1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/i387.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 
47 /* This data is stored at the end of the crypto_tfm struct.
48  * It's a type of per "session" data storage location.
49  * This needs to be 16 byte aligned.
50  */
51 struct aesni_rfc4106_gcm_ctx {
52 	u8 hash_subkey[16];
53 	struct crypto_aes_ctx aes_key_expanded;
54 	u8 nonce[4];
55 	struct cryptd_aead *cryptd_tfm;
56 };
57 
58 struct aesni_gcm_set_hash_subkey_result {
59 	int err;
60 	struct completion completion;
61 };
62 
63 struct aesni_hash_subkey_req_data {
64 	u8 iv[16];
65 	struct aesni_gcm_set_hash_subkey_result result;
66 	struct scatterlist sg;
67 };
68 
69 #define AESNI_ALIGN	(16)
70 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
71 #define RFC4106_HASH_SUBKEY_SIZE 16
72 
73 struct aesni_lrw_ctx {
74 	struct lrw_table_ctx lrw_table;
75 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77 
78 struct aesni_xts_ctx {
79 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82 
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 			     unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 			  const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 			  const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 			      const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 			      const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 			      const u8 *in, unsigned int len, u8 *iv);
97 
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100 
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103 
104 #ifdef CONFIG_X86_64
105 
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 			      const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 			      const u8 *in, unsigned int len, u8 *iv);
110 
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 				 const u8 *in, bool enc, u8 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117  * const u8 *in, Plaintext input
118  * unsigned long plaintext_len, Length of data in bytes for encryption.
119  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
121  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125  *          is going to be 8 or 12 bytes
126  * u8 *auth_tag, Authenticated Tag output.
127  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128  *          Valid values are 16 (most likely), 12 or 8.
129  */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * u8 *out, Plaintext output. Decrypt in-place is allowed.
138  * const u8 *in, Ciphertext input
139  * unsigned long ciphertext_len, Length of data in bytes for decryption.
140  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
142  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 			u8 *auth_tag, unsigned long auth_tag_len);
155 
156 
157 #ifdef CONFIG_AS_AVX
158 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
159 		void *keys, u8 *out, unsigned int num_bytes);
160 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
161 		void *keys, u8 *out, unsigned int num_bytes);
162 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
163 		void *keys, u8 *out, unsigned int num_bytes);
164 /*
165  * asmlinkage void aesni_gcm_precomp_avx_gen2()
166  * gcm_data *my_ctx_data, context data
167  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
168  */
169 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
170 
171 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
172 			const u8 *in, unsigned long plaintext_len, u8 *iv,
173 			const u8 *aad, unsigned long aad_len,
174 			u8 *auth_tag, unsigned long auth_tag_len);
175 
176 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
177 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
178 			const u8 *aad, unsigned long aad_len,
179 			u8 *auth_tag, unsigned long auth_tag_len);
180 
181 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
182 			const u8 *in, unsigned long plaintext_len, u8 *iv,
183 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
184 			u8 *auth_tag, unsigned long auth_tag_len)
185 {
186         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
187 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
189 				aad_len, auth_tag, auth_tag_len);
190 	} else {
191 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
192 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
193 					aad_len, auth_tag, auth_tag_len);
194 	}
195 }
196 
197 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
198 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
199 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
200 			u8 *auth_tag, unsigned long auth_tag_len)
201 {
202         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
203 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
205 				aad_len, auth_tag, auth_tag_len);
206 	} else {
207 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
208 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
209 					aad_len, auth_tag, auth_tag_len);
210 	}
211 }
212 #endif
213 
214 #ifdef CONFIG_AS_AVX2
215 /*
216  * asmlinkage void aesni_gcm_precomp_avx_gen4()
217  * gcm_data *my_ctx_data, context data
218  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
219  */
220 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
221 
222 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
228 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 			const u8 *aad, unsigned long aad_len,
230 			u8 *auth_tag, unsigned long auth_tag_len);
231 
232 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
233 			const u8 *in, unsigned long plaintext_len, u8 *iv,
234 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
235 			u8 *auth_tag, unsigned long auth_tag_len)
236 {
237        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
238 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
240 				aad_len, auth_tag, auth_tag_len);
241 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
242 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
243 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
244 					aad_len, auth_tag, auth_tag_len);
245 	} else {
246 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
247 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
248 					aad_len, auth_tag, auth_tag_len);
249 	}
250 }
251 
252 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
253 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
254 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
255 			u8 *auth_tag, unsigned long auth_tag_len)
256 {
257        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
258 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
260 				aad, aad_len, auth_tag, auth_tag_len);
261 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
262 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
263 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
264 					aad_len, auth_tag, auth_tag_len);
265 	} else {
266 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
267 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
268 					aad_len, auth_tag, auth_tag_len);
269 	}
270 }
271 #endif
272 
273 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
274 			const u8 *in, unsigned long plaintext_len, u8 *iv,
275 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 			u8 *auth_tag, unsigned long auth_tag_len);
277 
278 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
279 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
280 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
281 			u8 *auth_tag, unsigned long auth_tag_len);
282 
283 static inline struct
284 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
285 {
286 	return
287 		(struct aesni_rfc4106_gcm_ctx *)
288 		PTR_ALIGN((u8 *)
289 		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
290 }
291 #endif
292 
293 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
294 {
295 	unsigned long addr = (unsigned long)raw_ctx;
296 	unsigned long align = AESNI_ALIGN;
297 
298 	if (align <= crypto_tfm_ctx_alignment())
299 		align = 1;
300 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
301 }
302 
303 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
304 			      const u8 *in_key, unsigned int key_len)
305 {
306 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
307 	u32 *flags = &tfm->crt_flags;
308 	int err;
309 
310 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
311 	    key_len != AES_KEYSIZE_256) {
312 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
313 		return -EINVAL;
314 	}
315 
316 	if (!irq_fpu_usable())
317 		err = crypto_aes_expand_key(ctx, in_key, key_len);
318 	else {
319 		kernel_fpu_begin();
320 		err = aesni_set_key(ctx, in_key, key_len);
321 		kernel_fpu_end();
322 	}
323 
324 	return err;
325 }
326 
327 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
328 		       unsigned int key_len)
329 {
330 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
331 }
332 
333 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
334 {
335 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
336 
337 	if (!irq_fpu_usable())
338 		crypto_aes_encrypt_x86(ctx, dst, src);
339 	else {
340 		kernel_fpu_begin();
341 		aesni_enc(ctx, dst, src);
342 		kernel_fpu_end();
343 	}
344 }
345 
346 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
347 {
348 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
349 
350 	if (!irq_fpu_usable())
351 		crypto_aes_decrypt_x86(ctx, dst, src);
352 	else {
353 		kernel_fpu_begin();
354 		aesni_dec(ctx, dst, src);
355 		kernel_fpu_end();
356 	}
357 }
358 
359 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
360 {
361 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
362 
363 	aesni_enc(ctx, dst, src);
364 }
365 
366 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
367 {
368 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
369 
370 	aesni_dec(ctx, dst, src);
371 }
372 
373 static int ecb_encrypt(struct blkcipher_desc *desc,
374 		       struct scatterlist *dst, struct scatterlist *src,
375 		       unsigned int nbytes)
376 {
377 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
378 	struct blkcipher_walk walk;
379 	int err;
380 
381 	blkcipher_walk_init(&walk, dst, src, nbytes);
382 	err = blkcipher_walk_virt(desc, &walk);
383 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
384 
385 	kernel_fpu_begin();
386 	while ((nbytes = walk.nbytes)) {
387 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
388 			      nbytes & AES_BLOCK_MASK);
389 		nbytes &= AES_BLOCK_SIZE - 1;
390 		err = blkcipher_walk_done(desc, &walk, nbytes);
391 	}
392 	kernel_fpu_end();
393 
394 	return err;
395 }
396 
397 static int ecb_decrypt(struct blkcipher_desc *desc,
398 		       struct scatterlist *dst, struct scatterlist *src,
399 		       unsigned int nbytes)
400 {
401 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
402 	struct blkcipher_walk walk;
403 	int err;
404 
405 	blkcipher_walk_init(&walk, dst, src, nbytes);
406 	err = blkcipher_walk_virt(desc, &walk);
407 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
408 
409 	kernel_fpu_begin();
410 	while ((nbytes = walk.nbytes)) {
411 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
412 			      nbytes & AES_BLOCK_MASK);
413 		nbytes &= AES_BLOCK_SIZE - 1;
414 		err = blkcipher_walk_done(desc, &walk, nbytes);
415 	}
416 	kernel_fpu_end();
417 
418 	return err;
419 }
420 
421 static int cbc_encrypt(struct blkcipher_desc *desc,
422 		       struct scatterlist *dst, struct scatterlist *src,
423 		       unsigned int nbytes)
424 {
425 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
426 	struct blkcipher_walk walk;
427 	int err;
428 
429 	blkcipher_walk_init(&walk, dst, src, nbytes);
430 	err = blkcipher_walk_virt(desc, &walk);
431 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
432 
433 	kernel_fpu_begin();
434 	while ((nbytes = walk.nbytes)) {
435 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
436 			      nbytes & AES_BLOCK_MASK, walk.iv);
437 		nbytes &= AES_BLOCK_SIZE - 1;
438 		err = blkcipher_walk_done(desc, &walk, nbytes);
439 	}
440 	kernel_fpu_end();
441 
442 	return err;
443 }
444 
445 static int cbc_decrypt(struct blkcipher_desc *desc,
446 		       struct scatterlist *dst, struct scatterlist *src,
447 		       unsigned int nbytes)
448 {
449 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
450 	struct blkcipher_walk walk;
451 	int err;
452 
453 	blkcipher_walk_init(&walk, dst, src, nbytes);
454 	err = blkcipher_walk_virt(desc, &walk);
455 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
456 
457 	kernel_fpu_begin();
458 	while ((nbytes = walk.nbytes)) {
459 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
460 			      nbytes & AES_BLOCK_MASK, walk.iv);
461 		nbytes &= AES_BLOCK_SIZE - 1;
462 		err = blkcipher_walk_done(desc, &walk, nbytes);
463 	}
464 	kernel_fpu_end();
465 
466 	return err;
467 }
468 
469 #ifdef CONFIG_X86_64
470 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
471 			    struct blkcipher_walk *walk)
472 {
473 	u8 *ctrblk = walk->iv;
474 	u8 keystream[AES_BLOCK_SIZE];
475 	u8 *src = walk->src.virt.addr;
476 	u8 *dst = walk->dst.virt.addr;
477 	unsigned int nbytes = walk->nbytes;
478 
479 	aesni_enc(ctx, keystream, ctrblk);
480 	crypto_xor(keystream, src, nbytes);
481 	memcpy(dst, keystream, nbytes);
482 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
483 }
484 
485 #ifdef CONFIG_AS_AVX
486 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
487 			      const u8 *in, unsigned int len, u8 *iv)
488 {
489 	/*
490 	 * based on key length, override with the by8 version
491 	 * of ctr mode encryption/decryption for improved performance
492 	 * aes_set_key_common() ensures that key length is one of
493 	 * {128,192,256}
494 	 */
495 	if (ctx->key_length == AES_KEYSIZE_128)
496 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
497 	else if (ctx->key_length == AES_KEYSIZE_192)
498 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
499 	else
500 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
501 }
502 #endif
503 
504 static int ctr_crypt(struct blkcipher_desc *desc,
505 		     struct scatterlist *dst, struct scatterlist *src,
506 		     unsigned int nbytes)
507 {
508 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
509 	struct blkcipher_walk walk;
510 	int err;
511 
512 	blkcipher_walk_init(&walk, dst, src, nbytes);
513 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
514 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
515 
516 	kernel_fpu_begin();
517 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
518 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
519 			              nbytes & AES_BLOCK_MASK, walk.iv);
520 		nbytes &= AES_BLOCK_SIZE - 1;
521 		err = blkcipher_walk_done(desc, &walk, nbytes);
522 	}
523 	if (walk.nbytes) {
524 		ctr_crypt_final(ctx, &walk);
525 		err = blkcipher_walk_done(desc, &walk, 0);
526 	}
527 	kernel_fpu_end();
528 
529 	return err;
530 }
531 #endif
532 
533 static int ablk_ecb_init(struct crypto_tfm *tfm)
534 {
535 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
536 }
537 
538 static int ablk_cbc_init(struct crypto_tfm *tfm)
539 {
540 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
541 }
542 
543 #ifdef CONFIG_X86_64
544 static int ablk_ctr_init(struct crypto_tfm *tfm)
545 {
546 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
547 }
548 
549 #endif
550 
551 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
552 static int ablk_pcbc_init(struct crypto_tfm *tfm)
553 {
554 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
555 }
556 #endif
557 
558 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
559 {
560 	aesni_ecb_enc(ctx, blks, blks, nbytes);
561 }
562 
563 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
564 {
565 	aesni_ecb_dec(ctx, blks, blks, nbytes);
566 }
567 
568 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
569 			    unsigned int keylen)
570 {
571 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
572 	int err;
573 
574 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
575 				 keylen - AES_BLOCK_SIZE);
576 	if (err)
577 		return err;
578 
579 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
580 }
581 
582 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
583 {
584 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
585 
586 	lrw_free_table(&ctx->lrw_table);
587 }
588 
589 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
590 		       struct scatterlist *src, unsigned int nbytes)
591 {
592 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
593 	be128 buf[8];
594 	struct lrw_crypt_req req = {
595 		.tbuf = buf,
596 		.tbuflen = sizeof(buf),
597 
598 		.table_ctx = &ctx->lrw_table,
599 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
600 		.crypt_fn = lrw_xts_encrypt_callback,
601 	};
602 	int ret;
603 
604 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
605 
606 	kernel_fpu_begin();
607 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
608 	kernel_fpu_end();
609 
610 	return ret;
611 }
612 
613 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
614 		       struct scatterlist *src, unsigned int nbytes)
615 {
616 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
617 	be128 buf[8];
618 	struct lrw_crypt_req req = {
619 		.tbuf = buf,
620 		.tbuflen = sizeof(buf),
621 
622 		.table_ctx = &ctx->lrw_table,
623 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
624 		.crypt_fn = lrw_xts_decrypt_callback,
625 	};
626 	int ret;
627 
628 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
629 
630 	kernel_fpu_begin();
631 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
632 	kernel_fpu_end();
633 
634 	return ret;
635 }
636 
637 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
638 			    unsigned int keylen)
639 {
640 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
641 	u32 *flags = &tfm->crt_flags;
642 	int err;
643 
644 	/* key consists of keys of equal size concatenated, therefore
645 	 * the length must be even
646 	 */
647 	if (keylen % 2) {
648 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
649 		return -EINVAL;
650 	}
651 
652 	/* first half of xts-key is for crypt */
653 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
654 	if (err)
655 		return err;
656 
657 	/* second half of xts-key is for tweak */
658 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
659 				  keylen / 2);
660 }
661 
662 
663 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
664 {
665 	aesni_enc(ctx, out, in);
666 }
667 
668 #ifdef CONFIG_X86_64
669 
670 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
671 {
672 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
673 }
674 
675 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
676 {
677 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
678 }
679 
680 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
681 {
682 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
683 }
684 
685 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
686 {
687 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
688 }
689 
690 static const struct common_glue_ctx aesni_enc_xts = {
691 	.num_funcs = 2,
692 	.fpu_blocks_limit = 1,
693 
694 	.funcs = { {
695 		.num_blocks = 8,
696 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
697 	}, {
698 		.num_blocks = 1,
699 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
700 	} }
701 };
702 
703 static const struct common_glue_ctx aesni_dec_xts = {
704 	.num_funcs = 2,
705 	.fpu_blocks_limit = 1,
706 
707 	.funcs = { {
708 		.num_blocks = 8,
709 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
710 	}, {
711 		.num_blocks = 1,
712 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
713 	} }
714 };
715 
716 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
717 		       struct scatterlist *src, unsigned int nbytes)
718 {
719 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
720 
721 	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
722 				     XTS_TWEAK_CAST(aesni_xts_tweak),
723 				     aes_ctx(ctx->raw_tweak_ctx),
724 				     aes_ctx(ctx->raw_crypt_ctx));
725 }
726 
727 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
728 		       struct scatterlist *src, unsigned int nbytes)
729 {
730 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
731 
732 	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
733 				     XTS_TWEAK_CAST(aesni_xts_tweak),
734 				     aes_ctx(ctx->raw_tweak_ctx),
735 				     aes_ctx(ctx->raw_crypt_ctx));
736 }
737 
738 #else
739 
740 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
741 		       struct scatterlist *src, unsigned int nbytes)
742 {
743 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
744 	be128 buf[8];
745 	struct xts_crypt_req req = {
746 		.tbuf = buf,
747 		.tbuflen = sizeof(buf),
748 
749 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
750 		.tweak_fn = aesni_xts_tweak,
751 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
752 		.crypt_fn = lrw_xts_encrypt_callback,
753 	};
754 	int ret;
755 
756 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
757 
758 	kernel_fpu_begin();
759 	ret = xts_crypt(desc, dst, src, nbytes, &req);
760 	kernel_fpu_end();
761 
762 	return ret;
763 }
764 
765 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
766 		       struct scatterlist *src, unsigned int nbytes)
767 {
768 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
769 	be128 buf[8];
770 	struct xts_crypt_req req = {
771 		.tbuf = buf,
772 		.tbuflen = sizeof(buf),
773 
774 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
775 		.tweak_fn = aesni_xts_tweak,
776 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
777 		.crypt_fn = lrw_xts_decrypt_callback,
778 	};
779 	int ret;
780 
781 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
782 
783 	kernel_fpu_begin();
784 	ret = xts_crypt(desc, dst, src, nbytes, &req);
785 	kernel_fpu_end();
786 
787 	return ret;
788 }
789 
790 #endif
791 
792 #ifdef CONFIG_X86_64
793 static int rfc4106_init(struct crypto_tfm *tfm)
794 {
795 	struct cryptd_aead *cryptd_tfm;
796 	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
797 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
798 	struct crypto_aead *cryptd_child;
799 	struct aesni_rfc4106_gcm_ctx *child_ctx;
800 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
801 	if (IS_ERR(cryptd_tfm))
802 		return PTR_ERR(cryptd_tfm);
803 
804 	cryptd_child = cryptd_aead_child(cryptd_tfm);
805 	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
806 	memcpy(child_ctx, ctx, sizeof(*ctx));
807 	ctx->cryptd_tfm = cryptd_tfm;
808 	tfm->crt_aead.reqsize = sizeof(struct aead_request)
809 		+ crypto_aead_reqsize(&cryptd_tfm->base);
810 	return 0;
811 }
812 
813 static void rfc4106_exit(struct crypto_tfm *tfm)
814 {
815 	struct aesni_rfc4106_gcm_ctx *ctx =
816 		(struct aesni_rfc4106_gcm_ctx *)
817 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
818 	if (!IS_ERR(ctx->cryptd_tfm))
819 		cryptd_free_aead(ctx->cryptd_tfm);
820 	return;
821 }
822 
823 static void
824 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
825 {
826 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
827 
828 	if (err == -EINPROGRESS)
829 		return;
830 	result->err = err;
831 	complete(&result->completion);
832 }
833 
834 static int
835 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
836 {
837 	struct crypto_ablkcipher *ctr_tfm;
838 	struct ablkcipher_request *req;
839 	int ret = -EINVAL;
840 	struct aesni_hash_subkey_req_data *req_data;
841 
842 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
843 	if (IS_ERR(ctr_tfm))
844 		return PTR_ERR(ctr_tfm);
845 
846 	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
847 
848 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
849 	if (ret)
850 		goto out_free_ablkcipher;
851 
852 	ret = -ENOMEM;
853 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
854 	if (!req)
855 		goto out_free_ablkcipher;
856 
857 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
858 	if (!req_data)
859 		goto out_free_request;
860 
861 	memset(req_data->iv, 0, sizeof(req_data->iv));
862 
863 	/* Clear the data in the hash sub key container to zero.*/
864 	/* We want to cipher all zeros to create the hash sub key. */
865 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
866 
867 	init_completion(&req_data->result.completion);
868 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
869 	ablkcipher_request_set_tfm(req, ctr_tfm);
870 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
871 					CRYPTO_TFM_REQ_MAY_BACKLOG,
872 					rfc4106_set_hash_subkey_done,
873 					&req_data->result);
874 
875 	ablkcipher_request_set_crypt(req, &req_data->sg,
876 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
877 
878 	ret = crypto_ablkcipher_encrypt(req);
879 	if (ret == -EINPROGRESS || ret == -EBUSY) {
880 		ret = wait_for_completion_interruptible
881 			(&req_data->result.completion);
882 		if (!ret)
883 			ret = req_data->result.err;
884 	}
885 	kfree(req_data);
886 out_free_request:
887 	ablkcipher_request_free(req);
888 out_free_ablkcipher:
889 	crypto_free_ablkcipher(ctr_tfm);
890 	return ret;
891 }
892 
893 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
894 						   unsigned int key_len)
895 {
896 	int ret = 0;
897 	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
898 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
899 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
900 	struct aesni_rfc4106_gcm_ctx *child_ctx =
901                                  aesni_rfc4106_gcm_ctx_get(cryptd_child);
902 	u8 *new_key_align, *new_key_mem = NULL;
903 
904 	if (key_len < 4) {
905 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
906 		return -EINVAL;
907 	}
908 	/*Account for 4 byte nonce at the end.*/
909 	key_len -= 4;
910 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
911 	    key_len != AES_KEYSIZE_256) {
912 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
913 		return -EINVAL;
914 	}
915 
916 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
917 	/*This must be on a 16 byte boundary!*/
918 	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
919 		return -EINVAL;
920 
921 	if ((unsigned long)key % AESNI_ALIGN) {
922 		/*key is not aligned: use an auxuliar aligned pointer*/
923 		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
924 		if (!new_key_mem)
925 			return -ENOMEM;
926 
927 		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
928 		memcpy(new_key_align, key, key_len);
929 		key = new_key_align;
930 	}
931 
932 	if (!irq_fpu_usable())
933 		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
934 		key, key_len);
935 	else {
936 		kernel_fpu_begin();
937 		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
938 		kernel_fpu_end();
939 	}
940 	/*This must be on a 16 byte boundary!*/
941 	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
942 		ret = -EINVAL;
943 		goto exit;
944 	}
945 	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
946 	memcpy(child_ctx, ctx, sizeof(*ctx));
947 exit:
948 	kfree(new_key_mem);
949 	return ret;
950 }
951 
952 /* This is the Integrity Check Value (aka the authentication tag length and can
953  * be 8, 12 or 16 bytes long. */
954 static int rfc4106_set_authsize(struct crypto_aead *parent,
955 				unsigned int authsize)
956 {
957 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
958 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
959 
960 	switch (authsize) {
961 	case 8:
962 	case 12:
963 	case 16:
964 		break;
965 	default:
966 		return -EINVAL;
967 	}
968 	crypto_aead_crt(parent)->authsize = authsize;
969 	crypto_aead_crt(cryptd_child)->authsize = authsize;
970 	return 0;
971 }
972 
973 static int rfc4106_encrypt(struct aead_request *req)
974 {
975 	int ret;
976 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
977 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
978 
979 	if (!irq_fpu_usable()) {
980 		struct aead_request *cryptd_req =
981 			(struct aead_request *) aead_request_ctx(req);
982 		memcpy(cryptd_req, req, sizeof(*req));
983 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
984 		return crypto_aead_encrypt(cryptd_req);
985 	} else {
986 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
987 		kernel_fpu_begin();
988 		ret = cryptd_child->base.crt_aead.encrypt(req);
989 		kernel_fpu_end();
990 		return ret;
991 	}
992 }
993 
994 static int rfc4106_decrypt(struct aead_request *req)
995 {
996 	int ret;
997 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
998 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
999 
1000 	if (!irq_fpu_usable()) {
1001 		struct aead_request *cryptd_req =
1002 			(struct aead_request *) aead_request_ctx(req);
1003 		memcpy(cryptd_req, req, sizeof(*req));
1004 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
1005 		return crypto_aead_decrypt(cryptd_req);
1006 	} else {
1007 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
1008 		kernel_fpu_begin();
1009 		ret = cryptd_child->base.crt_aead.decrypt(req);
1010 		kernel_fpu_end();
1011 		return ret;
1012 	}
1013 }
1014 
1015 static int __driver_rfc4106_encrypt(struct aead_request *req)
1016 {
1017 	u8 one_entry_in_sg = 0;
1018 	u8 *src, *dst, *assoc;
1019 	__be32 counter = cpu_to_be32(1);
1020 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1021 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1022 	u32 key_len = ctx->aes_key_expanded.key_length;
1023 	void *aes_ctx = &(ctx->aes_key_expanded);
1024 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1025 	u8 iv_tab[16+AESNI_ALIGN];
1026 	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
1027 	struct scatter_walk src_sg_walk;
1028 	struct scatter_walk assoc_sg_walk;
1029 	struct scatter_walk dst_sg_walk;
1030 	unsigned int i;
1031 
1032 	/* Assuming we are supporting rfc4106 64-bit extended */
1033 	/* sequence numbers We need to have the AAD length equal */
1034 	/* to 8 or 12 bytes */
1035 	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
1036 		return -EINVAL;
1037 	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
1038 	        return -EINVAL;
1039 	if (unlikely(key_len != AES_KEYSIZE_128 &&
1040 	             key_len != AES_KEYSIZE_192 &&
1041 	             key_len != AES_KEYSIZE_256))
1042 	        return -EINVAL;
1043 
1044 	/* IV below built */
1045 	for (i = 0; i < 4; i++)
1046 		*(iv+i) = ctx->nonce[i];
1047 	for (i = 0; i < 8; i++)
1048 		*(iv+4+i) = req->iv[i];
1049 	*((__be32 *)(iv+12)) = counter;
1050 
1051 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1052 		one_entry_in_sg = 1;
1053 		scatterwalk_start(&src_sg_walk, req->src);
1054 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1055 		src = scatterwalk_map(&src_sg_walk);
1056 		assoc = scatterwalk_map(&assoc_sg_walk);
1057 		dst = src;
1058 		if (unlikely(req->src != req->dst)) {
1059 			scatterwalk_start(&dst_sg_walk, req->dst);
1060 			dst = scatterwalk_map(&dst_sg_walk);
1061 		}
1062 
1063 	} else {
1064 		/* Allocate memory for src, dst, assoc */
1065 		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
1066 			GFP_ATOMIC);
1067 		if (unlikely(!src))
1068 			return -ENOMEM;
1069 		assoc = (src + req->cryptlen + auth_tag_len);
1070 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1071 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1072 					req->assoclen, 0);
1073 		dst = src;
1074 	}
1075 
1076 	aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1077 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
1078 		+ ((unsigned long)req->cryptlen), auth_tag_len);
1079 
1080 	/* The authTag (aka the Integrity Check Value) needs to be written
1081 	 * back to the packet. */
1082 	if (one_entry_in_sg) {
1083 		if (unlikely(req->src != req->dst)) {
1084 			scatterwalk_unmap(dst);
1085 			scatterwalk_done(&dst_sg_walk, 0, 0);
1086 		}
1087 		scatterwalk_unmap(src);
1088 		scatterwalk_unmap(assoc);
1089 		scatterwalk_done(&src_sg_walk, 0, 0);
1090 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1091 	} else {
1092 		scatterwalk_map_and_copy(dst, req->dst, 0,
1093 			req->cryptlen + auth_tag_len, 1);
1094 		kfree(src);
1095 	}
1096 	return 0;
1097 }
1098 
1099 static int __driver_rfc4106_decrypt(struct aead_request *req)
1100 {
1101 	u8 one_entry_in_sg = 0;
1102 	u8 *src, *dst, *assoc;
1103 	unsigned long tempCipherLen = 0;
1104 	__be32 counter = cpu_to_be32(1);
1105 	int retval = 0;
1106 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1107 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1108 	u32 key_len = ctx->aes_key_expanded.key_length;
1109 	void *aes_ctx = &(ctx->aes_key_expanded);
1110 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1111 	u8 iv_and_authTag[32+AESNI_ALIGN];
1112 	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
1113 	u8 *authTag = iv + 16;
1114 	struct scatter_walk src_sg_walk;
1115 	struct scatter_walk assoc_sg_walk;
1116 	struct scatter_walk dst_sg_walk;
1117 	unsigned int i;
1118 
1119 	if (unlikely((req->cryptlen < auth_tag_len) ||
1120 		(req->assoclen != 8 && req->assoclen != 12)))
1121 		return -EINVAL;
1122 	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
1123 	        return -EINVAL;
1124 	if (unlikely(key_len != AES_KEYSIZE_128 &&
1125 	             key_len != AES_KEYSIZE_192 &&
1126 	             key_len != AES_KEYSIZE_256))
1127 	        return -EINVAL;
1128 
1129 	/* Assuming we are supporting rfc4106 64-bit extended */
1130 	/* sequence numbers We need to have the AAD length */
1131 	/* equal to 8 or 12 bytes */
1132 
1133 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1134 	/* IV below built */
1135 	for (i = 0; i < 4; i++)
1136 		*(iv+i) = ctx->nonce[i];
1137 	for (i = 0; i < 8; i++)
1138 		*(iv+4+i) = req->iv[i];
1139 	*((__be32 *)(iv+12)) = counter;
1140 
1141 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1142 		one_entry_in_sg = 1;
1143 		scatterwalk_start(&src_sg_walk, req->src);
1144 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1145 		src = scatterwalk_map(&src_sg_walk);
1146 		assoc = scatterwalk_map(&assoc_sg_walk);
1147 		dst = src;
1148 		if (unlikely(req->src != req->dst)) {
1149 			scatterwalk_start(&dst_sg_walk, req->dst);
1150 			dst = scatterwalk_map(&dst_sg_walk);
1151 		}
1152 
1153 	} else {
1154 		/* Allocate memory for src, dst, assoc */
1155 		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1156 		if (!src)
1157 			return -ENOMEM;
1158 		assoc = (src + req->cryptlen);
1159 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1160 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1161 			req->assoclen, 0);
1162 		dst = src;
1163 	}
1164 
1165 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1166 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
1167 		authTag, auth_tag_len);
1168 
1169 	/* Compare generated tag with passed in tag. */
1170 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1171 		-EBADMSG : 0;
1172 
1173 	if (one_entry_in_sg) {
1174 		if (unlikely(req->src != req->dst)) {
1175 			scatterwalk_unmap(dst);
1176 			scatterwalk_done(&dst_sg_walk, 0, 0);
1177 		}
1178 		scatterwalk_unmap(src);
1179 		scatterwalk_unmap(assoc);
1180 		scatterwalk_done(&src_sg_walk, 0, 0);
1181 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1182 	} else {
1183 		scatterwalk_map_and_copy(dst, req->dst, 0, tempCipherLen, 1);
1184 		kfree(src);
1185 	}
1186 	return retval;
1187 }
1188 #endif
1189 
1190 static struct crypto_alg aesni_algs[] = { {
1191 	.cra_name		= "aes",
1192 	.cra_driver_name	= "aes-aesni",
1193 	.cra_priority		= 300,
1194 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1195 	.cra_blocksize		= AES_BLOCK_SIZE,
1196 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1197 				  AESNI_ALIGN - 1,
1198 	.cra_alignmask		= 0,
1199 	.cra_module		= THIS_MODULE,
1200 	.cra_u	= {
1201 		.cipher	= {
1202 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1203 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1204 			.cia_setkey		= aes_set_key,
1205 			.cia_encrypt		= aes_encrypt,
1206 			.cia_decrypt		= aes_decrypt
1207 		}
1208 	}
1209 }, {
1210 	.cra_name		= "__aes-aesni",
1211 	.cra_driver_name	= "__driver-aes-aesni",
1212 	.cra_priority		= 0,
1213 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1214 	.cra_blocksize		= AES_BLOCK_SIZE,
1215 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1216 				  AESNI_ALIGN - 1,
1217 	.cra_alignmask		= 0,
1218 	.cra_module		= THIS_MODULE,
1219 	.cra_u	= {
1220 		.cipher	= {
1221 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1222 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1223 			.cia_setkey		= aes_set_key,
1224 			.cia_encrypt		= __aes_encrypt,
1225 			.cia_decrypt		= __aes_decrypt
1226 		}
1227 	}
1228 }, {
1229 	.cra_name		= "__ecb-aes-aesni",
1230 	.cra_driver_name	= "__driver-ecb-aes-aesni",
1231 	.cra_priority		= 0,
1232 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1233 	.cra_blocksize		= AES_BLOCK_SIZE,
1234 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1235 				  AESNI_ALIGN - 1,
1236 	.cra_alignmask		= 0,
1237 	.cra_type		= &crypto_blkcipher_type,
1238 	.cra_module		= THIS_MODULE,
1239 	.cra_u = {
1240 		.blkcipher = {
1241 			.min_keysize	= AES_MIN_KEY_SIZE,
1242 			.max_keysize	= AES_MAX_KEY_SIZE,
1243 			.setkey		= aes_set_key,
1244 			.encrypt	= ecb_encrypt,
1245 			.decrypt	= ecb_decrypt,
1246 		},
1247 	},
1248 }, {
1249 	.cra_name		= "__cbc-aes-aesni",
1250 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1251 	.cra_priority		= 0,
1252 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1253 	.cra_blocksize		= AES_BLOCK_SIZE,
1254 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1255 				  AESNI_ALIGN - 1,
1256 	.cra_alignmask		= 0,
1257 	.cra_type		= &crypto_blkcipher_type,
1258 	.cra_module		= THIS_MODULE,
1259 	.cra_u = {
1260 		.blkcipher = {
1261 			.min_keysize	= AES_MIN_KEY_SIZE,
1262 			.max_keysize	= AES_MAX_KEY_SIZE,
1263 			.setkey		= aes_set_key,
1264 			.encrypt	= cbc_encrypt,
1265 			.decrypt	= cbc_decrypt,
1266 		},
1267 	},
1268 }, {
1269 	.cra_name		= "ecb(aes)",
1270 	.cra_driver_name	= "ecb-aes-aesni",
1271 	.cra_priority		= 400,
1272 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1273 	.cra_blocksize		= AES_BLOCK_SIZE,
1274 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1275 	.cra_alignmask		= 0,
1276 	.cra_type		= &crypto_ablkcipher_type,
1277 	.cra_module		= THIS_MODULE,
1278 	.cra_init		= ablk_ecb_init,
1279 	.cra_exit		= ablk_exit,
1280 	.cra_u = {
1281 		.ablkcipher = {
1282 			.min_keysize	= AES_MIN_KEY_SIZE,
1283 			.max_keysize	= AES_MAX_KEY_SIZE,
1284 			.setkey		= ablk_set_key,
1285 			.encrypt	= ablk_encrypt,
1286 			.decrypt	= ablk_decrypt,
1287 		},
1288 	},
1289 }, {
1290 	.cra_name		= "cbc(aes)",
1291 	.cra_driver_name	= "cbc-aes-aesni",
1292 	.cra_priority		= 400,
1293 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1294 	.cra_blocksize		= AES_BLOCK_SIZE,
1295 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1296 	.cra_alignmask		= 0,
1297 	.cra_type		= &crypto_ablkcipher_type,
1298 	.cra_module		= THIS_MODULE,
1299 	.cra_init		= ablk_cbc_init,
1300 	.cra_exit		= ablk_exit,
1301 	.cra_u = {
1302 		.ablkcipher = {
1303 			.min_keysize	= AES_MIN_KEY_SIZE,
1304 			.max_keysize	= AES_MAX_KEY_SIZE,
1305 			.ivsize		= AES_BLOCK_SIZE,
1306 			.setkey		= ablk_set_key,
1307 			.encrypt	= ablk_encrypt,
1308 			.decrypt	= ablk_decrypt,
1309 		},
1310 	},
1311 #ifdef CONFIG_X86_64
1312 }, {
1313 	.cra_name		= "__ctr-aes-aesni",
1314 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1315 	.cra_priority		= 0,
1316 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1317 	.cra_blocksize		= 1,
1318 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1319 				  AESNI_ALIGN - 1,
1320 	.cra_alignmask		= 0,
1321 	.cra_type		= &crypto_blkcipher_type,
1322 	.cra_module		= THIS_MODULE,
1323 	.cra_u = {
1324 		.blkcipher = {
1325 			.min_keysize	= AES_MIN_KEY_SIZE,
1326 			.max_keysize	= AES_MAX_KEY_SIZE,
1327 			.ivsize		= AES_BLOCK_SIZE,
1328 			.setkey		= aes_set_key,
1329 			.encrypt	= ctr_crypt,
1330 			.decrypt	= ctr_crypt,
1331 		},
1332 	},
1333 }, {
1334 	.cra_name		= "ctr(aes)",
1335 	.cra_driver_name	= "ctr-aes-aesni",
1336 	.cra_priority		= 400,
1337 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1338 	.cra_blocksize		= 1,
1339 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1340 	.cra_alignmask		= 0,
1341 	.cra_type		= &crypto_ablkcipher_type,
1342 	.cra_module		= THIS_MODULE,
1343 	.cra_init		= ablk_ctr_init,
1344 	.cra_exit		= ablk_exit,
1345 	.cra_u = {
1346 		.ablkcipher = {
1347 			.min_keysize	= AES_MIN_KEY_SIZE,
1348 			.max_keysize	= AES_MAX_KEY_SIZE,
1349 			.ivsize		= AES_BLOCK_SIZE,
1350 			.setkey		= ablk_set_key,
1351 			.encrypt	= ablk_encrypt,
1352 			.decrypt	= ablk_encrypt,
1353 			.geniv		= "chainiv",
1354 		},
1355 	},
1356 }, {
1357 	.cra_name		= "__gcm-aes-aesni",
1358 	.cra_driver_name	= "__driver-gcm-aes-aesni",
1359 	.cra_priority		= 0,
1360 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
1361 	.cra_blocksize		= 1,
1362 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1363 				  AESNI_ALIGN,
1364 	.cra_alignmask		= 0,
1365 	.cra_type		= &crypto_aead_type,
1366 	.cra_module		= THIS_MODULE,
1367 	.cra_u = {
1368 		.aead = {
1369 			.encrypt	= __driver_rfc4106_encrypt,
1370 			.decrypt	= __driver_rfc4106_decrypt,
1371 		},
1372 	},
1373 }, {
1374 	.cra_name		= "rfc4106(gcm(aes))",
1375 	.cra_driver_name	= "rfc4106-gcm-aesni",
1376 	.cra_priority		= 400,
1377 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1378 	.cra_blocksize		= 1,
1379 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1380 				  AESNI_ALIGN,
1381 	.cra_alignmask		= 0,
1382 	.cra_type		= &crypto_nivaead_type,
1383 	.cra_module		= THIS_MODULE,
1384 	.cra_init		= rfc4106_init,
1385 	.cra_exit		= rfc4106_exit,
1386 	.cra_u = {
1387 		.aead = {
1388 			.setkey		= rfc4106_set_key,
1389 			.setauthsize	= rfc4106_set_authsize,
1390 			.encrypt	= rfc4106_encrypt,
1391 			.decrypt	= rfc4106_decrypt,
1392 			.geniv		= "seqiv",
1393 			.ivsize		= 8,
1394 			.maxauthsize	= 16,
1395 		},
1396 	},
1397 #endif
1398 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1399 }, {
1400 	.cra_name		= "pcbc(aes)",
1401 	.cra_driver_name	= "pcbc-aes-aesni",
1402 	.cra_priority		= 400,
1403 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1404 	.cra_blocksize		= AES_BLOCK_SIZE,
1405 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1406 	.cra_alignmask		= 0,
1407 	.cra_type		= &crypto_ablkcipher_type,
1408 	.cra_module		= THIS_MODULE,
1409 	.cra_init		= ablk_pcbc_init,
1410 	.cra_exit		= ablk_exit,
1411 	.cra_u = {
1412 		.ablkcipher = {
1413 			.min_keysize	= AES_MIN_KEY_SIZE,
1414 			.max_keysize	= AES_MAX_KEY_SIZE,
1415 			.ivsize		= AES_BLOCK_SIZE,
1416 			.setkey		= ablk_set_key,
1417 			.encrypt	= ablk_encrypt,
1418 			.decrypt	= ablk_decrypt,
1419 		},
1420 	},
1421 #endif
1422 }, {
1423 	.cra_name		= "__lrw-aes-aesni",
1424 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1425 	.cra_priority		= 0,
1426 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1427 	.cra_blocksize		= AES_BLOCK_SIZE,
1428 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1429 	.cra_alignmask		= 0,
1430 	.cra_type		= &crypto_blkcipher_type,
1431 	.cra_module		= THIS_MODULE,
1432 	.cra_exit		= lrw_aesni_exit_tfm,
1433 	.cra_u = {
1434 		.blkcipher = {
1435 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1436 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1437 			.ivsize		= AES_BLOCK_SIZE,
1438 			.setkey		= lrw_aesni_setkey,
1439 			.encrypt	= lrw_encrypt,
1440 			.decrypt	= lrw_decrypt,
1441 		},
1442 	},
1443 }, {
1444 	.cra_name		= "__xts-aes-aesni",
1445 	.cra_driver_name	= "__driver-xts-aes-aesni",
1446 	.cra_priority		= 0,
1447 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1448 	.cra_blocksize		= AES_BLOCK_SIZE,
1449 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1450 	.cra_alignmask		= 0,
1451 	.cra_type		= &crypto_blkcipher_type,
1452 	.cra_module		= THIS_MODULE,
1453 	.cra_u = {
1454 		.blkcipher = {
1455 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1456 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1457 			.ivsize		= AES_BLOCK_SIZE,
1458 			.setkey		= xts_aesni_setkey,
1459 			.encrypt	= xts_encrypt,
1460 			.decrypt	= xts_decrypt,
1461 		},
1462 	},
1463 }, {
1464 	.cra_name		= "lrw(aes)",
1465 	.cra_driver_name	= "lrw-aes-aesni",
1466 	.cra_priority		= 400,
1467 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1468 	.cra_blocksize		= AES_BLOCK_SIZE,
1469 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1470 	.cra_alignmask		= 0,
1471 	.cra_type		= &crypto_ablkcipher_type,
1472 	.cra_module		= THIS_MODULE,
1473 	.cra_init		= ablk_init,
1474 	.cra_exit		= ablk_exit,
1475 	.cra_u = {
1476 		.ablkcipher = {
1477 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1478 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1479 			.ivsize		= AES_BLOCK_SIZE,
1480 			.setkey		= ablk_set_key,
1481 			.encrypt	= ablk_encrypt,
1482 			.decrypt	= ablk_decrypt,
1483 		},
1484 	},
1485 }, {
1486 	.cra_name		= "xts(aes)",
1487 	.cra_driver_name	= "xts-aes-aesni",
1488 	.cra_priority		= 400,
1489 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1490 	.cra_blocksize		= AES_BLOCK_SIZE,
1491 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1492 	.cra_alignmask		= 0,
1493 	.cra_type		= &crypto_ablkcipher_type,
1494 	.cra_module		= THIS_MODULE,
1495 	.cra_init		= ablk_init,
1496 	.cra_exit		= ablk_exit,
1497 	.cra_u = {
1498 		.ablkcipher = {
1499 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1500 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1501 			.ivsize		= AES_BLOCK_SIZE,
1502 			.setkey		= ablk_set_key,
1503 			.encrypt	= ablk_encrypt,
1504 			.decrypt	= ablk_decrypt,
1505 		},
1506 	},
1507 } };
1508 
1509 
1510 static const struct x86_cpu_id aesni_cpu_id[] = {
1511 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1512 	{}
1513 };
1514 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1515 
1516 static int __init aesni_init(void)
1517 {
1518 	int err;
1519 
1520 	if (!x86_match_cpu(aesni_cpu_id))
1521 		return -ENODEV;
1522 #ifdef CONFIG_X86_64
1523 #ifdef CONFIG_AS_AVX2
1524 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1525 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1526 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1527 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1528 	} else
1529 #endif
1530 #ifdef CONFIG_AS_AVX
1531 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1532 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1533 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1534 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1535 	} else
1536 #endif
1537 	{
1538 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1539 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1540 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1541 	}
1542 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1543 #ifdef CONFIG_AS_AVX
1544 	if (cpu_has_avx) {
1545 		/* optimize performance of ctr mode encryption transform */
1546 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1547 		pr_info("AES CTR mode by8 optimization enabled\n");
1548 	}
1549 #endif
1550 #endif
1551 
1552 	err = crypto_fpu_init();
1553 	if (err)
1554 		return err;
1555 
1556 	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1557 }
1558 
1559 static void __exit aesni_exit(void)
1560 {
1561 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1562 
1563 	crypto_fpu_exit();
1564 }
1565 
1566 module_init(aesni_init);
1567 module_exit(aesni_exit);
1568 
1569 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1570 MODULE_LICENSE("GPL");
1571 MODULE_ALIAS_CRYPTO("aes");
1572