 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
264 			const u8 *in, unsigned long plaintext_len, u8 *iv,
265 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
266 			u8 *auth_tag, unsigned long auth_tag_len);
267 
268 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
269 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
270 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
271 			u8 *auth_tag, unsigned long auth_tag_len);
272 
273 static inline struct
274 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
275 {
276 	return
277 		(struct aesni_rfc4106_gcm_ctx *)
278 		PTR_ALIGN((u8 *)
279 		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
280 }
281 #endif
282 
283 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
284 {
285 	unsigned long addr = (unsigned long)raw_ctx;
286 	unsigned long align = AESNI_ALIGN;
287 
288 	if (align <= crypto_tfm_ctx_alignment())
289 		align = 1;
290 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
291 }
292 
293 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
294 			      const u8 *in_key, unsigned int key_len)
295 {
296 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
297 	u32 *flags = &tfm->crt_flags;
298 	int err;
299 
300 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
301 	    key_len != AES_KEYSIZE_256) {
302 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
303 		return -EINVAL;
304 	}
305 
306 	if (!irq_fpu_usable())
307 		err = crypto_aes_expand_key(ctx, in_key, key_len);
308 	else {
309 		kernel_fpu_begin();
310 		err = aesni_set_key(ctx, in_key, key_len);
311 		kernel_fpu_end();
312 	}
313 
314 	return err;
315 }
316 
317 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
318 		       unsigned int key_len)
319 {
320 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
321 }
322 
323 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
324 {
325 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
326 
327 	if (!irq_fpu_usable())
328 		crypto_aes_encrypt_x86(ctx, dst, src);
329 	else {
330 		kernel_fpu_begin();
331 		aesni_enc(ctx, dst, src);
332 		kernel_fpu_end();
333 	}
334 }
335 
336 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
337 {
338 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
339 
340 	if (!irq_fpu_usable())
341 		crypto_aes_decrypt_x86(ctx, dst, src);
342 	else {
343 		kernel_fpu_begin();
344 		aesni_dec(ctx, dst, src);
345 		kernel_fpu_end();
346 	}
347 }
348 
349 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
350 {
351 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
352 
353 	aesni_enc(ctx, dst, src);
354 }
355 
356 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
357 {
358 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
359 
360 	aesni_dec(ctx, dst, src);
361 }
362 
363 static int ecb_encrypt(struct blkcipher_desc *desc,
364 		       struct scatterlist *dst, struct scatterlist *src,
365 		       unsigned int nbytes)
366 {
367 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
368 	struct blkcipher_walk walk;
369 	int err;
370 
371 	blkcipher_walk_init(&walk, dst, src, nbytes);
372 	err = blkcipher_walk_virt(desc, &walk);
373 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
374 
375 	kernel_fpu_begin();
376 	while ((nbytes = walk.nbytes)) {
377 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
378 			      nbytes & AES_BLOCK_MASK);
379 		nbytes &= AES_BLOCK_SIZE - 1;
380 		err = blkcipher_walk_done(desc, &walk, nbytes);
381 	}
382 	kernel_fpu_end();
383 
384 	return err;
385 }
386 
387 static int ecb_decrypt(struct blkcipher_desc *desc,
388 		       struct scatterlist *dst, struct scatterlist *src,
389 		       unsigned int nbytes)
390 {
391 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
392 	struct blkcipher_walk walk;
393 	int err;
394 
395 	blkcipher_walk_init(&walk, dst, src, nbytes);
396 	err = blkcipher_walk_virt(desc, &walk);
397 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
398 
399 	kernel_fpu_begin();
400 	while ((nbytes = walk.nbytes)) {
401 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
402 			      nbytes & AES_BLOCK_MASK);
403 		nbytes &= AES_BLOCK_SIZE - 1;
404 		err = blkcipher_walk_done(desc, &walk, nbytes);
405 	}
406 	kernel_fpu_end();
407 
408 	return err;
409 }
410 
411 static int cbc_encrypt(struct blkcipher_desc *desc,
412 		       struct scatterlist *dst, struct scatterlist *src,
413 		       unsigned int nbytes)
414 {
415 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
416 	struct blkcipher_walk walk;
417 	int err;
418 
419 	blkcipher_walk_init(&walk, dst, src, nbytes);
420 	err = blkcipher_walk_virt(desc, &walk);
421 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
422 
423 	kernel_fpu_begin();
424 	while ((nbytes = walk.nbytes)) {
425 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
426 			      nbytes & AES_BLOCK_MASK, walk.iv);
427 		nbytes &= AES_BLOCK_SIZE - 1;
428 		err = blkcipher_walk_done(desc, &walk, nbytes);
429 	}
430 	kernel_fpu_end();
431 
432 	return err;
433 }
434 
435 static int cbc_decrypt(struct blkcipher_desc *desc,
436 		       struct scatterlist *dst, struct scatterlist *src,
437 		       unsigned int nbytes)
438 {
439 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
440 	struct blkcipher_walk walk;
441 	int err;
442 
443 	blkcipher_walk_init(&walk, dst, src, nbytes);
444 	err = blkcipher_walk_virt(desc, &walk);
445 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
446 
447 	kernel_fpu_begin();
448 	while ((nbytes = walk.nbytes)) {
449 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
450 			      nbytes & AES_BLOCK_MASK, walk.iv);
451 		nbytes &= AES_BLOCK_SIZE - 1;
452 		err = blkcipher_walk_done(desc, &walk, nbytes);
453 	}
454 	kernel_fpu_end();
455 
456 	return err;
457 }
458 
459 #ifdef CONFIG_X86_64
460 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
461 			    struct blkcipher_walk *walk)
462 {
463 	u8 *ctrblk = walk->iv;
464 	u8 keystream[AES_BLOCK_SIZE];
465 	u8 *src = walk->src.virt.addr;
466 	u8 *dst = walk->dst.virt.addr;
467 	unsigned int nbytes = walk->nbytes;
468 
469 	aesni_enc(ctx, keystream, ctrblk);
470 	crypto_xor(keystream, src, nbytes);
471 	memcpy(dst, keystream, nbytes);
472 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
473 }
474 
475 static int ctr_crypt(struct blkcipher_desc *desc,
476 		     struct scatterlist *dst, struct scatterlist *src,
477 		     unsigned int nbytes)
478 {
479 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
480 	struct blkcipher_walk walk;
481 	int err;
482 
483 	blkcipher_walk_init(&walk, dst, src, nbytes);
484 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
485 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
486 
487 	kernel_fpu_begin();
488 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
489 		aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
490 			      nbytes & AES_BLOCK_MASK, walk.iv);
491 		nbytes &= AES_BLOCK_SIZE - 1;
492 		err = blkcipher_walk_done(desc, &walk, nbytes);
493 	}
494 	if (walk.nbytes) {
495 		ctr_crypt_final(ctx, &walk);
496 		err = blkcipher_walk_done(desc, &walk, 0);
497 	}
498 	kernel_fpu_end();
499 
500 	return err;
501 }
502 #endif
503 
504 static int ablk_ecb_init(struct crypto_tfm *tfm)
505 {
506 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
507 }
508 
509 static int ablk_cbc_init(struct crypto_tfm *tfm)
510 {
511 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
512 }
513 
514 #ifdef CONFIG_X86_64
515 static int ablk_ctr_init(struct crypto_tfm *tfm)
516 {
517 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
518 }
519 
520 #endif
521 
522 #ifdef HAS_PCBC
523 static int ablk_pcbc_init(struct crypto_tfm *tfm)
524 {
525 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
526 }
527 #endif
528 
529 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
530 {
531 	aesni_ecb_enc(ctx, blks, blks, nbytes);
532 }
533 
534 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
535 {
536 	aesni_ecb_dec(ctx, blks, blks, nbytes);
537 }
538 
539 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
540 			    unsigned int keylen)
541 {
542 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
543 	int err;
544 
545 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
546 				 keylen - AES_BLOCK_SIZE);
547 	if (err)
548 		return err;
549 
550 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
551 }
552 
553 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
554 {
555 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
556 
557 	lrw_free_table(&ctx->lrw_table);
558 }
559 
560 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
561 		       struct scatterlist *src, unsigned int nbytes)
562 {
563 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
564 	be128 buf[8];
565 	struct lrw_crypt_req req = {
566 		.tbuf = buf,
567 		.tbuflen = sizeof(buf),
568 
569 		.table_ctx = &ctx->lrw_table,
570 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
571 		.crypt_fn = lrw_xts_encrypt_callback,
572 	};
573 	int ret;
574 
575 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
576 
577 	kernel_fpu_begin();
578 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
579 	kernel_fpu_end();
580 
581 	return ret;
582 }
583 
584 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
585 		       struct scatterlist *src, unsigned int nbytes)
586 {
587 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
588 	be128 buf[8];
589 	struct lrw_crypt_req req = {
590 		.tbuf = buf,
591 		.tbuflen = sizeof(buf),
592 
593 		.table_ctx = &ctx->lrw_table,
594 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
595 		.crypt_fn = lrw_xts_decrypt_callback,
596 	};
597 	int ret;
598 
599 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
600 
601 	kernel_fpu_begin();
602 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
603 	kernel_fpu_end();
604 
605 	return ret;
606 }
607 
608 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
609 			    unsigned int keylen)
610 {
611 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
612 	u32 *flags = &tfm->crt_flags;
613 	int err;
614 
615 	/* key consists of keys of equal size concatenated, therefore
616 	 * the length must be even
617 	 */
618 	if (keylen % 2) {
619 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
620 		return -EINVAL;
621 	}
622 
623 	/* first half of xts-key is for crypt */
624 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
625 	if (err)
626 		return err;
627 
628 	/* second half of xts-key is for tweak */
629 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
630 				  keylen / 2);
631 }
632 
633 
634 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
635 {
636 	aesni_enc(ctx, out, in);
637 }
638 
639 #ifdef CONFIG_X86_64
640 
641 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
642 {
643 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
644 }
645 
646 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
647 {
648 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
649 }
650 
651 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
652 {
653 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
654 }
655 
656 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
657 {
658 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
659 }
660 
661 static const struct common_glue_ctx aesni_enc_xts = {
662 	.num_funcs = 2,
663 	.fpu_blocks_limit = 1,
664 
665 	.funcs = { {
666 		.num_blocks = 8,
667 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
668 	}, {
669 		.num_blocks = 1,
670 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
671 	} }
672 };
673 
674 static const struct common_glue_ctx aesni_dec_xts = {
675 	.num_funcs = 2,
676 	.fpu_blocks_limit = 1,
677 
678 	.funcs = { {
679 		.num_blocks = 8,
680 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
681 	}, {
682 		.num_blocks = 1,
683 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
684 	} }
685 };
686 
687 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
688 		       struct scatterlist *src, unsigned int nbytes)
689 {
690 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
691 
692 	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
693 				     XTS_TWEAK_CAST(aesni_xts_tweak),
694 				     aes_ctx(ctx->raw_tweak_ctx),
695 				     aes_ctx(ctx->raw_crypt_ctx));
696 }
697 
698 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
699 		       struct scatterlist *src, unsigned int nbytes)
700 {
701 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
702 
703 	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
704 				     XTS_TWEAK_CAST(aesni_xts_tweak),
705 				     aes_ctx(ctx->raw_tweak_ctx),
706 				     aes_ctx(ctx->raw_crypt_ctx));
707 }
708 
709 #else
710 
711 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
712 		       struct scatterlist *src, unsigned int nbytes)
713 {
714 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
715 	be128 buf[8];
716 	struct xts_crypt_req req = {
717 		.tbuf = buf,
718 		.tbuflen = sizeof(buf),
719 
720 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
721 		.tweak_fn = aesni_xts_tweak,
722 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
723 		.crypt_fn = lrw_xts_encrypt_callback,
724 	};
725 	int ret;
726 
727 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
728 
729 	kernel_fpu_begin();
730 	ret = xts_crypt(desc, dst, src, nbytes, &req);
731 	kernel_fpu_end();
732 
733 	return ret;
734 }
735 
736 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
737 		       struct scatterlist *src, unsigned int nbytes)
738 {
739 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
740 	be128 buf[8];
741 	struct xts_crypt_req req = {
742 		.tbuf = buf,
743 		.tbuflen = sizeof(buf),
744 
745 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
746 		.tweak_fn = aesni_xts_tweak,
747 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
748 		.crypt_fn = lrw_xts_decrypt_callback,
749 	};
750 	int ret;
751 
752 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
753 
754 	kernel_fpu_begin();
755 	ret = xts_crypt(desc, dst, src, nbytes, &req);
756 	kernel_fpu_end();
757 
758 	return ret;
759 }
760 
761 #endif
762 
763 #ifdef CONFIG_X86_64
764 static int rfc4106_init(struct crypto_tfm *tfm)
765 {
766 	struct cryptd_aead *cryptd_tfm;
767 	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
768 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
769 	struct crypto_aead *cryptd_child;
770 	struct aesni_rfc4106_gcm_ctx *child_ctx;
771 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
772 	if (IS_ERR(cryptd_tfm))
773 		return PTR_ERR(cryptd_tfm);
774 
775 	cryptd_child = cryptd_aead_child(cryptd_tfm);
776 	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
777 	memcpy(child_ctx, ctx, sizeof(*ctx));
778 	ctx->cryptd_tfm = cryptd_tfm;
779 	tfm->crt_aead.reqsize = sizeof(struct aead_request)
780 		+ crypto_aead_reqsize(&cryptd_tfm->base);
781 	return 0;
782 }
783 
784 static void rfc4106_exit(struct crypto_tfm *tfm)
785 {
786 	struct aesni_rfc4106_gcm_ctx *ctx =
787 		(struct aesni_rfc4106_gcm_ctx *)
788 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
789 	if (!IS_ERR(ctx->cryptd_tfm))
790 		cryptd_free_aead(ctx->cryptd_tfm);
791 	return;
792 }
793 
794 static void
795 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
796 {
797 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
798 
799 	if (err == -EINPROGRESS)
800 		return;
801 	result->err = err;
802 	complete(&result->completion);
803 }
804 
805 static int
806 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
807 {
808 	struct crypto_ablkcipher *ctr_tfm;
809 	struct ablkcipher_request *req;
810 	int ret = -EINVAL;
811 	struct aesni_hash_subkey_req_data *req_data;
812 
813 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
814 	if (IS_ERR(ctr_tfm))
815 		return PTR_ERR(ctr_tfm);
816 
817 	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
818 
819 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
820 	if (ret)
821 		goto out_free_ablkcipher;
822 
823 	ret = -ENOMEM;
824 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
825 	if (!req)
826 		goto out_free_ablkcipher;
827 
828 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
829 	if (!req_data)
830 		goto out_free_request;
831 
832 	memset(req_data->iv, 0, sizeof(req_data->iv));
833 
834 	/* Clear the data in the hash sub key container to zero.*/
835 	/* We want to cipher all zeros to create the hash sub key. */
836 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
837 
838 	init_completion(&req_data->result.completion);
839 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
840 	ablkcipher_request_set_tfm(req, ctr_tfm);
841 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
842 					CRYPTO_TFM_REQ_MAY_BACKLOG,
843 					rfc4106_set_hash_subkey_done,
844 					&req_data->result);
845 
846 	ablkcipher_request_set_crypt(req, &req_data->sg,
847 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
848 
849 	ret = crypto_ablkcipher_encrypt(req);
850 	if (ret == -EINPROGRESS || ret == -EBUSY) {
851 		ret = wait_for_completion_interruptible
852 			(&req_data->result.completion);
853 		if (!ret)
854 			ret = req_data->result.err;
855 	}
856 	kfree(req_data);
857 out_free_request:
858 	ablkcipher_request_free(req);
859 out_free_ablkcipher:
860 	crypto_free_ablkcipher(ctr_tfm);
861 	return ret;
862 }
863 
864 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
865 						   unsigned int key_len)
866 {
867 	int ret = 0;
868 	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
869 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
870 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
871 	struct aesni_rfc4106_gcm_ctx *child_ctx =
872                                  aesni_rfc4106_gcm_ctx_get(cryptd_child);
873 	u8 *new_key_align, *new_key_mem = NULL;
874 
875 	if (key_len < 4) {
876 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
877 		return -EINVAL;
878 	}
879 	/*Account for 4 byte nonce at the end.*/
880 	key_len -= 4;
881 	if (key_len != AES_KEYSIZE_128) {
882 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
883 		return -EINVAL;
884 	}
885 
886 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
887 	/*This must be on a 16 byte boundary!*/
888 	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
889 		return -EINVAL;
890 
891 	if ((unsigned long)key % AESNI_ALIGN) {
892 		/*key is not aligned: use an auxuliar aligned pointer*/
893 		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
894 		if (!new_key_mem)
895 			return -ENOMEM;
896 
897 		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
898 		memcpy(new_key_align, key, key_len);
899 		key = new_key_align;
900 	}
901 
902 	if (!irq_fpu_usable())
903 		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
904 		key, key_len);
905 	else {
906 		kernel_fpu_begin();
907 		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
908 		kernel_fpu_end();
909 	}
910 	/*This must be on a 16 byte boundary!*/
911 	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
912 		ret = -EINVAL;
913 		goto exit;
914 	}
915 	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
916 	memcpy(child_ctx, ctx, sizeof(*ctx));
917 exit:
918 	kfree(new_key_mem);
919 	return ret;
920 }
921 
922 /* This is the Integrity Check Value (aka the authentication tag length and can
923  * be 8, 12 or 16 bytes long. */
924 static int rfc4106_set_authsize(struct crypto_aead *parent,
925 				unsigned int authsize)
926 {
927 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
928 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
929 
930 	switch (authsize) {
931 	case 8:
932 	case 12:
933 	case 16:
934 		break;
935 	default:
936 		return -EINVAL;
937 	}
938 	crypto_aead_crt(parent)->authsize = authsize;
939 	crypto_aead_crt(cryptd_child)->authsize = authsize;
940 	return 0;
941 }
942 
943 static int rfc4106_encrypt(struct aead_request *req)
944 {
945 	int ret;
946 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
947 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
948 
949 	if (!irq_fpu_usable()) {
950 		struct aead_request *cryptd_req =
951 			(struct aead_request *) aead_request_ctx(req);
952 		memcpy(cryptd_req, req, sizeof(*req));
953 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
954 		return crypto_aead_encrypt(cryptd_req);
955 	} else {
956 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
957 		kernel_fpu_begin();
958 		ret = cryptd_child->base.crt_aead.encrypt(req);
959 		kernel_fpu_end();
960 		return ret;
961 	}
962 }
963 
964 static int rfc4106_decrypt(struct aead_request *req)
965 {
966 	int ret;
967 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
968 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
969 
970 	if (!irq_fpu_usable()) {
971 		struct aead_request *cryptd_req =
972 			(struct aead_request *) aead_request_ctx(req);
973 		memcpy(cryptd_req, req, sizeof(*req));
974 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
975 		return crypto_aead_decrypt(cryptd_req);
976 	} else {
977 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
978 		kernel_fpu_begin();
979 		ret = cryptd_child->base.crt_aead.decrypt(req);
980 		kernel_fpu_end();
981 		return ret;
982 	}
983 }
984 
985 static int __driver_rfc4106_encrypt(struct aead_request *req)
986 {
987 	u8 one_entry_in_sg = 0;
988 	u8 *src, *dst, *assoc;
989 	__be32 counter = cpu_to_be32(1);
990 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
991 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
992 	void *aes_ctx = &(ctx->aes_key_expanded);
993 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
994 	u8 iv_tab[16+AESNI_ALIGN];
995 	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
996 	struct scatter_walk src_sg_walk;
997 	struct scatter_walk assoc_sg_walk;
998 	struct scatter_walk dst_sg_walk;
999 	unsigned int i;
1000 
1001 	/* Assuming we are supporting rfc4106 64-bit extended */
1002 	/* sequence numbers We need to have the AAD length equal */
1003 	/* to 8 or 12 bytes */
1004 	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
1005 		return -EINVAL;
1006 	/* IV below built */
1007 	for (i = 0; i < 4; i++)
1008 		*(iv+i) = ctx->nonce[i];
1009 	for (i = 0; i < 8; i++)
1010 		*(iv+4+i) = req->iv[i];
1011 	*((__be32 *)(iv+12)) = counter;
1012 
1013 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1014 		one_entry_in_sg = 1;
1015 		scatterwalk_start(&src_sg_walk, req->src);
1016 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1017 		src = scatterwalk_map(&src_sg_walk);
1018 		assoc = scatterwalk_map(&assoc_sg_walk);
1019 		dst = src;
1020 		if (unlikely(req->src != req->dst)) {
1021 			scatterwalk_start(&dst_sg_walk, req->dst);
1022 			dst = scatterwalk_map(&dst_sg_walk);
1023 		}
1024 
1025 	} else {
1026 		/* Allocate memory for src, dst, assoc */
1027 		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
1028 			GFP_ATOMIC);
1029 		if (unlikely(!src))
1030 			return -ENOMEM;
1031 		assoc = (src + req->cryptlen + auth_tag_len);
1032 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1033 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1034 					req->assoclen, 0);
1035 		dst = src;
1036 	}
1037 
1038 	aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1039 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
1040 		+ ((unsigned long)req->cryptlen), auth_tag_len);
1041 
1042 	/* The authTag (aka the Integrity Check Value) needs to be written
1043 	 * back to the packet. */
1044 	if (one_entry_in_sg) {
1045 		if (unlikely(req->src != req->dst)) {
1046 			scatterwalk_unmap(dst);
1047 			scatterwalk_done(&dst_sg_walk, 0, 0);
1048 		}
1049 		scatterwalk_unmap(src);
1050 		scatterwalk_unmap(assoc);
1051 		scatterwalk_done(&src_sg_walk, 0, 0);
1052 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1053 	} else {
1054 		scatterwalk_map_and_copy(dst, req->dst, 0,
1055 			req->cryptlen + auth_tag_len, 1);
1056 		kfree(src);
1057 	}
1058 	return 0;
1059 }
1060 
1061 static int __driver_rfc4106_decrypt(struct aead_request *req)
1062 {
1063 	u8 one_entry_in_sg = 0;
1064 	u8 *src, *dst, *assoc;
1065 	unsigned long tempCipherLen = 0;
1066 	__be32 counter = cpu_to_be32(1);
1067 	int retval = 0;
1068 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1069 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1070 	void *aes_ctx = &(ctx->aes_key_expanded);
1071 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1072 	u8 iv_and_authTag[32+AESNI_ALIGN];
1073 	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
1074 	u8 *authTag = iv + 16;
1075 	struct scatter_walk src_sg_walk;
1076 	struct scatter_walk assoc_sg_walk;
1077 	struct scatter_walk dst_sg_walk;
1078 	unsigned int i;
1079 
1080 	if (unlikely((req->cryptlen < auth_tag_len) ||
1081 		(req->assoclen != 8 && req->assoclen != 12)))
1082 		return -EINVAL;
1083 	/* Assuming we are supporting rfc4106 64-bit extended */
1084 	/* sequence numbers We need to have the AAD length */
1085 	/* equal to 8 or 12 bytes */
1086 
1087 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1088 	/* IV below built */
1089 	for (i = 0; i < 4; i++)
1090 		*(iv+i) = ctx->nonce[i];
1091 	for (i = 0; i < 8; i++)
1092 		*(iv+4+i) = req->iv[i];
1093 	*((__be32 *)(iv+12)) = counter;
1094 
1095 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1096 		one_entry_in_sg = 1;
1097 		scatterwalk_start(&src_sg_walk, req->src);
1098 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1099 		src = scatterwalk_map(&src_sg_walk);
1100 		assoc = scatterwalk_map(&assoc_sg_walk);
1101 		dst = src;
1102 		if (unlikely(req->src != req->dst)) {
1103 			scatterwalk_start(&dst_sg_walk, req->dst);
1104 			dst = scatterwalk_map(&dst_sg_walk);
1105 		}
1106 
1107 	} else {
1108 		/* Allocate memory for src, dst, assoc */
1109 		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1110 		if (!src)
1111 			return -ENOMEM;
1112 		assoc = (src + req->cryptlen + auth_tag_len);
1113 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1114 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1115 			req->assoclen, 0);
1116 		dst = src;
1117 	}
1118 
1119 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1120 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
1121 		authTag, auth_tag_len);
1122 
1123 	/* Compare generated tag with passed in tag. */
1124 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1125 		-EBADMSG : 0;
1126 
1127 	if (one_entry_in_sg) {
1128 		if (unlikely(req->src != req->dst)) {
1129 			scatterwalk_unmap(dst);
1130 			scatterwalk_done(&dst_sg_walk, 0, 0);
1131 		}
1132 		scatterwalk_unmap(src);
1133 		scatterwalk_unmap(assoc);
1134 		scatterwalk_done(&src_sg_walk, 0, 0);
1135 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1136 	} else {
1137 		scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
1138 		kfree(src);
1139 	}
1140 	return retval;
1141 }
1142 #endif
1143 
1144 static struct crypto_alg aesni_algs[] = { {
1145 	.cra_name		= "aes",
1146 	.cra_driver_name	= "aes-aesni",
1147 	.cra_priority		= 300,
1148 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1149 	.cra_blocksize		= AES_BLOCK_SIZE,
1150 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1151 				  AESNI_ALIGN - 1,
1152 	.cra_alignmask		= 0,
1153 	.cra_module		= THIS_MODULE,
1154 	.cra_u	= {
1155 		.cipher	= {
1156 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1157 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1158 			.cia_setkey		= aes_set_key,
1159 			.cia_encrypt		= aes_encrypt,
1160 			.cia_decrypt		= aes_decrypt
1161 		}
1162 	}
1163 }, {
1164 	.cra_name		= "__aes-aesni",
1165 	.cra_driver_name	= "__driver-aes-aesni",
1166 	.cra_priority		= 0,
1167 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1168 	.cra_blocksize		= AES_BLOCK_SIZE,
1169 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1170 				  AESNI_ALIGN - 1,
1171 	.cra_alignmask		= 0,
1172 	.cra_module		= THIS_MODULE,
1173 	.cra_u	= {
1174 		.cipher	= {
1175 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1176 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1177 			.cia_setkey		= aes_set_key,
1178 			.cia_encrypt		= __aes_encrypt,
1179 			.cia_decrypt		= __aes_decrypt
1180 		}
1181 	}
1182 }, {
1183 	.cra_name		= "__ecb-aes-aesni",
1184 	.cra_driver_name	= "__driver-ecb-aes-aesni",
1185 	.cra_priority		= 0,
1186 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1187 	.cra_blocksize		= AES_BLOCK_SIZE,
1188 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1189 				  AESNI_ALIGN - 1,
1190 	.cra_alignmask		= 0,
1191 	.cra_type		= &crypto_blkcipher_type,
1192 	.cra_module		= THIS_MODULE,
1193 	.cra_u = {
1194 		.blkcipher = {
1195 			.min_keysize	= AES_MIN_KEY_SIZE,
1196 			.max_keysize	= AES_MAX_KEY_SIZE,
1197 			.setkey		= aes_set_key,
1198 			.encrypt	= ecb_encrypt,
1199 			.decrypt	= ecb_decrypt,
1200 		},
1201 	},
1202 }, {
1203 	.cra_name		= "__cbc-aes-aesni",
1204 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1205 	.cra_priority		= 0,
1206 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1207 	.cra_blocksize		= AES_BLOCK_SIZE,
1208 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1209 				  AESNI_ALIGN - 1,
1210 	.cra_alignmask		= 0,
1211 	.cra_type		= &crypto_blkcipher_type,
1212 	.cra_module		= THIS_MODULE,
1213 	.cra_u = {
1214 		.blkcipher = {
1215 			.min_keysize	= AES_MIN_KEY_SIZE,
1216 			.max_keysize	= AES_MAX_KEY_SIZE,
1217 			.setkey		= aes_set_key,
1218 			.encrypt	= cbc_encrypt,
1219 			.decrypt	= cbc_decrypt,
1220 		},
1221 	},
1222 }, {
1223 	.cra_name		= "ecb(aes)",
1224 	.cra_driver_name	= "ecb-aes-aesni",
1225 	.cra_priority		= 400,
1226 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1227 	.cra_blocksize		= AES_BLOCK_SIZE,
1228 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1229 	.cra_alignmask		= 0,
1230 	.cra_type		= &crypto_ablkcipher_type,
1231 	.cra_module		= THIS_MODULE,
1232 	.cra_init		= ablk_ecb_init,
1233 	.cra_exit		= ablk_exit,
1234 	.cra_u = {
1235 		.ablkcipher = {
1236 			.min_keysize	= AES_MIN_KEY_SIZE,
1237 			.max_keysize	= AES_MAX_KEY_SIZE,
1238 			.setkey		= ablk_set_key,
1239 			.encrypt	= ablk_encrypt,
1240 			.decrypt	= ablk_decrypt,
1241 		},
1242 	},
1243 }, {
1244 	.cra_name		= "cbc(aes)",
1245 	.cra_driver_name	= "cbc-aes-aesni",
1246 	.cra_priority		= 400,
1247 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1248 	.cra_blocksize		= AES_BLOCK_SIZE,
1249 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1250 	.cra_alignmask		= 0,
1251 	.cra_type		= &crypto_ablkcipher_type,
1252 	.cra_module		= THIS_MODULE,
1253 	.cra_init		= ablk_cbc_init,
1254 	.cra_exit		= ablk_exit,
1255 	.cra_u = {
1256 		.ablkcipher = {
1257 			.min_keysize	= AES_MIN_KEY_SIZE,
1258 			.max_keysize	= AES_MAX_KEY_SIZE,
1259 			.ivsize		= AES_BLOCK_SIZE,
1260 			.setkey		= ablk_set_key,
1261 			.encrypt	= ablk_encrypt,
1262 			.decrypt	= ablk_decrypt,
1263 		},
1264 	},
1265 #ifdef CONFIG_X86_64
1266 }, {
1267 	.cra_name		= "__ctr-aes-aesni",
1268 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1269 	.cra_priority		= 0,
1270 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1271 	.cra_blocksize		= 1,
1272 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1273 				  AESNI_ALIGN - 1,
1274 	.cra_alignmask		= 0,
1275 	.cra_type		= &crypto_blkcipher_type,
1276 	.cra_module		= THIS_MODULE,
1277 	.cra_u = {
1278 		.blkcipher = {
1279 			.min_keysize	= AES_MIN_KEY_SIZE,
1280 			.max_keysize	= AES_MAX_KEY_SIZE,
1281 			.ivsize		= AES_BLOCK_SIZE,
1282 			.setkey		= aes_set_key,
1283 			.encrypt	= ctr_crypt,
1284 			.decrypt	= ctr_crypt,
1285 		},
1286 	},
1287 }, {
1288 	.cra_name		= "ctr(aes)",
1289 	.cra_driver_name	= "ctr-aes-aesni",
1290 	.cra_priority		= 400,
1291 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1292 	.cra_blocksize		= 1,
1293 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1294 	.cra_alignmask		= 0,
1295 	.cra_type		= &crypto_ablkcipher_type,
1296 	.cra_module		= THIS_MODULE,
1297 	.cra_init		= ablk_ctr_init,
1298 	.cra_exit		= ablk_exit,
1299 	.cra_u = {
1300 		.ablkcipher = {
1301 			.min_keysize	= AES_MIN_KEY_SIZE,
1302 			.max_keysize	= AES_MAX_KEY_SIZE,
1303 			.ivsize		= AES_BLOCK_SIZE,
1304 			.setkey		= ablk_set_key,
1305 			.encrypt	= ablk_encrypt,
1306 			.decrypt	= ablk_encrypt,
1307 			.geniv		= "chainiv",
1308 		},
1309 	},
1310 }, {
1311 	.cra_name		= "__gcm-aes-aesni",
1312 	.cra_driver_name	= "__driver-gcm-aes-aesni",
1313 	.cra_priority		= 0,
1314 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
1315 	.cra_blocksize		= 1,
1316 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1317 				  AESNI_ALIGN,
1318 	.cra_alignmask		= 0,
1319 	.cra_type		= &crypto_aead_type,
1320 	.cra_module		= THIS_MODULE,
1321 	.cra_u = {
1322 		.aead = {
1323 			.encrypt	= __driver_rfc4106_encrypt,
1324 			.decrypt	= __driver_rfc4106_decrypt,
1325 		},
1326 	},
1327 }, {
1328 	.cra_name		= "rfc4106(gcm(aes))",
1329 	.cra_driver_name	= "rfc4106-gcm-aesni",
1330 	.cra_priority		= 400,
1331 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1332 	.cra_blocksize		= 1,
1333 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1334 				  AESNI_ALIGN,
1335 	.cra_alignmask		= 0,
1336 	.cra_type		= &crypto_nivaead_type,
1337 	.cra_module		= THIS_MODULE,
1338 	.cra_init		= rfc4106_init,
1339 	.cra_exit		= rfc4106_exit,
1340 	.cra_u = {
1341 		.aead = {
1342 			.setkey		= rfc4106_set_key,
1343 			.setauthsize	= rfc4106_set_authsize,
1344 			.encrypt	= rfc4106_encrypt,
1345 			.decrypt	= rfc4106_decrypt,
1346 			.geniv		= "seqiv",
1347 			.ivsize		= 8,
1348 			.maxauthsize	= 16,
1349 		},
1350 	},
1351 #endif
1352 #ifdef HAS_PCBC
1353 }, {
1354 	.cra_name		= "pcbc(aes)",
1355 	.cra_driver_name	= "pcbc-aes-aesni",
1356 	.cra_priority		= 400,
1357 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1358 	.cra_blocksize		= AES_BLOCK_SIZE,
1359 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1360 	.cra_alignmask		= 0,
1361 	.cra_type		= &crypto_ablkcipher_type,
1362 	.cra_module		= THIS_MODULE,
1363 	.cra_init		= ablk_pcbc_init,
1364 	.cra_exit		= ablk_exit,
1365 	.cra_u = {
1366 		.ablkcipher = {
1367 			.min_keysize	= AES_MIN_KEY_SIZE,
1368 			.max_keysize	= AES_MAX_KEY_SIZE,
1369 			.ivsize		= AES_BLOCK_SIZE,
1370 			.setkey		= ablk_set_key,
1371 			.encrypt	= ablk_encrypt,
1372 			.decrypt	= ablk_decrypt,
1373 		},
1374 	},
1375 #endif
1376 }, {
1377 	.cra_name		= "__lrw-aes-aesni",
1378 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1379 	.cra_priority		= 0,
1380 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1381 	.cra_blocksize		= AES_BLOCK_SIZE,
1382 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1383 	.cra_alignmask		= 0,
1384 	.cra_type		= &crypto_blkcipher_type,
1385 	.cra_module		= THIS_MODULE,
1386 	.cra_exit		= lrw_aesni_exit_tfm,
1387 	.cra_u = {
1388 		.blkcipher = {
1389 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1390 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1391 			.ivsize		= AES_BLOCK_SIZE,
1392 			.setkey		= lrw_aesni_setkey,
1393 			.encrypt	= lrw_encrypt,
1394 			.decrypt	= lrw_decrypt,
1395 		},
1396 	},
1397 }, {
1398 	.cra_name		= "__xts-aes-aesni",
1399 	.cra_driver_name	= "__driver-xts-aes-aesni",
1400 	.cra_priority		= 0,
1401 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1402 	.cra_blocksize		= AES_BLOCK_SIZE,
1403 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1404 	.cra_alignmask		= 0,
1405 	.cra_type		= &crypto_blkcipher_type,
1406 	.cra_module		= THIS_MODULE,
1407 	.cra_u = {
1408 		.blkcipher = {
1409 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1410 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1411 			.ivsize		= AES_BLOCK_SIZE,
1412 			.setkey		= xts_aesni_setkey,
1413 			.encrypt	= xts_encrypt,
1414 			.decrypt	= xts_decrypt,
1415 		},
1416 	},
1417 }, {
1418 	.cra_name		= "lrw(aes)",
1419 	.cra_driver_name	= "lrw-aes-aesni",
1420 	.cra_priority		= 400,
1421 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1422 	.cra_blocksize		= AES_BLOCK_SIZE,
1423 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1424 	.cra_alignmask		= 0,
1425 	.cra_type		= &crypto_ablkcipher_type,
1426 	.cra_module		= THIS_MODULE,
1427 	.cra_init		= ablk_init,
1428 	.cra_exit		= ablk_exit,
1429 	.cra_u = {
1430 		.ablkcipher = {
1431 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1432 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1433 			.ivsize		= AES_BLOCK_SIZE,
1434 			.setkey		= ablk_set_key,
1435 			.encrypt	= ablk_encrypt,
1436 			.decrypt	= ablk_decrypt,
1437 		},
1438 	},
1439 }, {
1440 	.cra_name		= "xts(aes)",
1441 	.cra_driver_name	= "xts-aes-aesni",
1442 	.cra_priority		= 400,
1443 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1444 	.cra_blocksize		= AES_BLOCK_SIZE,
1445 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1446 	.cra_alignmask		= 0,
1447 	.cra_type		= &crypto_ablkcipher_type,
1448 	.cra_module		= THIS_MODULE,
1449 	.cra_init		= ablk_init,
1450 	.cra_exit		= ablk_exit,
1451 	.cra_u = {
1452 		.ablkcipher = {
1453 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1454 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1455 			.ivsize		= AES_BLOCK_SIZE,
1456 			.setkey		= ablk_set_key,
1457 			.encrypt	= ablk_encrypt,
1458 			.decrypt	= ablk_decrypt,
1459 		},
1460 	},
1461 } };
1462 
1463 
1464 static const struct x86_cpu_id aesni_cpu_id[] = {
1465 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1466 	{}
1467 };
1468 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1469 
1470 static int __init aesni_init(void)
1471 {
1472 	int err;
1473 
1474 	if (!x86_match_cpu(aesni_cpu_id))
1475 		return -ENODEV;
1476 #ifdef CONFIG_X86_64
1477 #ifdef CONFIG_AS_AVX2
1478 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1479 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1480 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1481 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1482 	} else
1483 #endif
1484 #ifdef CONFIG_AS_AVX
1485 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1486 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1487 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1488 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1489 	} else
1490 #endif
1491 	{
1492 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1493 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1494 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1495 	}
1496 #endif
1497 
1498 	err = crypto_fpu_init();
1499 	if (err)
1500 		return err;
1501 
1502 	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1503 }
1504 
1505 static void __exit aesni_exit(void)
1506 {
1507 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1508 
1509 	crypto_fpu_exit();
1510 }
1511 
1512 module_init(aesni_init);
1513 module_exit(aesni_exit);
1514 
1515 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1516 MODULE_LICENSE("GPL");
1517 MODULE_ALIAS("aes");
1518