1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/i387.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 /* This data is stored at the end of the crypto_tfm struct.
47  * It's a type of per "session" data storage location.
48  * This needs to be 16 byte aligned.
49  */
50 struct aesni_rfc4106_gcm_ctx {
51 	u8 hash_subkey[16];
52 	struct crypto_aes_ctx aes_key_expanded;
53 	u8 nonce[4];
54 	struct cryptd_aead *cryptd_tfm;
55 };
56 
57 struct aesni_gcm_set_hash_subkey_result {
58 	int err;
59 	struct completion completion;
60 };
61 
62 struct aesni_hash_subkey_req_data {
63 	u8 iv[16];
64 	struct aesni_gcm_set_hash_subkey_result result;
65 	struct scatterlist sg;
66 };
67 
68 #define AESNI_ALIGN	(16)
69 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
70 #define RFC4106_HASH_SUBKEY_SIZE 16
71 
72 struct aesni_lrw_ctx {
73 	struct lrw_table_ctx lrw_table;
74 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
75 };
76 
77 struct aesni_xts_ctx {
78 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
79 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 };
81 
82 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
83 			     unsigned int key_len);
84 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
85 			  const u8 *in);
86 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
87 			  const u8 *in);
88 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 			      const u8 *in, unsigned int len);
90 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 			      const u8 *in, unsigned int len);
92 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 			      const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len, u8 *iv);
96 
97 int crypto_fpu_init(void);
98 void crypto_fpu_exit(void);
99 
100 #define AVX_GEN2_OPTSIZE 640
101 #define AVX_GEN4_OPTSIZE 4096
102 
103 #ifdef CONFIG_X86_64
104 
105 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
106 			      const u8 *in, unsigned int len, u8 *iv);
107 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
108 			      const u8 *in, unsigned int len, u8 *iv);
109 
110 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
111 				 const u8 *in, bool enc, u8 *iv);
112 
113 /* asmlinkage void aesni_gcm_enc()
114  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
115  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
116  * const u8 *in, Plaintext input
117  * unsigned long plaintext_len, Length of data in bytes for encryption.
118  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
119  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
120  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
121  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
122  * const u8 *aad, Additional Authentication Data (AAD)
123  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
124  *          is going to be 8 or 12 bytes
125  * u8 *auth_tag, Authenticated Tag output.
126  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
127  *          Valid values are 16 (most likely), 12 or 8.
128  */
129 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
130 			const u8 *in, unsigned long plaintext_len, u8 *iv,
131 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
132 			u8 *auth_tag, unsigned long auth_tag_len);
133 
134 /* asmlinkage void aesni_gcm_dec()
135  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
136  * u8 *out, Plaintext output. Decrypt in-place is allowed.
137  * const u8 *in, Ciphertext input
138  * unsigned long ciphertext_len, Length of data in bytes for decryption.
139  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
140  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
141  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
142  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
143  * const u8 *aad, Additional Authentication Data (AAD)
144  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
145  * to be 8 or 12 bytes
146  * u8 *auth_tag, Authenticated Tag output.
147  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
148  * Valid values are 16 (most likely), 12 or 8.
149  */
150 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
151 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
152 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
153 			u8 *auth_tag, unsigned long auth_tag_len);
154 
155 
156 #ifdef CONFIG_AS_AVX
157 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
158 		void *keys, u8 *out, unsigned int num_bytes);
159 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
160 		void *keys, u8 *out, unsigned int num_bytes);
161 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
162 		void *keys, u8 *out, unsigned int num_bytes);
163 /*
164  * asmlinkage void aesni_gcm_precomp_avx_gen2()
165  * gcm_data *my_ctx_data, context data
166  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
167  */
168 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
169 
170 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
171 			const u8 *in, unsigned long plaintext_len, u8 *iv,
172 			const u8 *aad, unsigned long aad_len,
173 			u8 *auth_tag, unsigned long auth_tag_len);
174 
175 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
176 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
177 			const u8 *aad, unsigned long aad_len,
178 			u8 *auth_tag, unsigned long auth_tag_len);
179 
180 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
181 			const u8 *in, unsigned long plaintext_len, u8 *iv,
182 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
183 			u8 *auth_tag, unsigned long auth_tag_len)
184 {
185 	if (plaintext_len < AVX_GEN2_OPTSIZE) {
186 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
187 				aad_len, auth_tag, auth_tag_len);
188 	} else {
189 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
190 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
191 					aad_len, auth_tag, auth_tag_len);
192 	}
193 }
194 
195 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
196 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
197 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
198 			u8 *auth_tag, unsigned long auth_tag_len)
199 {
200 	if (ciphertext_len < AVX_GEN2_OPTSIZE) {
201 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
202 				aad_len, auth_tag, auth_tag_len);
203 	} else {
204 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
205 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
206 					aad_len, auth_tag, auth_tag_len);
207 	}
208 }
209 #endif
210 
211 #ifdef CONFIG_AS_AVX2
212 /*
213  * asmlinkage void aesni_gcm_precomp_avx_gen4()
214  * gcm_data *my_ctx_data, context data
215  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
216  */
217 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
218 
219 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
220 			const u8 *in, unsigned long plaintext_len, u8 *iv,
221 			const u8 *aad, unsigned long aad_len,
222 			u8 *auth_tag, unsigned long auth_tag_len);
223 
224 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
225 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
226 			const u8 *aad, unsigned long aad_len,
227 			u8 *auth_tag, unsigned long auth_tag_len);
228 
229 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
230 			const u8 *in, unsigned long plaintext_len, u8 *iv,
231 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
232 			u8 *auth_tag, unsigned long auth_tag_len)
233 {
234 	if (plaintext_len < AVX_GEN2_OPTSIZE) {
235 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
236 				aad_len, auth_tag, auth_tag_len);
237 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
238 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
239 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
240 					aad_len, auth_tag, auth_tag_len);
241 	} else {
242 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
243 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
244 					aad_len, auth_tag, auth_tag_len);
245 	}
246 }
247 
248 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
249 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
250 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
251 			u8 *auth_tag, unsigned long auth_tag_len)
252 {
253 	if (ciphertext_len < AVX_GEN2_OPTSIZE) {
254 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
255 				aad, aad_len, auth_tag, auth_tag_len);
256 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
257 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
258 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
259 					aad_len, auth_tag, auth_tag_len);
260 	} else {
261 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
262 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
263 					aad_len, auth_tag, auth_tag_len);
264 	}
265 }
266 #endif
267 
268 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
269 			const u8 *in, unsigned long plaintext_len, u8 *iv,
270 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
271 			u8 *auth_tag, unsigned long auth_tag_len);
272 
273 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
274 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
275 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 			u8 *auth_tag, unsigned long auth_tag_len);
277 
278 static inline struct
279 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
280 {
281 	return
282 		(struct aesni_rfc4106_gcm_ctx *)
283 		PTR_ALIGN((u8 *)
284 		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
285 }
286 #endif
287 
288 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
289 {
290 	unsigned long addr = (unsigned long)raw_ctx;
291 	unsigned long align = AESNI_ALIGN;
292 
293 	if (align <= crypto_tfm_ctx_alignment())
294 		align = 1;
295 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
296 }
297 
298 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
299 			      const u8 *in_key, unsigned int key_len)
300 {
301 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
302 	u32 *flags = &tfm->crt_flags;
303 	int err;
304 
305 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
306 	    key_len != AES_KEYSIZE_256) {
307 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
308 		return -EINVAL;
309 	}
310 
311 	if (!irq_fpu_usable())
312 		err = crypto_aes_expand_key(ctx, in_key, key_len);
313 	else {
314 		kernel_fpu_begin();
315 		err = aesni_set_key(ctx, in_key, key_len);
316 		kernel_fpu_end();
317 	}
318 
319 	return err;
320 }
321 
322 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
323 		       unsigned int key_len)
324 {
325 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
326 }
327 
328 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
329 {
330 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
331 
332 	if (!irq_fpu_usable())
333 		crypto_aes_encrypt_x86(ctx, dst, src);
334 	else {
335 		kernel_fpu_begin();
336 		aesni_enc(ctx, dst, src);
337 		kernel_fpu_end();
338 	}
339 }
340 
341 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
342 {
343 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
344 
345 	if (!irq_fpu_usable())
346 		crypto_aes_decrypt_x86(ctx, dst, src);
347 	else {
348 		kernel_fpu_begin();
349 		aesni_dec(ctx, dst, src);
350 		kernel_fpu_end();
351 	}
352 }
353 
354 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
355 {
356 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
357 
358 	aesni_enc(ctx, dst, src);
359 }
360 
361 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
362 {
363 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
364 
365 	aesni_dec(ctx, dst, src);
366 }
367 
368 static int ecb_encrypt(struct blkcipher_desc *desc,
369 		       struct scatterlist *dst, struct scatterlist *src,
370 		       unsigned int nbytes)
371 {
372 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
373 	struct blkcipher_walk walk;
374 	int err;
375 
376 	blkcipher_walk_init(&walk, dst, src, nbytes);
377 	err = blkcipher_walk_virt(desc, &walk);
378 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
379 
380 	kernel_fpu_begin();
381 	while ((nbytes = walk.nbytes)) {
382 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
383 			      nbytes & AES_BLOCK_MASK);
384 		nbytes &= AES_BLOCK_SIZE - 1;
385 		err = blkcipher_walk_done(desc, &walk, nbytes);
386 	}
387 	kernel_fpu_end();
388 
389 	return err;
390 }
391 
392 static int ecb_decrypt(struct blkcipher_desc *desc,
393 		       struct scatterlist *dst, struct scatterlist *src,
394 		       unsigned int nbytes)
395 {
396 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
397 	struct blkcipher_walk walk;
398 	int err;
399 
400 	blkcipher_walk_init(&walk, dst, src, nbytes);
401 	err = blkcipher_walk_virt(desc, &walk);
402 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
403 
404 	kernel_fpu_begin();
405 	while ((nbytes = walk.nbytes)) {
406 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
407 			      nbytes & AES_BLOCK_MASK);
408 		nbytes &= AES_BLOCK_SIZE - 1;
409 		err = blkcipher_walk_done(desc, &walk, nbytes);
410 	}
411 	kernel_fpu_end();
412 
413 	return err;
414 }
415 
416 static int cbc_encrypt(struct blkcipher_desc *desc,
417 		       struct scatterlist *dst, struct scatterlist *src,
418 		       unsigned int nbytes)
419 {
420 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
421 	struct blkcipher_walk walk;
422 	int err;
423 
424 	blkcipher_walk_init(&walk, dst, src, nbytes);
425 	err = blkcipher_walk_virt(desc, &walk);
426 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
427 
428 	kernel_fpu_begin();
429 	while ((nbytes = walk.nbytes)) {
430 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
431 			      nbytes & AES_BLOCK_MASK, walk.iv);
432 		nbytes &= AES_BLOCK_SIZE - 1;
433 		err = blkcipher_walk_done(desc, &walk, nbytes);
434 	}
435 	kernel_fpu_end();
436 
437 	return err;
438 }
439 
440 static int cbc_decrypt(struct blkcipher_desc *desc,
441 		       struct scatterlist *dst, struct scatterlist *src,
442 		       unsigned int nbytes)
443 {
444 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
445 	struct blkcipher_walk walk;
446 	int err;
447 
448 	blkcipher_walk_init(&walk, dst, src, nbytes);
449 	err = blkcipher_walk_virt(desc, &walk);
450 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
451 
452 	kernel_fpu_begin();
453 	while ((nbytes = walk.nbytes)) {
454 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
455 			      nbytes & AES_BLOCK_MASK, walk.iv);
456 		nbytes &= AES_BLOCK_SIZE - 1;
457 		err = blkcipher_walk_done(desc, &walk, nbytes);
458 	}
459 	kernel_fpu_end();
460 
461 	return err;
462 }
463 
464 #ifdef CONFIG_X86_64
465 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
466 			    struct blkcipher_walk *walk)
467 {
468 	u8 *ctrblk = walk->iv;
469 	u8 keystream[AES_BLOCK_SIZE];
470 	u8 *src = walk->src.virt.addr;
471 	u8 *dst = walk->dst.virt.addr;
472 	unsigned int nbytes = walk->nbytes;
473 
474 	aesni_enc(ctx, keystream, ctrblk);
475 	crypto_xor(keystream, src, nbytes);
476 	memcpy(dst, keystream, nbytes);
477 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
478 }
479 
480 #ifdef CONFIG_AS_AVX
481 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
482 			      const u8 *in, unsigned int len, u8 *iv)
483 {
484 	/*
485 	 * based on key length, override with the by8 version
486 	 * of ctr mode encryption/decryption for improved performance
487 	 * aes_set_key_common() ensures that key length is one of
488 	 * {128,192,256}
489 	 */
490 	if (ctx->key_length == AES_KEYSIZE_128)
491 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
492 	else if (ctx->key_length == AES_KEYSIZE_192)
493 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
494 	else
495 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
496 }
497 #endif
498 
499 static int ctr_crypt(struct blkcipher_desc *desc,
500 		     struct scatterlist *dst, struct scatterlist *src,
501 		     unsigned int nbytes)
502 {
503 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
504 	struct blkcipher_walk walk;
505 	int err;
506 
507 	blkcipher_walk_init(&walk, dst, src, nbytes);
508 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
509 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
510 
511 	kernel_fpu_begin();
512 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
513 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
514 				  nbytes & AES_BLOCK_MASK, walk.iv);
515 		nbytes &= AES_BLOCK_SIZE - 1;
516 		err = blkcipher_walk_done(desc, &walk, nbytes);
517 	}
518 	if (walk.nbytes) {
519 		ctr_crypt_final(ctx, &walk);
520 		err = blkcipher_walk_done(desc, &walk, 0);
521 	}
522 	kernel_fpu_end();
523 
524 	return err;
525 }
526 #endif
527 
528 static int ablk_ecb_init(struct crypto_tfm *tfm)
529 {
530 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
531 }
532 
533 static int ablk_cbc_init(struct crypto_tfm *tfm)
534 {
535 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
536 }
537 
538 #ifdef CONFIG_X86_64
539 static int ablk_ctr_init(struct crypto_tfm *tfm)
540 {
541 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
542 }
543 
544 #endif
545 
546 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
547 static int ablk_pcbc_init(struct crypto_tfm *tfm)
548 {
549 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
550 }
551 #endif
552 
553 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
554 {
555 	aesni_ecb_enc(ctx, blks, blks, nbytes);
556 }
557 
558 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
559 {
560 	aesni_ecb_dec(ctx, blks, blks, nbytes);
561 }
562 
563 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
564 			    unsigned int keylen)
565 {
566 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
567 	int err;
568 
569 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
570 				 keylen - AES_BLOCK_SIZE);
571 	if (err)
572 		return err;
573 
574 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
575 }
576 
577 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
578 {
579 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
580 
581 	lrw_free_table(&ctx->lrw_table);
582 }
583 
584 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
585 		       struct scatterlist *src, unsigned int nbytes)
586 {
587 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
588 	be128 buf[8];
589 	struct lrw_crypt_req req = {
590 		.tbuf = buf,
591 		.tbuflen = sizeof(buf),
592 
593 		.table_ctx = &ctx->lrw_table,
594 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
595 		.crypt_fn = lrw_xts_encrypt_callback,
596 	};
597 	int ret;
598 
599 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
600 
601 	kernel_fpu_begin();
602 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
603 	kernel_fpu_end();
604 
605 	return ret;
606 }
607 
608 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
609 		       struct scatterlist *src, unsigned int nbytes)
610 {
611 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
612 	be128 buf[8];
613 	struct lrw_crypt_req req = {
614 		.tbuf = buf,
615 		.tbuflen = sizeof(buf),
616 
617 		.table_ctx = &ctx->lrw_table,
618 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
619 		.crypt_fn = lrw_xts_decrypt_callback,
620 	};
621 	int ret;
622 
623 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
624 
625 	kernel_fpu_begin();
626 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
627 	kernel_fpu_end();
628 
629 	return ret;
630 }
631 
632 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
633 			    unsigned int keylen)
634 {
635 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
636 	u32 *flags = &tfm->crt_flags;
637 	int err;
638 
639 	/* key consists of keys of equal size concatenated, therefore
640 	 * the length must be even
641 	 */
642 	if (keylen % 2) {
643 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
644 		return -EINVAL;
645 	}
646 
647 	/* first half of xts-key is for crypt */
648 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
649 	if (err)
650 		return err;
651 
652 	/* second half of xts-key is for tweak */
653 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
654 				  keylen / 2);
655 }
656 
657 
658 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
659 {
660 	aesni_enc(ctx, out, in);
661 }
662 
663 #ifdef CONFIG_X86_64
664 
665 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
666 {
667 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
668 }
669 
670 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
671 {
672 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
673 }
674 
675 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
676 {
677 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
678 }
679 
680 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
681 {
682 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
683 }
684 
685 static const struct common_glue_ctx aesni_enc_xts = {
686 	.num_funcs = 2,
687 	.fpu_blocks_limit = 1,
688 
689 	.funcs = { {
690 		.num_blocks = 8,
691 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
692 	}, {
693 		.num_blocks = 1,
694 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
695 	} }
696 };
697 
698 static const struct common_glue_ctx aesni_dec_xts = {
699 	.num_funcs = 2,
700 	.fpu_blocks_limit = 1,
701 
702 	.funcs = { {
703 		.num_blocks = 8,
704 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
705 	}, {
706 		.num_blocks = 1,
707 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
708 	} }
709 };
710 
711 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
712 		       struct scatterlist *src, unsigned int nbytes)
713 {
714 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
715 
716 	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
717 				     XTS_TWEAK_CAST(aesni_xts_tweak),
718 				     aes_ctx(ctx->raw_tweak_ctx),
719 				     aes_ctx(ctx->raw_crypt_ctx));
720 }
721 
722 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
723 		       struct scatterlist *src, unsigned int nbytes)
724 {
725 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
726 
727 	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
728 				     XTS_TWEAK_CAST(aesni_xts_tweak),
729 				     aes_ctx(ctx->raw_tweak_ctx),
730 				     aes_ctx(ctx->raw_crypt_ctx));
731 }
732 
733 #else
734 
735 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
736 		       struct scatterlist *src, unsigned int nbytes)
737 {
738 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
739 	be128 buf[8];
740 	struct xts_crypt_req req = {
741 		.tbuf = buf,
742 		.tbuflen = sizeof(buf),
743 
744 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
745 		.tweak_fn = aesni_xts_tweak,
746 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
747 		.crypt_fn = lrw_xts_encrypt_callback,
748 	};
749 	int ret;
750 
751 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
752 
753 	kernel_fpu_begin();
754 	ret = xts_crypt(desc, dst, src, nbytes, &req);
755 	kernel_fpu_end();
756 
757 	return ret;
758 }
759 
760 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
761 		       struct scatterlist *src, unsigned int nbytes)
762 {
763 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
764 	be128 buf[8];
765 	struct xts_crypt_req req = {
766 		.tbuf = buf,
767 		.tbuflen = sizeof(buf),
768 
769 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
770 		.tweak_fn = aesni_xts_tweak,
771 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
772 		.crypt_fn = lrw_xts_decrypt_callback,
773 	};
774 	int ret;
775 
776 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
777 
778 	kernel_fpu_begin();
779 	ret = xts_crypt(desc, dst, src, nbytes, &req);
780 	kernel_fpu_end();
781 
782 	return ret;
783 }
784 
785 #endif
786 
787 #ifdef CONFIG_X86_64
788 static int rfc4106_init(struct crypto_tfm *tfm)
789 {
790 	struct cryptd_aead *cryptd_tfm;
791 	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
792 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
793 	struct crypto_aead *cryptd_child;
794 	struct aesni_rfc4106_gcm_ctx *child_ctx;
795 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
796 	if (IS_ERR(cryptd_tfm))
797 		return PTR_ERR(cryptd_tfm);
798 
799 	cryptd_child = cryptd_aead_child(cryptd_tfm);
800 	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
801 	memcpy(child_ctx, ctx, sizeof(*ctx));
802 	ctx->cryptd_tfm = cryptd_tfm;
803 	tfm->crt_aead.reqsize = sizeof(struct aead_request)
804 		+ crypto_aead_reqsize(&cryptd_tfm->base);
805 	return 0;
806 }
807 
808 static void rfc4106_exit(struct crypto_tfm *tfm)
809 {
810 	struct aesni_rfc4106_gcm_ctx *ctx =
811 		(struct aesni_rfc4106_gcm_ctx *)
812 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
813 	if (!IS_ERR(ctx->cryptd_tfm))
814 		cryptd_free_aead(ctx->cryptd_tfm);
815 	return;
816 }
817 
818 static void
819 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
820 {
821 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
822 
823 	if (err == -EINPROGRESS)
824 		return;
825 	result->err = err;
826 	complete(&result->completion);
827 }
828 
829 static int
830 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
831 {
832 	struct crypto_ablkcipher *ctr_tfm;
833 	struct ablkcipher_request *req;
834 	int ret = -EINVAL;
835 	struct aesni_hash_subkey_req_data *req_data;
836 
837 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
838 	if (IS_ERR(ctr_tfm))
839 		return PTR_ERR(ctr_tfm);
840 
841 	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
842 
843 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
844 	if (ret)
845 		goto out_free_ablkcipher;
846 
847 	ret = -ENOMEM;
848 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
849 	if (!req)
850 		goto out_free_ablkcipher;
851 
852 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
853 	if (!req_data)
854 		goto out_free_request;
855 
856 	memset(req_data->iv, 0, sizeof(req_data->iv));
857 
858 	/* Clear the data in the hash sub key container to zero.*/
859 	/* We want to cipher all zeros to create the hash sub key. */
860 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
861 
862 	init_completion(&req_data->result.completion);
863 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
864 	ablkcipher_request_set_tfm(req, ctr_tfm);
865 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
866 					CRYPTO_TFM_REQ_MAY_BACKLOG,
867 					rfc4106_set_hash_subkey_done,
868 					&req_data->result);
869 
870 	ablkcipher_request_set_crypt(req, &req_data->sg,
871 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
872 
873 	ret = crypto_ablkcipher_encrypt(req);
874 	if (ret == -EINPROGRESS || ret == -EBUSY) {
875 		ret = wait_for_completion_interruptible
876 			(&req_data->result.completion);
877 		if (!ret)
878 			ret = req_data->result.err;
879 	}
880 	kfree(req_data);
881 out_free_request:
882 	ablkcipher_request_free(req);
883 out_free_ablkcipher:
884 	crypto_free_ablkcipher(ctr_tfm);
885 	return ret;
886 }
887 
888 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
889 						   unsigned int key_len)
890 {
891 	int ret = 0;
892 	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
893 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
894 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
895 	struct aesni_rfc4106_gcm_ctx *child_ctx =
896                                  aesni_rfc4106_gcm_ctx_get(cryptd_child);
897 	u8 *new_key_align, *new_key_mem = NULL;
898 
899 	if (key_len < 4) {
900 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
901 		return -EINVAL;
902 	}
903 	/*Account for 4 byte nonce at the end.*/
904 	key_len -= 4;
905 	if (key_len != AES_KEYSIZE_128) {
906 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
907 		return -EINVAL;
908 	}
909 
910 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
911 	/*This must be on a 16 byte boundary!*/
912 	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
913 		return -EINVAL;
914 
915 	if ((unsigned long)key % AESNI_ALIGN) {
916 		/*key is not aligned: use an auxuliar aligned pointer*/
917 		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
918 		if (!new_key_mem)
919 			return -ENOMEM;
920 
921 		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
922 		memcpy(new_key_align, key, key_len);
923 		key = new_key_align;
924 	}
925 
926 	if (!irq_fpu_usable())
927 		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
928 		key, key_len);
929 	else {
930 		kernel_fpu_begin();
931 		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
932 		kernel_fpu_end();
933 	}
934 	/*This must be on a 16 byte boundary!*/
935 	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
936 		ret = -EINVAL;
937 		goto exit;
938 	}
939 	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
940 	memcpy(child_ctx, ctx, sizeof(*ctx));
941 exit:
942 	kfree(new_key_mem);
943 	return ret;
944 }
945 
946 /* This is the Integrity Check Value (aka the authentication tag length and can
947  * be 8, 12 or 16 bytes long. */
948 static int rfc4106_set_authsize(struct crypto_aead *parent,
949 				unsigned int authsize)
950 {
951 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
952 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
953 
954 	switch (authsize) {
955 	case 8:
956 	case 12:
957 	case 16:
958 		break;
959 	default:
960 		return -EINVAL;
961 	}
962 	crypto_aead_crt(parent)->authsize = authsize;
963 	crypto_aead_crt(cryptd_child)->authsize = authsize;
964 	return 0;
965 }
966 
967 static int rfc4106_encrypt(struct aead_request *req)
968 {
969 	int ret;
970 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
971 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
972 
973 	if (!irq_fpu_usable()) {
974 		struct aead_request *cryptd_req =
975 			(struct aead_request *) aead_request_ctx(req);
976 		memcpy(cryptd_req, req, sizeof(*req));
977 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
978 		return crypto_aead_encrypt(cryptd_req);
979 	} else {
980 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
981 		kernel_fpu_begin();
982 		ret = cryptd_child->base.crt_aead.encrypt(req);
983 		kernel_fpu_end();
984 		return ret;
985 	}
986 }
987 
988 static int rfc4106_decrypt(struct aead_request *req)
989 {
990 	int ret;
991 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
993 
994 	if (!irq_fpu_usable()) {
995 		struct aead_request *cryptd_req =
996 			(struct aead_request *) aead_request_ctx(req);
997 		memcpy(cryptd_req, req, sizeof(*req));
998 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
999 		return crypto_aead_decrypt(cryptd_req);
1000 	} else {
1001 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
1002 		kernel_fpu_begin();
1003 		ret = cryptd_child->base.crt_aead.decrypt(req);
1004 		kernel_fpu_end();
1005 		return ret;
1006 	}
1007 }
1008 
1009 static int __driver_rfc4106_encrypt(struct aead_request *req)
1010 {
1011 	u8 one_entry_in_sg = 0;
1012 	u8 *src, *dst, *assoc;
1013 	__be32 counter = cpu_to_be32(1);
1014 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1015 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1016 	void *aes_ctx = &(ctx->aes_key_expanded);
1017 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1018 	u8 iv_tab[16+AESNI_ALIGN];
1019 	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
1020 	struct scatter_walk src_sg_walk;
1021 	struct scatter_walk assoc_sg_walk;
1022 	struct scatter_walk dst_sg_walk;
1023 	unsigned int i;
1024 
1025 	/* Assuming we are supporting rfc4106 64-bit extended */
1026 	/* sequence numbers We need to have the AAD length equal */
1027 	/* to 8 or 12 bytes */
1028 	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
1029 		return -EINVAL;
1030 	/* IV below built */
1031 	for (i = 0; i < 4; i++)
1032 		*(iv+i) = ctx->nonce[i];
1033 	for (i = 0; i < 8; i++)
1034 		*(iv+4+i) = req->iv[i];
1035 	*((__be32 *)(iv+12)) = counter;
1036 
1037 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1038 		one_entry_in_sg = 1;
1039 		scatterwalk_start(&src_sg_walk, req->src);
1040 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1041 		src = scatterwalk_map(&src_sg_walk);
1042 		assoc = scatterwalk_map(&assoc_sg_walk);
1043 		dst = src;
1044 		if (unlikely(req->src != req->dst)) {
1045 			scatterwalk_start(&dst_sg_walk, req->dst);
1046 			dst = scatterwalk_map(&dst_sg_walk);
1047 		}
1048 
1049 	} else {
1050 		/* Allocate memory for src, dst, assoc */
1051 		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
1052 			GFP_ATOMIC);
1053 		if (unlikely(!src))
1054 			return -ENOMEM;
1055 		assoc = (src + req->cryptlen + auth_tag_len);
1056 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1057 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1058 					req->assoclen, 0);
1059 		dst = src;
1060 	}
1061 
1062 	aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1063 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
1064 		+ ((unsigned long)req->cryptlen), auth_tag_len);
1065 
1066 	/* The authTag (aka the Integrity Check Value) needs to be written
1067 	 * back to the packet. */
1068 	if (one_entry_in_sg) {
1069 		if (unlikely(req->src != req->dst)) {
1070 			scatterwalk_unmap(dst);
1071 			scatterwalk_done(&dst_sg_walk, 0, 0);
1072 		}
1073 		scatterwalk_unmap(src);
1074 		scatterwalk_unmap(assoc);
1075 		scatterwalk_done(&src_sg_walk, 0, 0);
1076 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1077 	} else {
1078 		scatterwalk_map_and_copy(dst, req->dst, 0,
1079 			req->cryptlen + auth_tag_len, 1);
1080 		kfree(src);
1081 	}
1082 	return 0;
1083 }
1084 
1085 static int __driver_rfc4106_decrypt(struct aead_request *req)
1086 {
1087 	u8 one_entry_in_sg = 0;
1088 	u8 *src, *dst, *assoc;
1089 	unsigned long tempCipherLen = 0;
1090 	__be32 counter = cpu_to_be32(1);
1091 	int retval = 0;
1092 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1093 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1094 	void *aes_ctx = &(ctx->aes_key_expanded);
1095 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1096 	u8 iv_and_authTag[32+AESNI_ALIGN];
1097 	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
1098 	u8 *authTag = iv + 16;
1099 	struct scatter_walk src_sg_walk;
1100 	struct scatter_walk assoc_sg_walk;
1101 	struct scatter_walk dst_sg_walk;
1102 	unsigned int i;
1103 
1104 	if (unlikely((req->cryptlen < auth_tag_len) ||
1105 		(req->assoclen != 8 && req->assoclen != 12)))
1106 		return -EINVAL;
1107 	/* Assuming we are supporting rfc4106 64-bit extended */
1108 	/* sequence numbers We need to have the AAD length */
1109 	/* equal to 8 or 12 bytes */
1110 
1111 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1112 	/* IV below built */
1113 	for (i = 0; i < 4; i++)
1114 		*(iv+i) = ctx->nonce[i];
1115 	for (i = 0; i < 8; i++)
1116 		*(iv+4+i) = req->iv[i];
1117 	*((__be32 *)(iv+12)) = counter;
1118 
1119 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1120 		one_entry_in_sg = 1;
1121 		scatterwalk_start(&src_sg_walk, req->src);
1122 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1123 		src = scatterwalk_map(&src_sg_walk);
1124 		assoc = scatterwalk_map(&assoc_sg_walk);
1125 		dst = src;
1126 		if (unlikely(req->src != req->dst)) {
1127 			scatterwalk_start(&dst_sg_walk, req->dst);
1128 			dst = scatterwalk_map(&dst_sg_walk);
1129 		}
1130 
1131 	} else {
1132 		/* Allocate memory for src, dst, assoc */
1133 		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1134 		if (!src)
1135 			return -ENOMEM;
1136 		assoc = (src + req->cryptlen + auth_tag_len);
1137 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1138 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1139 			req->assoclen, 0);
1140 		dst = src;
1141 	}
1142 
1143 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1144 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
1145 		authTag, auth_tag_len);
1146 
1147 	/* Compare generated tag with passed in tag. */
1148 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1149 		-EBADMSG : 0;
1150 
1151 	if (one_entry_in_sg) {
1152 		if (unlikely(req->src != req->dst)) {
1153 			scatterwalk_unmap(dst);
1154 			scatterwalk_done(&dst_sg_walk, 0, 0);
1155 		}
1156 		scatterwalk_unmap(src);
1157 		scatterwalk_unmap(assoc);
1158 		scatterwalk_done(&src_sg_walk, 0, 0);
1159 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1160 	} else {
1161 		scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
1162 		kfree(src);
1163 	}
1164 	return retval;
1165 }
1166 #endif
1167 
1168 static struct crypto_alg aesni_algs[] = { {
1169 	.cra_name		= "aes",
1170 	.cra_driver_name	= "aes-aesni",
1171 	.cra_priority		= 300,
1172 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1173 	.cra_blocksize		= AES_BLOCK_SIZE,
1174 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1175 				  AESNI_ALIGN - 1,
1176 	.cra_alignmask		= 0,
1177 	.cra_module		= THIS_MODULE,
1178 	.cra_u	= {
1179 		.cipher	= {
1180 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1181 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1182 			.cia_setkey		= aes_set_key,
1183 			.cia_encrypt		= aes_encrypt,
1184 			.cia_decrypt		= aes_decrypt
1185 		}
1186 	}
1187 }, {
1188 	.cra_name		= "__aes-aesni",
1189 	.cra_driver_name	= "__driver-aes-aesni",
1190 	.cra_priority		= 0,
1191 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1192 	.cra_blocksize		= AES_BLOCK_SIZE,
1193 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1194 				  AESNI_ALIGN - 1,
1195 	.cra_alignmask		= 0,
1196 	.cra_module		= THIS_MODULE,
1197 	.cra_u	= {
1198 		.cipher	= {
1199 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1200 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1201 			.cia_setkey		= aes_set_key,
1202 			.cia_encrypt		= __aes_encrypt,
1203 			.cia_decrypt		= __aes_decrypt
1204 		}
1205 	}
1206 }, {
1207 	.cra_name		= "__ecb-aes-aesni",
1208 	.cra_driver_name	= "__driver-ecb-aes-aesni",
1209 	.cra_priority		= 0,
1210 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1211 	.cra_blocksize		= AES_BLOCK_SIZE,
1212 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1213 				  AESNI_ALIGN - 1,
1214 	.cra_alignmask		= 0,
1215 	.cra_type		= &crypto_blkcipher_type,
1216 	.cra_module		= THIS_MODULE,
1217 	.cra_u = {
1218 		.blkcipher = {
1219 			.min_keysize	= AES_MIN_KEY_SIZE,
1220 			.max_keysize	= AES_MAX_KEY_SIZE,
1221 			.setkey		= aes_set_key,
1222 			.encrypt	= ecb_encrypt,
1223 			.decrypt	= ecb_decrypt,
1224 		},
1225 	},
1226 }, {
1227 	.cra_name		= "__cbc-aes-aesni",
1228 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1229 	.cra_priority		= 0,
1230 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1231 	.cra_blocksize		= AES_BLOCK_SIZE,
1232 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1233 				  AESNI_ALIGN - 1,
1234 	.cra_alignmask		= 0,
1235 	.cra_type		= &crypto_blkcipher_type,
1236 	.cra_module		= THIS_MODULE,
1237 	.cra_u = {
1238 		.blkcipher = {
1239 			.min_keysize	= AES_MIN_KEY_SIZE,
1240 			.max_keysize	= AES_MAX_KEY_SIZE,
1241 			.setkey		= aes_set_key,
1242 			.encrypt	= cbc_encrypt,
1243 			.decrypt	= cbc_decrypt,
1244 		},
1245 	},
1246 }, {
1247 	.cra_name		= "ecb(aes)",
1248 	.cra_driver_name	= "ecb-aes-aesni",
1249 	.cra_priority		= 400,
1250 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1251 	.cra_blocksize		= AES_BLOCK_SIZE,
1252 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1253 	.cra_alignmask		= 0,
1254 	.cra_type		= &crypto_ablkcipher_type,
1255 	.cra_module		= THIS_MODULE,
1256 	.cra_init		= ablk_ecb_init,
1257 	.cra_exit		= ablk_exit,
1258 	.cra_u = {
1259 		.ablkcipher = {
1260 			.min_keysize	= AES_MIN_KEY_SIZE,
1261 			.max_keysize	= AES_MAX_KEY_SIZE,
1262 			.setkey		= ablk_set_key,
1263 			.encrypt	= ablk_encrypt,
1264 			.decrypt	= ablk_decrypt,
1265 		},
1266 	},
1267 }, {
1268 	.cra_name		= "cbc(aes)",
1269 	.cra_driver_name	= "cbc-aes-aesni",
1270 	.cra_priority		= 400,
1271 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1272 	.cra_blocksize		= AES_BLOCK_SIZE,
1273 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1274 	.cra_alignmask		= 0,
1275 	.cra_type		= &crypto_ablkcipher_type,
1276 	.cra_module		= THIS_MODULE,
1277 	.cra_init		= ablk_cbc_init,
1278 	.cra_exit		= ablk_exit,
1279 	.cra_u = {
1280 		.ablkcipher = {
1281 			.min_keysize	= AES_MIN_KEY_SIZE,
1282 			.max_keysize	= AES_MAX_KEY_SIZE,
1283 			.ivsize		= AES_BLOCK_SIZE,
1284 			.setkey		= ablk_set_key,
1285 			.encrypt	= ablk_encrypt,
1286 			.decrypt	= ablk_decrypt,
1287 		},
1288 	},
1289 #ifdef CONFIG_X86_64
1290 }, {
1291 	.cra_name		= "__ctr-aes-aesni",
1292 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1293 	.cra_priority		= 0,
1294 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1295 	.cra_blocksize		= 1,
1296 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1297 				  AESNI_ALIGN - 1,
1298 	.cra_alignmask		= 0,
1299 	.cra_type		= &crypto_blkcipher_type,
1300 	.cra_module		= THIS_MODULE,
1301 	.cra_u = {
1302 		.blkcipher = {
1303 			.min_keysize	= AES_MIN_KEY_SIZE,
1304 			.max_keysize	= AES_MAX_KEY_SIZE,
1305 			.ivsize		= AES_BLOCK_SIZE,
1306 			.setkey		= aes_set_key,
1307 			.encrypt	= ctr_crypt,
1308 			.decrypt	= ctr_crypt,
1309 		},
1310 	},
1311 }, {
1312 	.cra_name		= "ctr(aes)",
1313 	.cra_driver_name	= "ctr-aes-aesni",
1314 	.cra_priority		= 400,
1315 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1316 	.cra_blocksize		= 1,
1317 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1318 	.cra_alignmask		= 0,
1319 	.cra_type		= &crypto_ablkcipher_type,
1320 	.cra_module		= THIS_MODULE,
1321 	.cra_init		= ablk_ctr_init,
1322 	.cra_exit		= ablk_exit,
1323 	.cra_u = {
1324 		.ablkcipher = {
1325 			.min_keysize	= AES_MIN_KEY_SIZE,
1326 			.max_keysize	= AES_MAX_KEY_SIZE,
1327 			.ivsize		= AES_BLOCK_SIZE,
1328 			.setkey		= ablk_set_key,
1329 			.encrypt	= ablk_encrypt,
1330 			.decrypt	= ablk_encrypt,
1331 			.geniv		= "chainiv",
1332 		},
1333 	},
1334 }, {
1335 	.cra_name		= "__gcm-aes-aesni",
1336 	.cra_driver_name	= "__driver-gcm-aes-aesni",
1337 	.cra_priority		= 0,
1338 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
1339 	.cra_blocksize		= 1,
1340 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1341 				  AESNI_ALIGN,
1342 	.cra_alignmask		= 0,
1343 	.cra_type		= &crypto_aead_type,
1344 	.cra_module		= THIS_MODULE,
1345 	.cra_u = {
1346 		.aead = {
1347 			.encrypt	= __driver_rfc4106_encrypt,
1348 			.decrypt	= __driver_rfc4106_decrypt,
1349 		},
1350 	},
1351 }, {
1352 	.cra_name		= "rfc4106(gcm(aes))",
1353 	.cra_driver_name	= "rfc4106-gcm-aesni",
1354 	.cra_priority		= 400,
1355 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1356 	.cra_blocksize		= 1,
1357 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1358 				  AESNI_ALIGN,
1359 	.cra_alignmask		= 0,
1360 	.cra_type		= &crypto_nivaead_type,
1361 	.cra_module		= THIS_MODULE,
1362 	.cra_init		= rfc4106_init,
1363 	.cra_exit		= rfc4106_exit,
1364 	.cra_u = {
1365 		.aead = {
1366 			.setkey		= rfc4106_set_key,
1367 			.setauthsize	= rfc4106_set_authsize,
1368 			.encrypt	= rfc4106_encrypt,
1369 			.decrypt	= rfc4106_decrypt,
1370 			.geniv		= "seqiv",
1371 			.ivsize		= 8,
1372 			.maxauthsize	= 16,
1373 		},
1374 	},
1375 #endif
1376 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1377 }, {
1378 	.cra_name		= "pcbc(aes)",
1379 	.cra_driver_name	= "pcbc-aes-aesni",
1380 	.cra_priority		= 400,
1381 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1382 	.cra_blocksize		= AES_BLOCK_SIZE,
1383 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1384 	.cra_alignmask		= 0,
1385 	.cra_type		= &crypto_ablkcipher_type,
1386 	.cra_module		= THIS_MODULE,
1387 	.cra_init		= ablk_pcbc_init,
1388 	.cra_exit		= ablk_exit,
1389 	.cra_u = {
1390 		.ablkcipher = {
1391 			.min_keysize	= AES_MIN_KEY_SIZE,
1392 			.max_keysize	= AES_MAX_KEY_SIZE,
1393 			.ivsize		= AES_BLOCK_SIZE,
1394 			.setkey		= ablk_set_key,
1395 			.encrypt	= ablk_encrypt,
1396 			.decrypt	= ablk_decrypt,
1397 		},
1398 	},
1399 #endif
1400 }, {
1401 	.cra_name		= "__lrw-aes-aesni",
1402 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1403 	.cra_priority		= 0,
1404 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1405 	.cra_blocksize		= AES_BLOCK_SIZE,
1406 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1407 	.cra_alignmask		= 0,
1408 	.cra_type		= &crypto_blkcipher_type,
1409 	.cra_module		= THIS_MODULE,
1410 	.cra_exit		= lrw_aesni_exit_tfm,
1411 	.cra_u = {
1412 		.blkcipher = {
1413 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1414 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1415 			.ivsize		= AES_BLOCK_SIZE,
1416 			.setkey		= lrw_aesni_setkey,
1417 			.encrypt	= lrw_encrypt,
1418 			.decrypt	= lrw_decrypt,
1419 		},
1420 	},
1421 }, {
1422 	.cra_name		= "__xts-aes-aesni",
1423 	.cra_driver_name	= "__driver-xts-aes-aesni",
1424 	.cra_priority		= 0,
1425 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1426 	.cra_blocksize		= AES_BLOCK_SIZE,
1427 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1428 	.cra_alignmask		= 0,
1429 	.cra_type		= &crypto_blkcipher_type,
1430 	.cra_module		= THIS_MODULE,
1431 	.cra_u = {
1432 		.blkcipher = {
1433 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1434 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1435 			.ivsize		= AES_BLOCK_SIZE,
1436 			.setkey		= xts_aesni_setkey,
1437 			.encrypt	= xts_encrypt,
1438 			.decrypt	= xts_decrypt,
1439 		},
1440 	},
1441 }, {
1442 	.cra_name		= "lrw(aes)",
1443 	.cra_driver_name	= "lrw-aes-aesni",
1444 	.cra_priority		= 400,
1445 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1446 	.cra_blocksize		= AES_BLOCK_SIZE,
1447 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1448 	.cra_alignmask		= 0,
1449 	.cra_type		= &crypto_ablkcipher_type,
1450 	.cra_module		= THIS_MODULE,
1451 	.cra_init		= ablk_init,
1452 	.cra_exit		= ablk_exit,
1453 	.cra_u = {
1454 		.ablkcipher = {
1455 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1456 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1457 			.ivsize		= AES_BLOCK_SIZE,
1458 			.setkey		= ablk_set_key,
1459 			.encrypt	= ablk_encrypt,
1460 			.decrypt	= ablk_decrypt,
1461 		},
1462 	},
1463 }, {
1464 	.cra_name		= "xts(aes)",
1465 	.cra_driver_name	= "xts-aes-aesni",
1466 	.cra_priority		= 400,
1467 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1468 	.cra_blocksize		= AES_BLOCK_SIZE,
1469 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1470 	.cra_alignmask		= 0,
1471 	.cra_type		= &crypto_ablkcipher_type,
1472 	.cra_module		= THIS_MODULE,
1473 	.cra_init		= ablk_init,
1474 	.cra_exit		= ablk_exit,
1475 	.cra_u = {
1476 		.ablkcipher = {
1477 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1478 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1479 			.ivsize		= AES_BLOCK_SIZE,
1480 			.setkey		= ablk_set_key,
1481 			.encrypt	= ablk_encrypt,
1482 			.decrypt	= ablk_decrypt,
1483 		},
1484 	},
1485 } };
1486 
1487 
1488 static const struct x86_cpu_id aesni_cpu_id[] = {
1489 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1490 	{}
1491 };
1492 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1493 
1494 static int __init aesni_init(void)
1495 {
1496 	int err;
1497 
1498 	if (!x86_match_cpu(aesni_cpu_id))
1499 		return -ENODEV;
1500 #ifdef CONFIG_X86_64
1501 #ifdef CONFIG_AS_AVX2
1502 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1503 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1504 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1505 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1506 	} else
1507 #endif
1508 #ifdef CONFIG_AS_AVX
1509 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1510 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1511 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1512 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1513 	} else
1514 #endif
1515 	{
1516 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1517 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1518 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1519 	}
1520 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1521 #ifdef CONFIG_AS_AVX
1522 	if (cpu_has_avx) {
1523 		/* optimize performance of ctr mode encryption transform */
1524 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1525 		pr_info("AES CTR mode by8 optimization enabled\n");
1526 	}
1527 #endif
1528 #endif
1529 
1530 	err = crypto_fpu_init();
1531 	if (err)
1532 		return err;
1533 
1534 	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1535 }
1536 
1537 static void __exit aesni_exit(void)
1538 {
1539 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1540 
1541 	crypto_fpu_exit();
1542 }
1543 
1544 module_init(aesni_init);
1545 module_exit(aesni_exit);
1546 
1547 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1548 MODULE_LICENSE("GPL");
1549 MODULE_ALIAS_CRYPTO("aes");
1550