1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for Intel AES-NI instructions. This file contains glue
4  * code, the real AES implementation is in intel-aes_asm.S.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  */
17 
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/crypto/aes.h>
30 #include <asm/simd.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/internal/aead.h>
33 #include <crypto/internal/simd.h>
34 #include <crypto/internal/skcipher.h>
35 #include <linux/workqueue.h>
36 #include <linux/spinlock.h>
37 #ifdef CONFIG_X86_64
38 #include <asm/crypto/glue_helper.h>
39 #endif
40 
41 
42 #define AESNI_ALIGN	16
43 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
44 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
45 #define RFC4106_HASH_SUBKEY_SIZE 16
46 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
47 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
48 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
49 
50 /* This data is stored at the end of the crypto_tfm struct.
51  * It's a type of per "session" data storage location.
52  * This needs to be 16 byte aligned.
53  */
54 struct aesni_rfc4106_gcm_ctx {
55 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
56 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
57 	u8 nonce[4];
58 };
59 
60 struct generic_gcmaes_ctx {
61 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
62 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
63 };
64 
65 struct aesni_xts_ctx {
66 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
68 };
69 
70 #define GCM_BLOCK_LEN 16
71 
72 struct gcm_context_data {
73 	/* init, update and finalize context data */
74 	u8 aad_hash[GCM_BLOCK_LEN];
75 	u64 aad_length;
76 	u64 in_length;
77 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
78 	u8 orig_IV[GCM_BLOCK_LEN];
79 	u8 current_counter[GCM_BLOCK_LEN];
80 	u64 partial_block_len;
81 	u64 unused;
82 	u8 hash_keys[GCM_BLOCK_LEN * 16];
83 };
84 
85 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
86 			     unsigned int key_len);
87 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
88 			  const u8 *in);
89 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
90 			  const u8 *in);
91 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len);
93 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
94 			      const u8 *in, unsigned int len);
95 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
96 			      const u8 *in, unsigned int len, u8 *iv);
97 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
98 			      const u8 *in, unsigned int len, u8 *iv);
99 
100 #define AVX_GEN2_OPTSIZE 640
101 #define AVX_GEN4_OPTSIZE 4096
102 
103 #ifdef CONFIG_X86_64
104 
105 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
106 			      const u8 *in, unsigned int len, u8 *iv);
107 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
108 			      const u8 *in, unsigned int len, u8 *iv);
109 
110 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
111 				 const u8 *in, bool enc, u8 *iv);
112 
113 /* asmlinkage void aesni_gcm_enc()
114  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
115  * struct gcm_context_data.  May be uninitialized.
116  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117  * const u8 *in, Plaintext input
118  * unsigned long plaintext_len, Length of data in bytes for encryption.
119  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
120  *         16-byte aligned pointer.
121  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
122  * const u8 *aad, Additional Authentication Data (AAD)
123  * unsigned long aad_len, Length of AAD in bytes.
124  * u8 *auth_tag, Authenticated Tag output.
125  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
126  *          Valid values are 16 (most likely), 12 or 8.
127  */
128 asmlinkage void aesni_gcm_enc(void *ctx,
129 			struct gcm_context_data *gdata, u8 *out,
130 			const u8 *in, unsigned long plaintext_len, u8 *iv,
131 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
132 			u8 *auth_tag, unsigned long auth_tag_len);
133 
134 /* asmlinkage void aesni_gcm_dec()
135  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
136  * struct gcm_context_data.  May be uninitialized.
137  * u8 *out, Plaintext output. Decrypt in-place is allowed.
138  * const u8 *in, Ciphertext input
139  * unsigned long ciphertext_len, Length of data in bytes for decryption.
140  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
141  *         16-byte aligned pointer.
142  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
143  * const u8 *aad, Additional Authentication Data (AAD)
144  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
145  * to be 8 or 12 bytes
146  * u8 *auth_tag, Authenticated Tag output.
147  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
148  * Valid values are 16 (most likely), 12 or 8.
149  */
150 asmlinkage void aesni_gcm_dec(void *ctx,
151 			struct gcm_context_data *gdata, u8 *out,
152 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 			u8 *auth_tag, unsigned long auth_tag_len);
155 
156 /* Scatter / Gather routines, with args similar to above */
157 asmlinkage void aesni_gcm_init(void *ctx,
158 			       struct gcm_context_data *gdata,
159 			       u8 *iv,
160 			       u8 *hash_subkey, const u8 *aad,
161 			       unsigned long aad_len);
162 asmlinkage void aesni_gcm_enc_update(void *ctx,
163 				     struct gcm_context_data *gdata, u8 *out,
164 				     const u8 *in, unsigned long plaintext_len);
165 asmlinkage void aesni_gcm_dec_update(void *ctx,
166 				     struct gcm_context_data *gdata, u8 *out,
167 				     const u8 *in,
168 				     unsigned long ciphertext_len);
169 asmlinkage void aesni_gcm_finalize(void *ctx,
170 				   struct gcm_context_data *gdata,
171 				   u8 *auth_tag, unsigned long auth_tag_len);
172 
173 static const struct aesni_gcm_tfm_s {
174 	void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
175 		     u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
176 	void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
177 			   const u8 *in, unsigned long plaintext_len);
178 	void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
179 			   const u8 *in, unsigned long ciphertext_len);
180 	void (*finalize)(void *ctx, struct gcm_context_data *gdata,
181 			 u8 *auth_tag, unsigned long auth_tag_len);
182 } *aesni_gcm_tfm;
183 
184 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
185 	.init = &aesni_gcm_init,
186 	.enc_update = &aesni_gcm_enc_update,
187 	.dec_update = &aesni_gcm_dec_update,
188 	.finalize = &aesni_gcm_finalize,
189 };
190 
191 #ifdef CONFIG_AS_AVX
192 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
193 		void *keys, u8 *out, unsigned int num_bytes);
194 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
195 		void *keys, u8 *out, unsigned int num_bytes);
196 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
197 		void *keys, u8 *out, unsigned int num_bytes);
198 /*
199  * asmlinkage void aesni_gcm_init_avx_gen2()
200  * gcm_data *my_ctx_data, context data
201  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
202  */
203 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
204 					struct gcm_context_data *gdata,
205 					u8 *iv,
206 					u8 *hash_subkey,
207 					const u8 *aad,
208 					unsigned long aad_len);
209 
210 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
211 				     struct gcm_context_data *gdata, u8 *out,
212 				     const u8 *in, unsigned long plaintext_len);
213 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
214 				     struct gcm_context_data *gdata, u8 *out,
215 				     const u8 *in,
216 				     unsigned long ciphertext_len);
217 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
218 				   struct gcm_context_data *gdata,
219 				   u8 *auth_tag, unsigned long auth_tag_len);
220 
221 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
222 				struct gcm_context_data *gdata, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
228 				struct gcm_context_data *gdata, u8 *out,
229 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
230 			const u8 *aad, unsigned long aad_len,
231 			u8 *auth_tag, unsigned long auth_tag_len);
232 
233 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
234 	.init = &aesni_gcm_init_avx_gen2,
235 	.enc_update = &aesni_gcm_enc_update_avx_gen2,
236 	.dec_update = &aesni_gcm_dec_update_avx_gen2,
237 	.finalize = &aesni_gcm_finalize_avx_gen2,
238 };
239 
240 #endif
241 
242 #ifdef CONFIG_AS_AVX2
243 /*
244  * asmlinkage void aesni_gcm_init_avx_gen4()
245  * gcm_data *my_ctx_data, context data
246  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
247  */
248 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
249 					struct gcm_context_data *gdata,
250 					u8 *iv,
251 					u8 *hash_subkey,
252 					const u8 *aad,
253 					unsigned long aad_len);
254 
255 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
256 				     struct gcm_context_data *gdata, u8 *out,
257 				     const u8 *in, unsigned long plaintext_len);
258 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
259 				     struct gcm_context_data *gdata, u8 *out,
260 				     const u8 *in,
261 				     unsigned long ciphertext_len);
262 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
263 				   struct gcm_context_data *gdata,
264 				   u8 *auth_tag, unsigned long auth_tag_len);
265 
266 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
267 				struct gcm_context_data *gdata, u8 *out,
268 			const u8 *in, unsigned long plaintext_len, u8 *iv,
269 			const u8 *aad, unsigned long aad_len,
270 			u8 *auth_tag, unsigned long auth_tag_len);
271 
272 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
273 				struct gcm_context_data *gdata, u8 *out,
274 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
275 			const u8 *aad, unsigned long aad_len,
276 			u8 *auth_tag, unsigned long auth_tag_len);
277 
278 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
279 	.init = &aesni_gcm_init_avx_gen4,
280 	.enc_update = &aesni_gcm_enc_update_avx_gen4,
281 	.dec_update = &aesni_gcm_dec_update_avx_gen4,
282 	.finalize = &aesni_gcm_finalize_avx_gen4,
283 };
284 
285 #endif
286 
287 static inline struct
288 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
289 {
290 	unsigned long align = AESNI_ALIGN;
291 
292 	if (align <= crypto_tfm_ctx_alignment())
293 		align = 1;
294 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
295 }
296 
297 static inline struct
298 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
299 {
300 	unsigned long align = AESNI_ALIGN;
301 
302 	if (align <= crypto_tfm_ctx_alignment())
303 		align = 1;
304 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
305 }
306 #endif
307 
308 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
309 {
310 	unsigned long addr = (unsigned long)raw_ctx;
311 	unsigned long align = AESNI_ALIGN;
312 
313 	if (align <= crypto_tfm_ctx_alignment())
314 		align = 1;
315 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
316 }
317 
318 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
319 			      const u8 *in_key, unsigned int key_len)
320 {
321 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
322 	u32 *flags = &tfm->crt_flags;
323 	int err;
324 
325 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
326 	    key_len != AES_KEYSIZE_256) {
327 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
328 		return -EINVAL;
329 	}
330 
331 	if (!crypto_simd_usable())
332 		err = crypto_aes_expand_key(ctx, in_key, key_len);
333 	else {
334 		kernel_fpu_begin();
335 		err = aesni_set_key(ctx, in_key, key_len);
336 		kernel_fpu_end();
337 	}
338 
339 	return err;
340 }
341 
342 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
343 		       unsigned int key_len)
344 {
345 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
346 }
347 
348 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
349 {
350 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
351 
352 	if (!crypto_simd_usable())
353 		crypto_aes_encrypt_x86(ctx, dst, src);
354 	else {
355 		kernel_fpu_begin();
356 		aesni_enc(ctx, dst, src);
357 		kernel_fpu_end();
358 	}
359 }
360 
361 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
362 {
363 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
364 
365 	if (!crypto_simd_usable())
366 		crypto_aes_decrypt_x86(ctx, dst, src);
367 	else {
368 		kernel_fpu_begin();
369 		aesni_dec(ctx, dst, src);
370 		kernel_fpu_end();
371 	}
372 }
373 
374 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
375 			         unsigned int len)
376 {
377 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
378 				  crypto_skcipher_ctx(tfm), key, len);
379 }
380 
381 static int ecb_encrypt(struct skcipher_request *req)
382 {
383 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
384 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
385 	struct skcipher_walk walk;
386 	unsigned int nbytes;
387 	int err;
388 
389 	err = skcipher_walk_virt(&walk, req, true);
390 
391 	kernel_fpu_begin();
392 	while ((nbytes = walk.nbytes)) {
393 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
394 			      nbytes & AES_BLOCK_MASK);
395 		nbytes &= AES_BLOCK_SIZE - 1;
396 		err = skcipher_walk_done(&walk, nbytes);
397 	}
398 	kernel_fpu_end();
399 
400 	return err;
401 }
402 
403 static int ecb_decrypt(struct skcipher_request *req)
404 {
405 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
406 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
407 	struct skcipher_walk walk;
408 	unsigned int nbytes;
409 	int err;
410 
411 	err = skcipher_walk_virt(&walk, req, true);
412 
413 	kernel_fpu_begin();
414 	while ((nbytes = walk.nbytes)) {
415 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
416 			      nbytes & AES_BLOCK_MASK);
417 		nbytes &= AES_BLOCK_SIZE - 1;
418 		err = skcipher_walk_done(&walk, nbytes);
419 	}
420 	kernel_fpu_end();
421 
422 	return err;
423 }
424 
425 static int cbc_encrypt(struct skcipher_request *req)
426 {
427 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
429 	struct skcipher_walk walk;
430 	unsigned int nbytes;
431 	int err;
432 
433 	err = skcipher_walk_virt(&walk, req, true);
434 
435 	kernel_fpu_begin();
436 	while ((nbytes = walk.nbytes)) {
437 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
438 			      nbytes & AES_BLOCK_MASK, walk.iv);
439 		nbytes &= AES_BLOCK_SIZE - 1;
440 		err = skcipher_walk_done(&walk, nbytes);
441 	}
442 	kernel_fpu_end();
443 
444 	return err;
445 }
446 
447 static int cbc_decrypt(struct skcipher_request *req)
448 {
449 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
451 	struct skcipher_walk walk;
452 	unsigned int nbytes;
453 	int err;
454 
455 	err = skcipher_walk_virt(&walk, req, true);
456 
457 	kernel_fpu_begin();
458 	while ((nbytes = walk.nbytes)) {
459 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
460 			      nbytes & AES_BLOCK_MASK, walk.iv);
461 		nbytes &= AES_BLOCK_SIZE - 1;
462 		err = skcipher_walk_done(&walk, nbytes);
463 	}
464 	kernel_fpu_end();
465 
466 	return err;
467 }
468 
469 #ifdef CONFIG_X86_64
470 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
471 			    struct skcipher_walk *walk)
472 {
473 	u8 *ctrblk = walk->iv;
474 	u8 keystream[AES_BLOCK_SIZE];
475 	u8 *src = walk->src.virt.addr;
476 	u8 *dst = walk->dst.virt.addr;
477 	unsigned int nbytes = walk->nbytes;
478 
479 	aesni_enc(ctx, keystream, ctrblk);
480 	crypto_xor_cpy(dst, keystream, src, nbytes);
481 
482 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
483 }
484 
485 #ifdef CONFIG_AS_AVX
486 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
487 			      const u8 *in, unsigned int len, u8 *iv)
488 {
489 	/*
490 	 * based on key length, override with the by8 version
491 	 * of ctr mode encryption/decryption for improved performance
492 	 * aes_set_key_common() ensures that key length is one of
493 	 * {128,192,256}
494 	 */
495 	if (ctx->key_length == AES_KEYSIZE_128)
496 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
497 	else if (ctx->key_length == AES_KEYSIZE_192)
498 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
499 	else
500 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
501 }
502 #endif
503 
504 static int ctr_crypt(struct skcipher_request *req)
505 {
506 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
507 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
508 	struct skcipher_walk walk;
509 	unsigned int nbytes;
510 	int err;
511 
512 	err = skcipher_walk_virt(&walk, req, true);
513 
514 	kernel_fpu_begin();
515 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
516 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
517 			              nbytes & AES_BLOCK_MASK, walk.iv);
518 		nbytes &= AES_BLOCK_SIZE - 1;
519 		err = skcipher_walk_done(&walk, nbytes);
520 	}
521 	if (walk.nbytes) {
522 		ctr_crypt_final(ctx, &walk);
523 		err = skcipher_walk_done(&walk, 0);
524 	}
525 	kernel_fpu_end();
526 
527 	return err;
528 }
529 
530 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
531 			    unsigned int keylen)
532 {
533 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
534 	int err;
535 
536 	err = xts_verify_key(tfm, key, keylen);
537 	if (err)
538 		return err;
539 
540 	keylen /= 2;
541 
542 	/* first half of xts-key is for crypt */
543 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
544 				 key, keylen);
545 	if (err)
546 		return err;
547 
548 	/* second half of xts-key is for tweak */
549 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
550 				  key + keylen, keylen);
551 }
552 
553 
554 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
555 {
556 	aesni_enc(ctx, out, in);
557 }
558 
559 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
560 {
561 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
562 }
563 
564 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
565 {
566 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
567 }
568 
569 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
570 {
571 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
572 }
573 
574 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
575 {
576 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
577 }
578 
579 static const struct common_glue_ctx aesni_enc_xts = {
580 	.num_funcs = 2,
581 	.fpu_blocks_limit = 1,
582 
583 	.funcs = { {
584 		.num_blocks = 8,
585 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
586 	}, {
587 		.num_blocks = 1,
588 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
589 	} }
590 };
591 
592 static const struct common_glue_ctx aesni_dec_xts = {
593 	.num_funcs = 2,
594 	.fpu_blocks_limit = 1,
595 
596 	.funcs = { {
597 		.num_blocks = 8,
598 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
599 	}, {
600 		.num_blocks = 1,
601 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
602 	} }
603 };
604 
605 static int xts_encrypt(struct skcipher_request *req)
606 {
607 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
608 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
609 
610 	return glue_xts_req_128bit(&aesni_enc_xts, req,
611 				   XTS_TWEAK_CAST(aesni_xts_tweak),
612 				   aes_ctx(ctx->raw_tweak_ctx),
613 				   aes_ctx(ctx->raw_crypt_ctx));
614 }
615 
616 static int xts_decrypt(struct skcipher_request *req)
617 {
618 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
619 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
620 
621 	return glue_xts_req_128bit(&aesni_dec_xts, req,
622 				   XTS_TWEAK_CAST(aesni_xts_tweak),
623 				   aes_ctx(ctx->raw_tweak_ctx),
624 				   aes_ctx(ctx->raw_crypt_ctx));
625 }
626 
627 static int
628 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
629 {
630 	struct crypto_cipher *tfm;
631 	int ret;
632 
633 	tfm = crypto_alloc_cipher("aes", 0, 0);
634 	if (IS_ERR(tfm))
635 		return PTR_ERR(tfm);
636 
637 	ret = crypto_cipher_setkey(tfm, key, key_len);
638 	if (ret)
639 		goto out_free_cipher;
640 
641 	/* Clear the data in the hash sub key container to zero.*/
642 	/* We want to cipher all zeros to create the hash sub key. */
643 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
644 
645 	crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
646 
647 out_free_cipher:
648 	crypto_free_cipher(tfm);
649 	return ret;
650 }
651 
652 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
653 				  unsigned int key_len)
654 {
655 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
656 
657 	if (key_len < 4) {
658 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
659 		return -EINVAL;
660 	}
661 	/*Account for 4 byte nonce at the end.*/
662 	key_len -= 4;
663 
664 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
665 
666 	return aes_set_key_common(crypto_aead_tfm(aead),
667 				  &ctx->aes_key_expanded, key, key_len) ?:
668 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
669 }
670 
671 /* This is the Integrity Check Value (aka the authentication tag) length and can
672  * be 8, 12 or 16 bytes long. */
673 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
674 				       unsigned int authsize)
675 {
676 	switch (authsize) {
677 	case 8:
678 	case 12:
679 	case 16:
680 		break;
681 	default:
682 		return -EINVAL;
683 	}
684 
685 	return 0;
686 }
687 
688 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
689 				       unsigned int authsize)
690 {
691 	switch (authsize) {
692 	case 4:
693 	case 8:
694 	case 12:
695 	case 13:
696 	case 14:
697 	case 15:
698 	case 16:
699 		break;
700 	default:
701 		return -EINVAL;
702 	}
703 
704 	return 0;
705 }
706 
707 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
708 			      unsigned int assoclen, u8 *hash_subkey,
709 			      u8 *iv, void *aes_ctx)
710 {
711 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
712 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
713 	const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
714 	struct gcm_context_data data AESNI_ALIGN_ATTR;
715 	struct scatter_walk dst_sg_walk = {};
716 	unsigned long left = req->cryptlen;
717 	unsigned long len, srclen, dstlen;
718 	struct scatter_walk assoc_sg_walk;
719 	struct scatter_walk src_sg_walk;
720 	struct scatterlist src_start[2];
721 	struct scatterlist dst_start[2];
722 	struct scatterlist *src_sg;
723 	struct scatterlist *dst_sg;
724 	u8 *src, *dst, *assoc;
725 	u8 *assocmem = NULL;
726 	u8 authTag[16];
727 
728 	if (!enc)
729 		left -= auth_tag_len;
730 
731 #ifdef CONFIG_AS_AVX2
732 	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
733 		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
734 #endif
735 #ifdef CONFIG_AS_AVX
736 	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
737 		gcm_tfm = &aesni_gcm_tfm_sse;
738 #endif
739 
740 	/* Linearize assoc, if not already linear */
741 	if (req->src->length >= assoclen && req->src->length &&
742 		(!PageHighMem(sg_page(req->src)) ||
743 			req->src->offset + req->src->length <= PAGE_SIZE)) {
744 		scatterwalk_start(&assoc_sg_walk, req->src);
745 		assoc = scatterwalk_map(&assoc_sg_walk);
746 	} else {
747 		/* assoc can be any length, so must be on heap */
748 		assocmem = kmalloc(assoclen, GFP_ATOMIC);
749 		if (unlikely(!assocmem))
750 			return -ENOMEM;
751 		assoc = assocmem;
752 
753 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
754 	}
755 
756 	if (left) {
757 		src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
758 		scatterwalk_start(&src_sg_walk, src_sg);
759 		if (req->src != req->dst) {
760 			dst_sg = scatterwalk_ffwd(dst_start, req->dst,
761 						  req->assoclen);
762 			scatterwalk_start(&dst_sg_walk, dst_sg);
763 		}
764 	}
765 
766 	kernel_fpu_begin();
767 	gcm_tfm->init(aes_ctx, &data, iv,
768 		hash_subkey, assoc, assoclen);
769 	if (req->src != req->dst) {
770 		while (left) {
771 			src = scatterwalk_map(&src_sg_walk);
772 			dst = scatterwalk_map(&dst_sg_walk);
773 			srclen = scatterwalk_clamp(&src_sg_walk, left);
774 			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
775 			len = min(srclen, dstlen);
776 			if (len) {
777 				if (enc)
778 					gcm_tfm->enc_update(aes_ctx, &data,
779 							     dst, src, len);
780 				else
781 					gcm_tfm->dec_update(aes_ctx, &data,
782 							     dst, src, len);
783 			}
784 			left -= len;
785 
786 			scatterwalk_unmap(src);
787 			scatterwalk_unmap(dst);
788 			scatterwalk_advance(&src_sg_walk, len);
789 			scatterwalk_advance(&dst_sg_walk, len);
790 			scatterwalk_done(&src_sg_walk, 0, left);
791 			scatterwalk_done(&dst_sg_walk, 1, left);
792 		}
793 	} else {
794 		while (left) {
795 			dst = src = scatterwalk_map(&src_sg_walk);
796 			len = scatterwalk_clamp(&src_sg_walk, left);
797 			if (len) {
798 				if (enc)
799 					gcm_tfm->enc_update(aes_ctx, &data,
800 							     src, src, len);
801 				else
802 					gcm_tfm->dec_update(aes_ctx, &data,
803 							     src, src, len);
804 			}
805 			left -= len;
806 			scatterwalk_unmap(src);
807 			scatterwalk_advance(&src_sg_walk, len);
808 			scatterwalk_done(&src_sg_walk, 1, left);
809 		}
810 	}
811 	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
812 	kernel_fpu_end();
813 
814 	if (!assocmem)
815 		scatterwalk_unmap(assoc);
816 	else
817 		kfree(assocmem);
818 
819 	if (!enc) {
820 		u8 authTagMsg[16];
821 
822 		/* Copy out original authTag */
823 		scatterwalk_map_and_copy(authTagMsg, req->src,
824 					 req->assoclen + req->cryptlen -
825 					 auth_tag_len,
826 					 auth_tag_len, 0);
827 
828 		/* Compare generated tag with passed in tag. */
829 		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
830 			-EBADMSG : 0;
831 	}
832 
833 	/* Copy in the authTag */
834 	scatterwalk_map_and_copy(authTag, req->dst,
835 				 req->assoclen + req->cryptlen,
836 				 auth_tag_len, 1);
837 
838 	return 0;
839 }
840 
841 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
842 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
843 {
844 	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
845 				aes_ctx);
846 }
847 
848 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
849 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
850 {
851 	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
852 				aes_ctx);
853 }
854 
855 static int helper_rfc4106_encrypt(struct aead_request *req)
856 {
857 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
858 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
859 	void *aes_ctx = &(ctx->aes_key_expanded);
860 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
861 	unsigned int i;
862 	__be32 counter = cpu_to_be32(1);
863 
864 	/* Assuming we are supporting rfc4106 64-bit extended */
865 	/* sequence numbers We need to have the AAD length equal */
866 	/* to 16 or 20 bytes */
867 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
868 		return -EINVAL;
869 
870 	/* IV below built */
871 	for (i = 0; i < 4; i++)
872 		*(iv+i) = ctx->nonce[i];
873 	for (i = 0; i < 8; i++)
874 		*(iv+4+i) = req->iv[i];
875 	*((__be32 *)(iv+12)) = counter;
876 
877 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
878 			      aes_ctx);
879 }
880 
881 static int helper_rfc4106_decrypt(struct aead_request *req)
882 {
883 	__be32 counter = cpu_to_be32(1);
884 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
885 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
886 	void *aes_ctx = &(ctx->aes_key_expanded);
887 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
888 	unsigned int i;
889 
890 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
891 		return -EINVAL;
892 
893 	/* Assuming we are supporting rfc4106 64-bit extended */
894 	/* sequence numbers We need to have the AAD length */
895 	/* equal to 16 or 20 bytes */
896 
897 	/* IV below built */
898 	for (i = 0; i < 4; i++)
899 		*(iv+i) = ctx->nonce[i];
900 	for (i = 0; i < 8; i++)
901 		*(iv+4+i) = req->iv[i];
902 	*((__be32 *)(iv+12)) = counter;
903 
904 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
905 			      aes_ctx);
906 }
907 #endif
908 
909 static struct crypto_alg aesni_cipher_alg = {
910 	.cra_name		= "aes",
911 	.cra_driver_name	= "aes-aesni",
912 	.cra_priority		= 300,
913 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
914 	.cra_blocksize		= AES_BLOCK_SIZE,
915 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
916 	.cra_module		= THIS_MODULE,
917 	.cra_u	= {
918 		.cipher	= {
919 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
920 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
921 			.cia_setkey		= aes_set_key,
922 			.cia_encrypt		= aes_encrypt,
923 			.cia_decrypt		= aes_decrypt
924 		}
925 	}
926 };
927 
928 static struct skcipher_alg aesni_skciphers[] = {
929 	{
930 		.base = {
931 			.cra_name		= "__ecb(aes)",
932 			.cra_driver_name	= "__ecb-aes-aesni",
933 			.cra_priority		= 400,
934 			.cra_flags		= CRYPTO_ALG_INTERNAL,
935 			.cra_blocksize		= AES_BLOCK_SIZE,
936 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
937 			.cra_module		= THIS_MODULE,
938 		},
939 		.min_keysize	= AES_MIN_KEY_SIZE,
940 		.max_keysize	= AES_MAX_KEY_SIZE,
941 		.setkey		= aesni_skcipher_setkey,
942 		.encrypt	= ecb_encrypt,
943 		.decrypt	= ecb_decrypt,
944 	}, {
945 		.base = {
946 			.cra_name		= "__cbc(aes)",
947 			.cra_driver_name	= "__cbc-aes-aesni",
948 			.cra_priority		= 400,
949 			.cra_flags		= CRYPTO_ALG_INTERNAL,
950 			.cra_blocksize		= AES_BLOCK_SIZE,
951 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
952 			.cra_module		= THIS_MODULE,
953 		},
954 		.min_keysize	= AES_MIN_KEY_SIZE,
955 		.max_keysize	= AES_MAX_KEY_SIZE,
956 		.ivsize		= AES_BLOCK_SIZE,
957 		.setkey		= aesni_skcipher_setkey,
958 		.encrypt	= cbc_encrypt,
959 		.decrypt	= cbc_decrypt,
960 #ifdef CONFIG_X86_64
961 	}, {
962 		.base = {
963 			.cra_name		= "__ctr(aes)",
964 			.cra_driver_name	= "__ctr-aes-aesni",
965 			.cra_priority		= 400,
966 			.cra_flags		= CRYPTO_ALG_INTERNAL,
967 			.cra_blocksize		= 1,
968 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
969 			.cra_module		= THIS_MODULE,
970 		},
971 		.min_keysize	= AES_MIN_KEY_SIZE,
972 		.max_keysize	= AES_MAX_KEY_SIZE,
973 		.ivsize		= AES_BLOCK_SIZE,
974 		.chunksize	= AES_BLOCK_SIZE,
975 		.setkey		= aesni_skcipher_setkey,
976 		.encrypt	= ctr_crypt,
977 		.decrypt	= ctr_crypt,
978 	}, {
979 		.base = {
980 			.cra_name		= "__xts(aes)",
981 			.cra_driver_name	= "__xts-aes-aesni",
982 			.cra_priority		= 401,
983 			.cra_flags		= CRYPTO_ALG_INTERNAL,
984 			.cra_blocksize		= AES_BLOCK_SIZE,
985 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
986 			.cra_module		= THIS_MODULE,
987 		},
988 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
989 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
990 		.ivsize		= AES_BLOCK_SIZE,
991 		.setkey		= xts_aesni_setkey,
992 		.encrypt	= xts_encrypt,
993 		.decrypt	= xts_decrypt,
994 #endif
995 	}
996 };
997 
998 static
999 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1000 
1001 #ifdef CONFIG_X86_64
1002 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1003 				  unsigned int key_len)
1004 {
1005 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
1006 
1007 	return aes_set_key_common(crypto_aead_tfm(aead),
1008 				  &ctx->aes_key_expanded, key, key_len) ?:
1009 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
1010 }
1011 
1012 static int generic_gcmaes_encrypt(struct aead_request *req)
1013 {
1014 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1015 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1016 	void *aes_ctx = &(ctx->aes_key_expanded);
1017 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1018 	__be32 counter = cpu_to_be32(1);
1019 
1020 	memcpy(iv, req->iv, 12);
1021 	*((__be32 *)(iv+12)) = counter;
1022 
1023 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1024 			      aes_ctx);
1025 }
1026 
1027 static int generic_gcmaes_decrypt(struct aead_request *req)
1028 {
1029 	__be32 counter = cpu_to_be32(1);
1030 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1031 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1032 	void *aes_ctx = &(ctx->aes_key_expanded);
1033 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1034 
1035 	memcpy(iv, req->iv, 12);
1036 	*((__be32 *)(iv+12)) = counter;
1037 
1038 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1039 			      aes_ctx);
1040 }
1041 
1042 static struct aead_alg aesni_aeads[] = { {
1043 	.setkey			= common_rfc4106_set_key,
1044 	.setauthsize		= common_rfc4106_set_authsize,
1045 	.encrypt		= helper_rfc4106_encrypt,
1046 	.decrypt		= helper_rfc4106_decrypt,
1047 	.ivsize			= GCM_RFC4106_IV_SIZE,
1048 	.maxauthsize		= 16,
1049 	.base = {
1050 		.cra_name		= "__rfc4106(gcm(aes))",
1051 		.cra_driver_name	= "__rfc4106-gcm-aesni",
1052 		.cra_priority		= 400,
1053 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1054 		.cra_blocksize		= 1,
1055 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1056 		.cra_alignmask		= AESNI_ALIGN - 1,
1057 		.cra_module		= THIS_MODULE,
1058 	},
1059 }, {
1060 	.setkey			= generic_gcmaes_set_key,
1061 	.setauthsize		= generic_gcmaes_set_authsize,
1062 	.encrypt		= generic_gcmaes_encrypt,
1063 	.decrypt		= generic_gcmaes_decrypt,
1064 	.ivsize			= GCM_AES_IV_SIZE,
1065 	.maxauthsize		= 16,
1066 	.base = {
1067 		.cra_name		= "__gcm(aes)",
1068 		.cra_driver_name	= "__generic-gcm-aesni",
1069 		.cra_priority		= 400,
1070 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1071 		.cra_blocksize		= 1,
1072 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1073 		.cra_alignmask		= AESNI_ALIGN - 1,
1074 		.cra_module		= THIS_MODULE,
1075 	},
1076 } };
1077 #else
1078 static struct aead_alg aesni_aeads[0];
1079 #endif
1080 
1081 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1082 
1083 static const struct x86_cpu_id aesni_cpu_id[] = {
1084 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1085 	{}
1086 };
1087 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1088 
1089 static int __init aesni_init(void)
1090 {
1091 	int err;
1092 
1093 	if (!x86_match_cpu(aesni_cpu_id))
1094 		return -ENODEV;
1095 #ifdef CONFIG_X86_64
1096 #ifdef CONFIG_AS_AVX2
1097 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1098 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1099 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1100 	} else
1101 #endif
1102 #ifdef CONFIG_AS_AVX
1103 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1104 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1105 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1106 	} else
1107 #endif
1108 	{
1109 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1110 		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1111 	}
1112 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1113 #ifdef CONFIG_AS_AVX
1114 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1115 		/* optimize performance of ctr mode encryption transform */
1116 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1117 		pr_info("AES CTR mode by8 optimization enabled\n");
1118 	}
1119 #endif
1120 #endif
1121 
1122 	err = crypto_register_alg(&aesni_cipher_alg);
1123 	if (err)
1124 		return err;
1125 
1126 	err = simd_register_skciphers_compat(aesni_skciphers,
1127 					     ARRAY_SIZE(aesni_skciphers),
1128 					     aesni_simd_skciphers);
1129 	if (err)
1130 		goto unregister_cipher;
1131 
1132 	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1133 					 aesni_simd_aeads);
1134 	if (err)
1135 		goto unregister_skciphers;
1136 
1137 	return 0;
1138 
1139 unregister_skciphers:
1140 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1141 				  aesni_simd_skciphers);
1142 unregister_cipher:
1143 	crypto_unregister_alg(&aesni_cipher_alg);
1144 	return err;
1145 }
1146 
1147 static void __exit aesni_exit(void)
1148 {
1149 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1150 			      aesni_simd_aeads);
1151 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1152 				  aesni_simd_skciphers);
1153 	crypto_unregister_alg(&aesni_cipher_alg);
1154 }
1155 
1156 late_initcall(aesni_init);
1157 module_exit(aesni_exit);
1158 
1159 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1160 MODULE_LICENSE("GPL");
1161 MODULE_ALIAS_CRYPTO("aes");
1162