1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/i387.h>
36 #include <asm/crypto/aes.h>
37 #include <asm/crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 
43 #if defined(CONFIG_CRYPTO_PCBC) || defined(CONFIG_CRYPTO_PCBC_MODULE)
44 #define HAS_PCBC
45 #endif
46 
47 /* This data is stored at the end of the crypto_tfm struct.
48  * It's a type of per "session" data storage location.
49  * This needs to be 16 byte aligned.
50  */
51 struct aesni_rfc4106_gcm_ctx {
52 	u8 hash_subkey[16];
53 	struct crypto_aes_ctx aes_key_expanded;
54 	u8 nonce[4];
55 	struct cryptd_aead *cryptd_tfm;
56 };
57 
58 struct aesni_gcm_set_hash_subkey_result {
59 	int err;
60 	struct completion completion;
61 };
62 
63 struct aesni_hash_subkey_req_data {
64 	u8 iv[16];
65 	struct aesni_gcm_set_hash_subkey_result result;
66 	struct scatterlist sg;
67 };
68 
69 #define AESNI_ALIGN	(16)
70 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
71 #define RFC4106_HASH_SUBKEY_SIZE 16
72 
73 struct aesni_lrw_ctx {
74 	struct lrw_table_ctx lrw_table;
75 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77 
78 struct aesni_xts_ctx {
79 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82 
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 			     unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 			  const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 			  const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 			      const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 			      const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 			      const u8 *in, unsigned int len, u8 *iv);
97 
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100 
101 #ifdef CONFIG_X86_64
102 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
103 			      const u8 *in, unsigned int len, u8 *iv);
104 
105 /* asmlinkage void aesni_gcm_enc()
106  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
107  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
108  * const u8 *in, Plaintext input
109  * unsigned long plaintext_len, Length of data in bytes for encryption.
110  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
111  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
112  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
113  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
114  * const u8 *aad, Additional Authentication Data (AAD)
115  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
116  *          is going to be 8 or 12 bytes
117  * u8 *auth_tag, Authenticated Tag output.
118  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
119  *          Valid values are 16 (most likely), 12 or 8.
120  */
121 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
122 			const u8 *in, unsigned long plaintext_len, u8 *iv,
123 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
124 			u8 *auth_tag, unsigned long auth_tag_len);
125 
126 /* asmlinkage void aesni_gcm_dec()
127  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
128  * u8 *out, Plaintext output. Decrypt in-place is allowed.
129  * const u8 *in, Ciphertext input
130  * unsigned long ciphertext_len, Length of data in bytes for decryption.
131  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
132  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
133  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
134  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
135  * const u8 *aad, Additional Authentication Data (AAD)
136  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
137  * to be 8 or 12 bytes
138  * u8 *auth_tag, Authenticated Tag output.
139  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
140  * Valid values are 16 (most likely), 12 or 8.
141  */
142 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
143 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
144 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
145 			u8 *auth_tag, unsigned long auth_tag_len);
146 
147 static inline struct
148 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
149 {
150 	return
151 		(struct aesni_rfc4106_gcm_ctx *)
152 		PTR_ALIGN((u8 *)
153 		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
154 }
155 #endif
156 
157 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
158 {
159 	unsigned long addr = (unsigned long)raw_ctx;
160 	unsigned long align = AESNI_ALIGN;
161 
162 	if (align <= crypto_tfm_ctx_alignment())
163 		align = 1;
164 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
165 }
166 
167 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
168 			      const u8 *in_key, unsigned int key_len)
169 {
170 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
171 	u32 *flags = &tfm->crt_flags;
172 	int err;
173 
174 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
175 	    key_len != AES_KEYSIZE_256) {
176 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
177 		return -EINVAL;
178 	}
179 
180 	if (!irq_fpu_usable())
181 		err = crypto_aes_expand_key(ctx, in_key, key_len);
182 	else {
183 		kernel_fpu_begin();
184 		err = aesni_set_key(ctx, in_key, key_len);
185 		kernel_fpu_end();
186 	}
187 
188 	return err;
189 }
190 
191 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
192 		       unsigned int key_len)
193 {
194 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
195 }
196 
197 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
198 {
199 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
200 
201 	if (!irq_fpu_usable())
202 		crypto_aes_encrypt_x86(ctx, dst, src);
203 	else {
204 		kernel_fpu_begin();
205 		aesni_enc(ctx, dst, src);
206 		kernel_fpu_end();
207 	}
208 }
209 
210 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
211 {
212 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
213 
214 	if (!irq_fpu_usable())
215 		crypto_aes_decrypt_x86(ctx, dst, src);
216 	else {
217 		kernel_fpu_begin();
218 		aesni_dec(ctx, dst, src);
219 		kernel_fpu_end();
220 	}
221 }
222 
223 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
224 {
225 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
226 
227 	aesni_enc(ctx, dst, src);
228 }
229 
230 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
231 {
232 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
233 
234 	aesni_dec(ctx, dst, src);
235 }
236 
237 static int ecb_encrypt(struct blkcipher_desc *desc,
238 		       struct scatterlist *dst, struct scatterlist *src,
239 		       unsigned int nbytes)
240 {
241 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
242 	struct blkcipher_walk walk;
243 	int err;
244 
245 	blkcipher_walk_init(&walk, dst, src, nbytes);
246 	err = blkcipher_walk_virt(desc, &walk);
247 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
248 
249 	kernel_fpu_begin();
250 	while ((nbytes = walk.nbytes)) {
251 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
252 			      nbytes & AES_BLOCK_MASK);
253 		nbytes &= AES_BLOCK_SIZE - 1;
254 		err = blkcipher_walk_done(desc, &walk, nbytes);
255 	}
256 	kernel_fpu_end();
257 
258 	return err;
259 }
260 
261 static int ecb_decrypt(struct blkcipher_desc *desc,
262 		       struct scatterlist *dst, struct scatterlist *src,
263 		       unsigned int nbytes)
264 {
265 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
266 	struct blkcipher_walk walk;
267 	int err;
268 
269 	blkcipher_walk_init(&walk, dst, src, nbytes);
270 	err = blkcipher_walk_virt(desc, &walk);
271 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
272 
273 	kernel_fpu_begin();
274 	while ((nbytes = walk.nbytes)) {
275 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
276 			      nbytes & AES_BLOCK_MASK);
277 		nbytes &= AES_BLOCK_SIZE - 1;
278 		err = blkcipher_walk_done(desc, &walk, nbytes);
279 	}
280 	kernel_fpu_end();
281 
282 	return err;
283 }
284 
285 static int cbc_encrypt(struct blkcipher_desc *desc,
286 		       struct scatterlist *dst, struct scatterlist *src,
287 		       unsigned int nbytes)
288 {
289 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
290 	struct blkcipher_walk walk;
291 	int err;
292 
293 	blkcipher_walk_init(&walk, dst, src, nbytes);
294 	err = blkcipher_walk_virt(desc, &walk);
295 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
296 
297 	kernel_fpu_begin();
298 	while ((nbytes = walk.nbytes)) {
299 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
300 			      nbytes & AES_BLOCK_MASK, walk.iv);
301 		nbytes &= AES_BLOCK_SIZE - 1;
302 		err = blkcipher_walk_done(desc, &walk, nbytes);
303 	}
304 	kernel_fpu_end();
305 
306 	return err;
307 }
308 
309 static int cbc_decrypt(struct blkcipher_desc *desc,
310 		       struct scatterlist *dst, struct scatterlist *src,
311 		       unsigned int nbytes)
312 {
313 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
314 	struct blkcipher_walk walk;
315 	int err;
316 
317 	blkcipher_walk_init(&walk, dst, src, nbytes);
318 	err = blkcipher_walk_virt(desc, &walk);
319 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
320 
321 	kernel_fpu_begin();
322 	while ((nbytes = walk.nbytes)) {
323 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
324 			      nbytes & AES_BLOCK_MASK, walk.iv);
325 		nbytes &= AES_BLOCK_SIZE - 1;
326 		err = blkcipher_walk_done(desc, &walk, nbytes);
327 	}
328 	kernel_fpu_end();
329 
330 	return err;
331 }
332 
333 #ifdef CONFIG_X86_64
334 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
335 			    struct blkcipher_walk *walk)
336 {
337 	u8 *ctrblk = walk->iv;
338 	u8 keystream[AES_BLOCK_SIZE];
339 	u8 *src = walk->src.virt.addr;
340 	u8 *dst = walk->dst.virt.addr;
341 	unsigned int nbytes = walk->nbytes;
342 
343 	aesni_enc(ctx, keystream, ctrblk);
344 	crypto_xor(keystream, src, nbytes);
345 	memcpy(dst, keystream, nbytes);
346 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
347 }
348 
349 static int ctr_crypt(struct blkcipher_desc *desc,
350 		     struct scatterlist *dst, struct scatterlist *src,
351 		     unsigned int nbytes)
352 {
353 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
354 	struct blkcipher_walk walk;
355 	int err;
356 
357 	blkcipher_walk_init(&walk, dst, src, nbytes);
358 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
359 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
360 
361 	kernel_fpu_begin();
362 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
363 		aesni_ctr_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
364 			      nbytes & AES_BLOCK_MASK, walk.iv);
365 		nbytes &= AES_BLOCK_SIZE - 1;
366 		err = blkcipher_walk_done(desc, &walk, nbytes);
367 	}
368 	if (walk.nbytes) {
369 		ctr_crypt_final(ctx, &walk);
370 		err = blkcipher_walk_done(desc, &walk, 0);
371 	}
372 	kernel_fpu_end();
373 
374 	return err;
375 }
376 #endif
377 
378 static int ablk_ecb_init(struct crypto_tfm *tfm)
379 {
380 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
381 }
382 
383 static int ablk_cbc_init(struct crypto_tfm *tfm)
384 {
385 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
386 }
387 
388 #ifdef CONFIG_X86_64
389 static int ablk_ctr_init(struct crypto_tfm *tfm)
390 {
391 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
392 }
393 
394 #endif
395 
396 #ifdef HAS_PCBC
397 static int ablk_pcbc_init(struct crypto_tfm *tfm)
398 {
399 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
400 }
401 #endif
402 
403 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
404 {
405 	aesni_ecb_enc(ctx, blks, blks, nbytes);
406 }
407 
408 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
409 {
410 	aesni_ecb_dec(ctx, blks, blks, nbytes);
411 }
412 
413 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
414 			    unsigned int keylen)
415 {
416 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
417 	int err;
418 
419 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
420 				 keylen - AES_BLOCK_SIZE);
421 	if (err)
422 		return err;
423 
424 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
425 }
426 
427 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
428 {
429 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
430 
431 	lrw_free_table(&ctx->lrw_table);
432 }
433 
434 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
435 		       struct scatterlist *src, unsigned int nbytes)
436 {
437 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
438 	be128 buf[8];
439 	struct lrw_crypt_req req = {
440 		.tbuf = buf,
441 		.tbuflen = sizeof(buf),
442 
443 		.table_ctx = &ctx->lrw_table,
444 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
445 		.crypt_fn = lrw_xts_encrypt_callback,
446 	};
447 	int ret;
448 
449 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
450 
451 	kernel_fpu_begin();
452 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
453 	kernel_fpu_end();
454 
455 	return ret;
456 }
457 
458 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
459 		       struct scatterlist *src, unsigned int nbytes)
460 {
461 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
462 	be128 buf[8];
463 	struct lrw_crypt_req req = {
464 		.tbuf = buf,
465 		.tbuflen = sizeof(buf),
466 
467 		.table_ctx = &ctx->lrw_table,
468 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
469 		.crypt_fn = lrw_xts_decrypt_callback,
470 	};
471 	int ret;
472 
473 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
474 
475 	kernel_fpu_begin();
476 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
477 	kernel_fpu_end();
478 
479 	return ret;
480 }
481 
482 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
483 			    unsigned int keylen)
484 {
485 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
486 	u32 *flags = &tfm->crt_flags;
487 	int err;
488 
489 	/* key consists of keys of equal size concatenated, therefore
490 	 * the length must be even
491 	 */
492 	if (keylen % 2) {
493 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
494 		return -EINVAL;
495 	}
496 
497 	/* first half of xts-key is for crypt */
498 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
499 	if (err)
500 		return err;
501 
502 	/* second half of xts-key is for tweak */
503 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
504 				  keylen / 2);
505 }
506 
507 
508 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
509 {
510 	aesni_enc(ctx, out, in);
511 }
512 
513 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
514 		       struct scatterlist *src, unsigned int nbytes)
515 {
516 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
517 	be128 buf[8];
518 	struct xts_crypt_req req = {
519 		.tbuf = buf,
520 		.tbuflen = sizeof(buf),
521 
522 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
523 		.tweak_fn = aesni_xts_tweak,
524 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
525 		.crypt_fn = lrw_xts_encrypt_callback,
526 	};
527 	int ret;
528 
529 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
530 
531 	kernel_fpu_begin();
532 	ret = xts_crypt(desc, dst, src, nbytes, &req);
533 	kernel_fpu_end();
534 
535 	return ret;
536 }
537 
538 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
539 		       struct scatterlist *src, unsigned int nbytes)
540 {
541 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
542 	be128 buf[8];
543 	struct xts_crypt_req req = {
544 		.tbuf = buf,
545 		.tbuflen = sizeof(buf),
546 
547 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
548 		.tweak_fn = aesni_xts_tweak,
549 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
550 		.crypt_fn = lrw_xts_decrypt_callback,
551 	};
552 	int ret;
553 
554 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
555 
556 	kernel_fpu_begin();
557 	ret = xts_crypt(desc, dst, src, nbytes, &req);
558 	kernel_fpu_end();
559 
560 	return ret;
561 }
562 
563 #ifdef CONFIG_X86_64
564 static int rfc4106_init(struct crypto_tfm *tfm)
565 {
566 	struct cryptd_aead *cryptd_tfm;
567 	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
568 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
569 	struct crypto_aead *cryptd_child;
570 	struct aesni_rfc4106_gcm_ctx *child_ctx;
571 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
572 	if (IS_ERR(cryptd_tfm))
573 		return PTR_ERR(cryptd_tfm);
574 
575 	cryptd_child = cryptd_aead_child(cryptd_tfm);
576 	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
577 	memcpy(child_ctx, ctx, sizeof(*ctx));
578 	ctx->cryptd_tfm = cryptd_tfm;
579 	tfm->crt_aead.reqsize = sizeof(struct aead_request)
580 		+ crypto_aead_reqsize(&cryptd_tfm->base);
581 	return 0;
582 }
583 
584 static void rfc4106_exit(struct crypto_tfm *tfm)
585 {
586 	struct aesni_rfc4106_gcm_ctx *ctx =
587 		(struct aesni_rfc4106_gcm_ctx *)
588 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
589 	if (!IS_ERR(ctx->cryptd_tfm))
590 		cryptd_free_aead(ctx->cryptd_tfm);
591 	return;
592 }
593 
594 static void
595 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
596 {
597 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
598 
599 	if (err == -EINPROGRESS)
600 		return;
601 	result->err = err;
602 	complete(&result->completion);
603 }
604 
605 static int
606 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
607 {
608 	struct crypto_ablkcipher *ctr_tfm;
609 	struct ablkcipher_request *req;
610 	int ret = -EINVAL;
611 	struct aesni_hash_subkey_req_data *req_data;
612 
613 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
614 	if (IS_ERR(ctr_tfm))
615 		return PTR_ERR(ctr_tfm);
616 
617 	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
618 
619 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
620 	if (ret)
621 		goto out_free_ablkcipher;
622 
623 	ret = -ENOMEM;
624 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
625 	if (!req)
626 		goto out_free_ablkcipher;
627 
628 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
629 	if (!req_data)
630 		goto out_free_request;
631 
632 	memset(req_data->iv, 0, sizeof(req_data->iv));
633 
634 	/* Clear the data in the hash sub key container to zero.*/
635 	/* We want to cipher all zeros to create the hash sub key. */
636 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
637 
638 	init_completion(&req_data->result.completion);
639 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
640 	ablkcipher_request_set_tfm(req, ctr_tfm);
641 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
642 					CRYPTO_TFM_REQ_MAY_BACKLOG,
643 					rfc4106_set_hash_subkey_done,
644 					&req_data->result);
645 
646 	ablkcipher_request_set_crypt(req, &req_data->sg,
647 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
648 
649 	ret = crypto_ablkcipher_encrypt(req);
650 	if (ret == -EINPROGRESS || ret == -EBUSY) {
651 		ret = wait_for_completion_interruptible
652 			(&req_data->result.completion);
653 		if (!ret)
654 			ret = req_data->result.err;
655 	}
656 	kfree(req_data);
657 out_free_request:
658 	ablkcipher_request_free(req);
659 out_free_ablkcipher:
660 	crypto_free_ablkcipher(ctr_tfm);
661 	return ret;
662 }
663 
664 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
665 						   unsigned int key_len)
666 {
667 	int ret = 0;
668 	struct crypto_tfm *tfm = crypto_aead_tfm(parent);
669 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
670 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
671 	struct aesni_rfc4106_gcm_ctx *child_ctx =
672                                  aesni_rfc4106_gcm_ctx_get(cryptd_child);
673 	u8 *new_key_align, *new_key_mem = NULL;
674 
675 	if (key_len < 4) {
676 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
677 		return -EINVAL;
678 	}
679 	/*Account for 4 byte nonce at the end.*/
680 	key_len -= 4;
681 	if (key_len != AES_KEYSIZE_128) {
682 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
683 		return -EINVAL;
684 	}
685 
686 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
687 	/*This must be on a 16 byte boundary!*/
688 	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
689 		return -EINVAL;
690 
691 	if ((unsigned long)key % AESNI_ALIGN) {
692 		/*key is not aligned: use an auxuliar aligned pointer*/
693 		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
694 		if (!new_key_mem)
695 			return -ENOMEM;
696 
697 		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
698 		memcpy(new_key_align, key, key_len);
699 		key = new_key_align;
700 	}
701 
702 	if (!irq_fpu_usable())
703 		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
704 		key, key_len);
705 	else {
706 		kernel_fpu_begin();
707 		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
708 		kernel_fpu_end();
709 	}
710 	/*This must be on a 16 byte boundary!*/
711 	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
712 		ret = -EINVAL;
713 		goto exit;
714 	}
715 	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
716 	memcpy(child_ctx, ctx, sizeof(*ctx));
717 exit:
718 	kfree(new_key_mem);
719 	return ret;
720 }
721 
722 /* This is the Integrity Check Value (aka the authentication tag length and can
723  * be 8, 12 or 16 bytes long. */
724 static int rfc4106_set_authsize(struct crypto_aead *parent,
725 				unsigned int authsize)
726 {
727 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
728 	struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
729 
730 	switch (authsize) {
731 	case 8:
732 	case 12:
733 	case 16:
734 		break;
735 	default:
736 		return -EINVAL;
737 	}
738 	crypto_aead_crt(parent)->authsize = authsize;
739 	crypto_aead_crt(cryptd_child)->authsize = authsize;
740 	return 0;
741 }
742 
743 static int rfc4106_encrypt(struct aead_request *req)
744 {
745 	int ret;
746 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
747 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
748 
749 	if (!irq_fpu_usable()) {
750 		struct aead_request *cryptd_req =
751 			(struct aead_request *) aead_request_ctx(req);
752 		memcpy(cryptd_req, req, sizeof(*req));
753 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
754 		return crypto_aead_encrypt(cryptd_req);
755 	} else {
756 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
757 		kernel_fpu_begin();
758 		ret = cryptd_child->base.crt_aead.encrypt(req);
759 		kernel_fpu_end();
760 		return ret;
761 	}
762 }
763 
764 static int rfc4106_decrypt(struct aead_request *req)
765 {
766 	int ret;
767 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
768 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
769 
770 	if (!irq_fpu_usable()) {
771 		struct aead_request *cryptd_req =
772 			(struct aead_request *) aead_request_ctx(req);
773 		memcpy(cryptd_req, req, sizeof(*req));
774 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
775 		return crypto_aead_decrypt(cryptd_req);
776 	} else {
777 		struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
778 		kernel_fpu_begin();
779 		ret = cryptd_child->base.crt_aead.decrypt(req);
780 		kernel_fpu_end();
781 		return ret;
782 	}
783 }
784 
785 static int __driver_rfc4106_encrypt(struct aead_request *req)
786 {
787 	u8 one_entry_in_sg = 0;
788 	u8 *src, *dst, *assoc;
789 	__be32 counter = cpu_to_be32(1);
790 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
791 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
792 	void *aes_ctx = &(ctx->aes_key_expanded);
793 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
794 	u8 iv_tab[16+AESNI_ALIGN];
795 	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
796 	struct scatter_walk src_sg_walk;
797 	struct scatter_walk assoc_sg_walk;
798 	struct scatter_walk dst_sg_walk;
799 	unsigned int i;
800 
801 	/* Assuming we are supporting rfc4106 64-bit extended */
802 	/* sequence numbers We need to have the AAD length equal */
803 	/* to 8 or 12 bytes */
804 	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
805 		return -EINVAL;
806 	/* IV below built */
807 	for (i = 0; i < 4; i++)
808 		*(iv+i) = ctx->nonce[i];
809 	for (i = 0; i < 8; i++)
810 		*(iv+4+i) = req->iv[i];
811 	*((__be32 *)(iv+12)) = counter;
812 
813 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
814 		one_entry_in_sg = 1;
815 		scatterwalk_start(&src_sg_walk, req->src);
816 		scatterwalk_start(&assoc_sg_walk, req->assoc);
817 		src = scatterwalk_map(&src_sg_walk);
818 		assoc = scatterwalk_map(&assoc_sg_walk);
819 		dst = src;
820 		if (unlikely(req->src != req->dst)) {
821 			scatterwalk_start(&dst_sg_walk, req->dst);
822 			dst = scatterwalk_map(&dst_sg_walk);
823 		}
824 
825 	} else {
826 		/* Allocate memory for src, dst, assoc */
827 		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
828 			GFP_ATOMIC);
829 		if (unlikely(!src))
830 			return -ENOMEM;
831 		assoc = (src + req->cryptlen + auth_tag_len);
832 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
833 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
834 					req->assoclen, 0);
835 		dst = src;
836 	}
837 
838 	aesni_gcm_enc(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
839 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
840 		+ ((unsigned long)req->cryptlen), auth_tag_len);
841 
842 	/* The authTag (aka the Integrity Check Value) needs to be written
843 	 * back to the packet. */
844 	if (one_entry_in_sg) {
845 		if (unlikely(req->src != req->dst)) {
846 			scatterwalk_unmap(dst);
847 			scatterwalk_done(&dst_sg_walk, 0, 0);
848 		}
849 		scatterwalk_unmap(src);
850 		scatterwalk_unmap(assoc);
851 		scatterwalk_done(&src_sg_walk, 0, 0);
852 		scatterwalk_done(&assoc_sg_walk, 0, 0);
853 	} else {
854 		scatterwalk_map_and_copy(dst, req->dst, 0,
855 			req->cryptlen + auth_tag_len, 1);
856 		kfree(src);
857 	}
858 	return 0;
859 }
860 
861 static int __driver_rfc4106_decrypt(struct aead_request *req)
862 {
863 	u8 one_entry_in_sg = 0;
864 	u8 *src, *dst, *assoc;
865 	unsigned long tempCipherLen = 0;
866 	__be32 counter = cpu_to_be32(1);
867 	int retval = 0;
868 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
869 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
870 	void *aes_ctx = &(ctx->aes_key_expanded);
871 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
872 	u8 iv_and_authTag[32+AESNI_ALIGN];
873 	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
874 	u8 *authTag = iv + 16;
875 	struct scatter_walk src_sg_walk;
876 	struct scatter_walk assoc_sg_walk;
877 	struct scatter_walk dst_sg_walk;
878 	unsigned int i;
879 
880 	if (unlikely((req->cryptlen < auth_tag_len) ||
881 		(req->assoclen != 8 && req->assoclen != 12)))
882 		return -EINVAL;
883 	/* Assuming we are supporting rfc4106 64-bit extended */
884 	/* sequence numbers We need to have the AAD length */
885 	/* equal to 8 or 12 bytes */
886 
887 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
888 	/* IV below built */
889 	for (i = 0; i < 4; i++)
890 		*(iv+i) = ctx->nonce[i];
891 	for (i = 0; i < 8; i++)
892 		*(iv+4+i) = req->iv[i];
893 	*((__be32 *)(iv+12)) = counter;
894 
895 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
896 		one_entry_in_sg = 1;
897 		scatterwalk_start(&src_sg_walk, req->src);
898 		scatterwalk_start(&assoc_sg_walk, req->assoc);
899 		src = scatterwalk_map(&src_sg_walk);
900 		assoc = scatterwalk_map(&assoc_sg_walk);
901 		dst = src;
902 		if (unlikely(req->src != req->dst)) {
903 			scatterwalk_start(&dst_sg_walk, req->dst);
904 			dst = scatterwalk_map(&dst_sg_walk);
905 		}
906 
907 	} else {
908 		/* Allocate memory for src, dst, assoc */
909 		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
910 		if (!src)
911 			return -ENOMEM;
912 		assoc = (src + req->cryptlen + auth_tag_len);
913 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
914 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
915 			req->assoclen, 0);
916 		dst = src;
917 	}
918 
919 	aesni_gcm_dec(aes_ctx, dst, src, tempCipherLen, iv,
920 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
921 		authTag, auth_tag_len);
922 
923 	/* Compare generated tag with passed in tag. */
924 	retval = memcmp(src + tempCipherLen, authTag, auth_tag_len) ?
925 		-EBADMSG : 0;
926 
927 	if (one_entry_in_sg) {
928 		if (unlikely(req->src != req->dst)) {
929 			scatterwalk_unmap(dst);
930 			scatterwalk_done(&dst_sg_walk, 0, 0);
931 		}
932 		scatterwalk_unmap(src);
933 		scatterwalk_unmap(assoc);
934 		scatterwalk_done(&src_sg_walk, 0, 0);
935 		scatterwalk_done(&assoc_sg_walk, 0, 0);
936 	} else {
937 		scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
938 		kfree(src);
939 	}
940 	return retval;
941 }
942 #endif
943 
944 static struct crypto_alg aesni_algs[] = { {
945 	.cra_name		= "aes",
946 	.cra_driver_name	= "aes-aesni",
947 	.cra_priority		= 300,
948 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
949 	.cra_blocksize		= AES_BLOCK_SIZE,
950 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
951 				  AESNI_ALIGN - 1,
952 	.cra_alignmask		= 0,
953 	.cra_module		= THIS_MODULE,
954 	.cra_u	= {
955 		.cipher	= {
956 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
957 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
958 			.cia_setkey		= aes_set_key,
959 			.cia_encrypt		= aes_encrypt,
960 			.cia_decrypt		= aes_decrypt
961 		}
962 	}
963 }, {
964 	.cra_name		= "__aes-aesni",
965 	.cra_driver_name	= "__driver-aes-aesni",
966 	.cra_priority		= 0,
967 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
968 	.cra_blocksize		= AES_BLOCK_SIZE,
969 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
970 				  AESNI_ALIGN - 1,
971 	.cra_alignmask		= 0,
972 	.cra_module		= THIS_MODULE,
973 	.cra_u	= {
974 		.cipher	= {
975 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
976 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
977 			.cia_setkey		= aes_set_key,
978 			.cia_encrypt		= __aes_encrypt,
979 			.cia_decrypt		= __aes_decrypt
980 		}
981 	}
982 }, {
983 	.cra_name		= "__ecb-aes-aesni",
984 	.cra_driver_name	= "__driver-ecb-aes-aesni",
985 	.cra_priority		= 0,
986 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
987 	.cra_blocksize		= AES_BLOCK_SIZE,
988 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
989 				  AESNI_ALIGN - 1,
990 	.cra_alignmask		= 0,
991 	.cra_type		= &crypto_blkcipher_type,
992 	.cra_module		= THIS_MODULE,
993 	.cra_u = {
994 		.blkcipher = {
995 			.min_keysize	= AES_MIN_KEY_SIZE,
996 			.max_keysize	= AES_MAX_KEY_SIZE,
997 			.setkey		= aes_set_key,
998 			.encrypt	= ecb_encrypt,
999 			.decrypt	= ecb_decrypt,
1000 		},
1001 	},
1002 }, {
1003 	.cra_name		= "__cbc-aes-aesni",
1004 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1005 	.cra_priority		= 0,
1006 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1007 	.cra_blocksize		= AES_BLOCK_SIZE,
1008 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1009 				  AESNI_ALIGN - 1,
1010 	.cra_alignmask		= 0,
1011 	.cra_type		= &crypto_blkcipher_type,
1012 	.cra_module		= THIS_MODULE,
1013 	.cra_u = {
1014 		.blkcipher = {
1015 			.min_keysize	= AES_MIN_KEY_SIZE,
1016 			.max_keysize	= AES_MAX_KEY_SIZE,
1017 			.setkey		= aes_set_key,
1018 			.encrypt	= cbc_encrypt,
1019 			.decrypt	= cbc_decrypt,
1020 		},
1021 	},
1022 }, {
1023 	.cra_name		= "ecb(aes)",
1024 	.cra_driver_name	= "ecb-aes-aesni",
1025 	.cra_priority		= 400,
1026 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1027 	.cra_blocksize		= AES_BLOCK_SIZE,
1028 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1029 	.cra_alignmask		= 0,
1030 	.cra_type		= &crypto_ablkcipher_type,
1031 	.cra_module		= THIS_MODULE,
1032 	.cra_init		= ablk_ecb_init,
1033 	.cra_exit		= ablk_exit,
1034 	.cra_u = {
1035 		.ablkcipher = {
1036 			.min_keysize	= AES_MIN_KEY_SIZE,
1037 			.max_keysize	= AES_MAX_KEY_SIZE,
1038 			.setkey		= ablk_set_key,
1039 			.encrypt	= ablk_encrypt,
1040 			.decrypt	= ablk_decrypt,
1041 		},
1042 	},
1043 }, {
1044 	.cra_name		= "cbc(aes)",
1045 	.cra_driver_name	= "cbc-aes-aesni",
1046 	.cra_priority		= 400,
1047 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1048 	.cra_blocksize		= AES_BLOCK_SIZE,
1049 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1050 	.cra_alignmask		= 0,
1051 	.cra_type		= &crypto_ablkcipher_type,
1052 	.cra_module		= THIS_MODULE,
1053 	.cra_init		= ablk_cbc_init,
1054 	.cra_exit		= ablk_exit,
1055 	.cra_u = {
1056 		.ablkcipher = {
1057 			.min_keysize	= AES_MIN_KEY_SIZE,
1058 			.max_keysize	= AES_MAX_KEY_SIZE,
1059 			.ivsize		= AES_BLOCK_SIZE,
1060 			.setkey		= ablk_set_key,
1061 			.encrypt	= ablk_encrypt,
1062 			.decrypt	= ablk_decrypt,
1063 		},
1064 	},
1065 #ifdef CONFIG_X86_64
1066 }, {
1067 	.cra_name		= "__ctr-aes-aesni",
1068 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1069 	.cra_priority		= 0,
1070 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1071 	.cra_blocksize		= 1,
1072 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1073 				  AESNI_ALIGN - 1,
1074 	.cra_alignmask		= 0,
1075 	.cra_type		= &crypto_blkcipher_type,
1076 	.cra_module		= THIS_MODULE,
1077 	.cra_u = {
1078 		.blkcipher = {
1079 			.min_keysize	= AES_MIN_KEY_SIZE,
1080 			.max_keysize	= AES_MAX_KEY_SIZE,
1081 			.ivsize		= AES_BLOCK_SIZE,
1082 			.setkey		= aes_set_key,
1083 			.encrypt	= ctr_crypt,
1084 			.decrypt	= ctr_crypt,
1085 		},
1086 	},
1087 }, {
1088 	.cra_name		= "ctr(aes)",
1089 	.cra_driver_name	= "ctr-aes-aesni",
1090 	.cra_priority		= 400,
1091 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1092 	.cra_blocksize		= 1,
1093 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1094 	.cra_alignmask		= 0,
1095 	.cra_type		= &crypto_ablkcipher_type,
1096 	.cra_module		= THIS_MODULE,
1097 	.cra_init		= ablk_ctr_init,
1098 	.cra_exit		= ablk_exit,
1099 	.cra_u = {
1100 		.ablkcipher = {
1101 			.min_keysize	= AES_MIN_KEY_SIZE,
1102 			.max_keysize	= AES_MAX_KEY_SIZE,
1103 			.ivsize		= AES_BLOCK_SIZE,
1104 			.setkey		= ablk_set_key,
1105 			.encrypt	= ablk_encrypt,
1106 			.decrypt	= ablk_encrypt,
1107 			.geniv		= "chainiv",
1108 		},
1109 	},
1110 }, {
1111 	.cra_name		= "__gcm-aes-aesni",
1112 	.cra_driver_name	= "__driver-gcm-aes-aesni",
1113 	.cra_priority		= 0,
1114 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD,
1115 	.cra_blocksize		= 1,
1116 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1117 				  AESNI_ALIGN,
1118 	.cra_alignmask		= 0,
1119 	.cra_type		= &crypto_aead_type,
1120 	.cra_module		= THIS_MODULE,
1121 	.cra_u = {
1122 		.aead = {
1123 			.encrypt	= __driver_rfc4106_encrypt,
1124 			.decrypt	= __driver_rfc4106_decrypt,
1125 		},
1126 	},
1127 }, {
1128 	.cra_name		= "rfc4106(gcm(aes))",
1129 	.cra_driver_name	= "rfc4106-gcm-aesni",
1130 	.cra_priority		= 400,
1131 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1132 	.cra_blocksize		= 1,
1133 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1134 				  AESNI_ALIGN,
1135 	.cra_alignmask		= 0,
1136 	.cra_type		= &crypto_nivaead_type,
1137 	.cra_module		= THIS_MODULE,
1138 	.cra_init		= rfc4106_init,
1139 	.cra_exit		= rfc4106_exit,
1140 	.cra_u = {
1141 		.aead = {
1142 			.setkey		= rfc4106_set_key,
1143 			.setauthsize	= rfc4106_set_authsize,
1144 			.encrypt	= rfc4106_encrypt,
1145 			.decrypt	= rfc4106_decrypt,
1146 			.geniv		= "seqiv",
1147 			.ivsize		= 8,
1148 			.maxauthsize	= 16,
1149 		},
1150 	},
1151 #endif
1152 #ifdef HAS_PCBC
1153 }, {
1154 	.cra_name		= "pcbc(aes)",
1155 	.cra_driver_name	= "pcbc-aes-aesni",
1156 	.cra_priority		= 400,
1157 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1158 	.cra_blocksize		= AES_BLOCK_SIZE,
1159 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1160 	.cra_alignmask		= 0,
1161 	.cra_type		= &crypto_ablkcipher_type,
1162 	.cra_module		= THIS_MODULE,
1163 	.cra_init		= ablk_pcbc_init,
1164 	.cra_exit		= ablk_exit,
1165 	.cra_u = {
1166 		.ablkcipher = {
1167 			.min_keysize	= AES_MIN_KEY_SIZE,
1168 			.max_keysize	= AES_MAX_KEY_SIZE,
1169 			.ivsize		= AES_BLOCK_SIZE,
1170 			.setkey		= ablk_set_key,
1171 			.encrypt	= ablk_encrypt,
1172 			.decrypt	= ablk_decrypt,
1173 		},
1174 	},
1175 #endif
1176 }, {
1177 	.cra_name		= "__lrw-aes-aesni",
1178 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1179 	.cra_priority		= 0,
1180 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1181 	.cra_blocksize		= AES_BLOCK_SIZE,
1182 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1183 	.cra_alignmask		= 0,
1184 	.cra_type		= &crypto_blkcipher_type,
1185 	.cra_module		= THIS_MODULE,
1186 	.cra_exit		= lrw_aesni_exit_tfm,
1187 	.cra_u = {
1188 		.blkcipher = {
1189 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1190 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1191 			.ivsize		= AES_BLOCK_SIZE,
1192 			.setkey		= lrw_aesni_setkey,
1193 			.encrypt	= lrw_encrypt,
1194 			.decrypt	= lrw_decrypt,
1195 		},
1196 	},
1197 }, {
1198 	.cra_name		= "__xts-aes-aesni",
1199 	.cra_driver_name	= "__driver-xts-aes-aesni",
1200 	.cra_priority		= 0,
1201 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER,
1202 	.cra_blocksize		= AES_BLOCK_SIZE,
1203 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1204 	.cra_alignmask		= 0,
1205 	.cra_type		= &crypto_blkcipher_type,
1206 	.cra_module		= THIS_MODULE,
1207 	.cra_u = {
1208 		.blkcipher = {
1209 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1210 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1211 			.ivsize		= AES_BLOCK_SIZE,
1212 			.setkey		= xts_aesni_setkey,
1213 			.encrypt	= xts_encrypt,
1214 			.decrypt	= xts_decrypt,
1215 		},
1216 	},
1217 }, {
1218 	.cra_name		= "lrw(aes)",
1219 	.cra_driver_name	= "lrw-aes-aesni",
1220 	.cra_priority		= 400,
1221 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1222 	.cra_blocksize		= AES_BLOCK_SIZE,
1223 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1224 	.cra_alignmask		= 0,
1225 	.cra_type		= &crypto_ablkcipher_type,
1226 	.cra_module		= THIS_MODULE,
1227 	.cra_init		= ablk_init,
1228 	.cra_exit		= ablk_exit,
1229 	.cra_u = {
1230 		.ablkcipher = {
1231 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1232 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1233 			.ivsize		= AES_BLOCK_SIZE,
1234 			.setkey		= ablk_set_key,
1235 			.encrypt	= ablk_encrypt,
1236 			.decrypt	= ablk_decrypt,
1237 		},
1238 	},
1239 }, {
1240 	.cra_name		= "xts(aes)",
1241 	.cra_driver_name	= "xts-aes-aesni",
1242 	.cra_priority		= 400,
1243 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1244 	.cra_blocksize		= AES_BLOCK_SIZE,
1245 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1246 	.cra_alignmask		= 0,
1247 	.cra_type		= &crypto_ablkcipher_type,
1248 	.cra_module		= THIS_MODULE,
1249 	.cra_init		= ablk_init,
1250 	.cra_exit		= ablk_exit,
1251 	.cra_u = {
1252 		.ablkcipher = {
1253 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1254 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1255 			.ivsize		= AES_BLOCK_SIZE,
1256 			.setkey		= ablk_set_key,
1257 			.encrypt	= ablk_encrypt,
1258 			.decrypt	= ablk_decrypt,
1259 		},
1260 	},
1261 } };
1262 
1263 
1264 static const struct x86_cpu_id aesni_cpu_id[] = {
1265 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1266 	{}
1267 };
1268 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1269 
1270 static int __init aesni_init(void)
1271 {
1272 	int err;
1273 
1274 	if (!x86_match_cpu(aesni_cpu_id))
1275 		return -ENODEV;
1276 
1277 	err = crypto_fpu_init();
1278 	if (err)
1279 		return err;
1280 
1281 	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1282 }
1283 
1284 static void __exit aesni_exit(void)
1285 {
1286 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1287 
1288 	crypto_fpu_exit();
1289 }
1290 
1291 module_init(aesni_init);
1292 module_exit(aesni_exit);
1293 
1294 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1295 MODULE_LICENSE("GPL");
1296 MODULE_ALIAS("aes");
1297