1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for Intel AES-NI instructions. This file contains glue
4  * code, the real AES implementation is in intel-aes_asm.S.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  */
17 
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
36 
37 
38 #define AESNI_ALIGN	16
39 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
40 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
41 #define RFC4106_HASH_SUBKEY_SIZE 16
42 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
43 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
44 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
45 
46 /* This data is stored at the end of the crypto_tfm struct.
47  * It's a type of per "session" data storage location.
48  * This needs to be 16 byte aligned.
49  */
50 struct aesni_rfc4106_gcm_ctx {
51 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
52 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
53 	u8 nonce[4];
54 };
55 
56 struct generic_gcmaes_ctx {
57 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
58 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
59 };
60 
61 struct aesni_xts_ctx {
62 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
63 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
64 };
65 
66 #define GCM_BLOCK_LEN 16
67 
68 struct gcm_context_data {
69 	/* init, update and finalize context data */
70 	u8 aad_hash[GCM_BLOCK_LEN];
71 	u64 aad_length;
72 	u64 in_length;
73 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
74 	u8 orig_IV[GCM_BLOCK_LEN];
75 	u8 current_counter[GCM_BLOCK_LEN];
76 	u64 partial_block_len;
77 	u64 unused;
78 	u8 hash_keys[GCM_BLOCK_LEN * 16];
79 };
80 
81 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
82 			     unsigned int key_len);
83 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
84 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
85 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 			      const u8 *in, unsigned int len);
87 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 			      const u8 *in, unsigned int len);
89 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 			      const u8 *in, unsigned int len, u8 *iv);
91 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len, u8 *iv);
93 asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 				  const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 				  const u8 *in, unsigned int len, u8 *iv);
97 
98 #define AVX_GEN2_OPTSIZE 640
99 #define AVX_GEN4_OPTSIZE 4096
100 
101 asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
102 				  const u8 *in, unsigned int len, u8 *iv);
103 
104 asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
105 				  const u8 *in, unsigned int len, u8 *iv);
106 
107 #ifdef CONFIG_X86_64
108 
109 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
110 			      const u8 *in, unsigned int len, u8 *iv);
111 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
112 			      const u8 *in, unsigned int len, u8 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * struct gcm_context_data.  May be uninitialized.
117  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
118  * const u8 *in, Plaintext input
119  * unsigned long plaintext_len, Length of data in bytes for encryption.
120  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
121  *         16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes.
125  * u8 *auth_tag, Authenticated Tag output.
126  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
127  *          Valid values are 16 (most likely), 12 or 8.
128  */
129 asmlinkage void aesni_gcm_enc(void *ctx,
130 			struct gcm_context_data *gdata, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * struct gcm_context_data.  May be uninitialized.
138  * u8 *out, Plaintext output. Decrypt in-place is allowed.
139  * const u8 *in, Ciphertext input
140  * unsigned long ciphertext_len, Length of data in bytes for decryption.
141  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
142  *         16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx,
152 			struct gcm_context_data *gdata, u8 *out,
153 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
154 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
155 			u8 *auth_tag, unsigned long auth_tag_len);
156 
157 /* Scatter / Gather routines, with args similar to above */
158 asmlinkage void aesni_gcm_init(void *ctx,
159 			       struct gcm_context_data *gdata,
160 			       u8 *iv,
161 			       u8 *hash_subkey, const u8 *aad,
162 			       unsigned long aad_len);
163 asmlinkage void aesni_gcm_enc_update(void *ctx,
164 				     struct gcm_context_data *gdata, u8 *out,
165 				     const u8 *in, unsigned long plaintext_len);
166 asmlinkage void aesni_gcm_dec_update(void *ctx,
167 				     struct gcm_context_data *gdata, u8 *out,
168 				     const u8 *in,
169 				     unsigned long ciphertext_len);
170 asmlinkage void aesni_gcm_finalize(void *ctx,
171 				   struct gcm_context_data *gdata,
172 				   u8 *auth_tag, unsigned long auth_tag_len);
173 
174 static const struct aesni_gcm_tfm_s {
175 	void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
176 		     u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
177 	void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
178 			   const u8 *in, unsigned long plaintext_len);
179 	void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
180 			   const u8 *in, unsigned long ciphertext_len);
181 	void (*finalize)(void *ctx, struct gcm_context_data *gdata,
182 			 u8 *auth_tag, unsigned long auth_tag_len);
183 } *aesni_gcm_tfm;
184 
185 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
186 	.init = &aesni_gcm_init,
187 	.enc_update = &aesni_gcm_enc_update,
188 	.dec_update = &aesni_gcm_dec_update,
189 	.finalize = &aesni_gcm_finalize,
190 };
191 
192 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
193 		void *keys, u8 *out, unsigned int num_bytes);
194 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
195 		void *keys, u8 *out, unsigned int num_bytes);
196 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
197 		void *keys, u8 *out, unsigned int num_bytes);
198 /*
199  * asmlinkage void aesni_gcm_init_avx_gen2()
200  * gcm_data *my_ctx_data, context data
201  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
202  */
203 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
204 					struct gcm_context_data *gdata,
205 					u8 *iv,
206 					u8 *hash_subkey,
207 					const u8 *aad,
208 					unsigned long aad_len);
209 
210 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
211 				     struct gcm_context_data *gdata, u8 *out,
212 				     const u8 *in, unsigned long plaintext_len);
213 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
214 				     struct gcm_context_data *gdata, u8 *out,
215 				     const u8 *in,
216 				     unsigned long ciphertext_len);
217 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
218 				   struct gcm_context_data *gdata,
219 				   u8 *auth_tag, unsigned long auth_tag_len);
220 
221 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
222 				struct gcm_context_data *gdata, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
228 				struct gcm_context_data *gdata, u8 *out,
229 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
230 			const u8 *aad, unsigned long aad_len,
231 			u8 *auth_tag, unsigned long auth_tag_len);
232 
233 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
234 	.init = &aesni_gcm_init_avx_gen2,
235 	.enc_update = &aesni_gcm_enc_update_avx_gen2,
236 	.dec_update = &aesni_gcm_dec_update_avx_gen2,
237 	.finalize = &aesni_gcm_finalize_avx_gen2,
238 };
239 
240 /*
241  * asmlinkage void aesni_gcm_init_avx_gen4()
242  * gcm_data *my_ctx_data, context data
243  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
244  */
245 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
246 					struct gcm_context_data *gdata,
247 					u8 *iv,
248 					u8 *hash_subkey,
249 					const u8 *aad,
250 					unsigned long aad_len);
251 
252 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
253 				     struct gcm_context_data *gdata, u8 *out,
254 				     const u8 *in, unsigned long plaintext_len);
255 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
256 				     struct gcm_context_data *gdata, u8 *out,
257 				     const u8 *in,
258 				     unsigned long ciphertext_len);
259 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
260 				   struct gcm_context_data *gdata,
261 				   u8 *auth_tag, unsigned long auth_tag_len);
262 
263 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
264 				struct gcm_context_data *gdata, u8 *out,
265 			const u8 *in, unsigned long plaintext_len, u8 *iv,
266 			const u8 *aad, unsigned long aad_len,
267 			u8 *auth_tag, unsigned long auth_tag_len);
268 
269 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
270 				struct gcm_context_data *gdata, u8 *out,
271 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
272 			const u8 *aad, unsigned long aad_len,
273 			u8 *auth_tag, unsigned long auth_tag_len);
274 
275 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
276 	.init = &aesni_gcm_init_avx_gen4,
277 	.enc_update = &aesni_gcm_enc_update_avx_gen4,
278 	.dec_update = &aesni_gcm_dec_update_avx_gen4,
279 	.finalize = &aesni_gcm_finalize_avx_gen4,
280 };
281 
282 static inline struct
283 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
284 {
285 	unsigned long align = AESNI_ALIGN;
286 
287 	if (align <= crypto_tfm_ctx_alignment())
288 		align = 1;
289 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
290 }
291 
292 static inline struct
293 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
294 {
295 	unsigned long align = AESNI_ALIGN;
296 
297 	if (align <= crypto_tfm_ctx_alignment())
298 		align = 1;
299 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
300 }
301 #endif
302 
303 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
304 {
305 	unsigned long addr = (unsigned long)raw_ctx;
306 	unsigned long align = AESNI_ALIGN;
307 
308 	if (align <= crypto_tfm_ctx_alignment())
309 		align = 1;
310 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
311 }
312 
313 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
314 			      const u8 *in_key, unsigned int key_len)
315 {
316 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
317 	int err;
318 
319 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
320 	    key_len != AES_KEYSIZE_256)
321 		return -EINVAL;
322 
323 	if (!crypto_simd_usable())
324 		err = aes_expandkey(ctx, in_key, key_len);
325 	else {
326 		kernel_fpu_begin();
327 		err = aesni_set_key(ctx, in_key, key_len);
328 		kernel_fpu_end();
329 	}
330 
331 	return err;
332 }
333 
334 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
335 		       unsigned int key_len)
336 {
337 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
338 }
339 
340 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
341 {
342 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
343 
344 	if (!crypto_simd_usable()) {
345 		aes_encrypt(ctx, dst, src);
346 	} else {
347 		kernel_fpu_begin();
348 		aesni_enc(ctx, dst, src);
349 		kernel_fpu_end();
350 	}
351 }
352 
353 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
354 {
355 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
356 
357 	if (!crypto_simd_usable()) {
358 		aes_decrypt(ctx, dst, src);
359 	} else {
360 		kernel_fpu_begin();
361 		aesni_dec(ctx, dst, src);
362 		kernel_fpu_end();
363 	}
364 }
365 
366 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
367 			         unsigned int len)
368 {
369 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
370 				  crypto_skcipher_ctx(tfm), key, len);
371 }
372 
373 static int ecb_encrypt(struct skcipher_request *req)
374 {
375 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
376 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
377 	struct skcipher_walk walk;
378 	unsigned int nbytes;
379 	int err;
380 
381 	err = skcipher_walk_virt(&walk, req, true);
382 
383 	kernel_fpu_begin();
384 	while ((nbytes = walk.nbytes)) {
385 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
386 			      nbytes & AES_BLOCK_MASK);
387 		nbytes &= AES_BLOCK_SIZE - 1;
388 		err = skcipher_walk_done(&walk, nbytes);
389 	}
390 	kernel_fpu_end();
391 
392 	return err;
393 }
394 
395 static int ecb_decrypt(struct skcipher_request *req)
396 {
397 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
398 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
399 	struct skcipher_walk walk;
400 	unsigned int nbytes;
401 	int err;
402 
403 	err = skcipher_walk_virt(&walk, req, true);
404 
405 	kernel_fpu_begin();
406 	while ((nbytes = walk.nbytes)) {
407 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
408 			      nbytes & AES_BLOCK_MASK);
409 		nbytes &= AES_BLOCK_SIZE - 1;
410 		err = skcipher_walk_done(&walk, nbytes);
411 	}
412 	kernel_fpu_end();
413 
414 	return err;
415 }
416 
417 static int cbc_encrypt(struct skcipher_request *req)
418 {
419 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
420 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
421 	struct skcipher_walk walk;
422 	unsigned int nbytes;
423 	int err;
424 
425 	err = skcipher_walk_virt(&walk, req, true);
426 
427 	kernel_fpu_begin();
428 	while ((nbytes = walk.nbytes)) {
429 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
430 			      nbytes & AES_BLOCK_MASK, walk.iv);
431 		nbytes &= AES_BLOCK_SIZE - 1;
432 		err = skcipher_walk_done(&walk, nbytes);
433 	}
434 	kernel_fpu_end();
435 
436 	return err;
437 }
438 
439 static int cbc_decrypt(struct skcipher_request *req)
440 {
441 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
442 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
443 	struct skcipher_walk walk;
444 	unsigned int nbytes;
445 	int err;
446 
447 	err = skcipher_walk_virt(&walk, req, true);
448 
449 	kernel_fpu_begin();
450 	while ((nbytes = walk.nbytes)) {
451 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
452 			      nbytes & AES_BLOCK_MASK, walk.iv);
453 		nbytes &= AES_BLOCK_SIZE - 1;
454 		err = skcipher_walk_done(&walk, nbytes);
455 	}
456 	kernel_fpu_end();
457 
458 	return err;
459 }
460 
461 static int cts_cbc_encrypt(struct skcipher_request *req)
462 {
463 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
464 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
465 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
466 	struct scatterlist *src = req->src, *dst = req->dst;
467 	struct scatterlist sg_src[2], sg_dst[2];
468 	struct skcipher_request subreq;
469 	struct skcipher_walk walk;
470 	int err;
471 
472 	skcipher_request_set_tfm(&subreq, tfm);
473 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
474 				      NULL, NULL);
475 
476 	if (req->cryptlen <= AES_BLOCK_SIZE) {
477 		if (req->cryptlen < AES_BLOCK_SIZE)
478 			return -EINVAL;
479 		cbc_blocks = 1;
480 	}
481 
482 	if (cbc_blocks > 0) {
483 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
484 					   cbc_blocks * AES_BLOCK_SIZE,
485 					   req->iv);
486 
487 		err = cbc_encrypt(&subreq);
488 		if (err)
489 			return err;
490 
491 		if (req->cryptlen == AES_BLOCK_SIZE)
492 			return 0;
493 
494 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
495 		if (req->dst != req->src)
496 			dst = scatterwalk_ffwd(sg_dst, req->dst,
497 					       subreq.cryptlen);
498 	}
499 
500 	/* handle ciphertext stealing */
501 	skcipher_request_set_crypt(&subreq, src, dst,
502 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
503 				   req->iv);
504 
505 	err = skcipher_walk_virt(&walk, &subreq, false);
506 	if (err)
507 		return err;
508 
509 	kernel_fpu_begin();
510 	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
511 			  walk.nbytes, walk.iv);
512 	kernel_fpu_end();
513 
514 	return skcipher_walk_done(&walk, 0);
515 }
516 
517 static int cts_cbc_decrypt(struct skcipher_request *req)
518 {
519 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
520 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
521 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
522 	struct scatterlist *src = req->src, *dst = req->dst;
523 	struct scatterlist sg_src[2], sg_dst[2];
524 	struct skcipher_request subreq;
525 	struct skcipher_walk walk;
526 	int err;
527 
528 	skcipher_request_set_tfm(&subreq, tfm);
529 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
530 				      NULL, NULL);
531 
532 	if (req->cryptlen <= AES_BLOCK_SIZE) {
533 		if (req->cryptlen < AES_BLOCK_SIZE)
534 			return -EINVAL;
535 		cbc_blocks = 1;
536 	}
537 
538 	if (cbc_blocks > 0) {
539 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
540 					   cbc_blocks * AES_BLOCK_SIZE,
541 					   req->iv);
542 
543 		err = cbc_decrypt(&subreq);
544 		if (err)
545 			return err;
546 
547 		if (req->cryptlen == AES_BLOCK_SIZE)
548 			return 0;
549 
550 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
551 		if (req->dst != req->src)
552 			dst = scatterwalk_ffwd(sg_dst, req->dst,
553 					       subreq.cryptlen);
554 	}
555 
556 	/* handle ciphertext stealing */
557 	skcipher_request_set_crypt(&subreq, src, dst,
558 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
559 				   req->iv);
560 
561 	err = skcipher_walk_virt(&walk, &subreq, false);
562 	if (err)
563 		return err;
564 
565 	kernel_fpu_begin();
566 	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
567 			  walk.nbytes, walk.iv);
568 	kernel_fpu_end();
569 
570 	return skcipher_walk_done(&walk, 0);
571 }
572 
573 #ifdef CONFIG_X86_64
574 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
575 			    struct skcipher_walk *walk)
576 {
577 	u8 *ctrblk = walk->iv;
578 	u8 keystream[AES_BLOCK_SIZE];
579 	u8 *src = walk->src.virt.addr;
580 	u8 *dst = walk->dst.virt.addr;
581 	unsigned int nbytes = walk->nbytes;
582 
583 	aesni_enc(ctx, keystream, ctrblk);
584 	crypto_xor_cpy(dst, keystream, src, nbytes);
585 
586 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
587 }
588 
589 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
590 			      const u8 *in, unsigned int len, u8 *iv)
591 {
592 	/*
593 	 * based on key length, override with the by8 version
594 	 * of ctr mode encryption/decryption for improved performance
595 	 * aes_set_key_common() ensures that key length is one of
596 	 * {128,192,256}
597 	 */
598 	if (ctx->key_length == AES_KEYSIZE_128)
599 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
600 	else if (ctx->key_length == AES_KEYSIZE_192)
601 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
602 	else
603 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
604 }
605 
606 static int ctr_crypt(struct skcipher_request *req)
607 {
608 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
609 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
610 	struct skcipher_walk walk;
611 	unsigned int nbytes;
612 	int err;
613 
614 	err = skcipher_walk_virt(&walk, req, true);
615 
616 	kernel_fpu_begin();
617 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
618 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
619 			              nbytes & AES_BLOCK_MASK, walk.iv);
620 		nbytes &= AES_BLOCK_SIZE - 1;
621 		err = skcipher_walk_done(&walk, nbytes);
622 	}
623 	if (walk.nbytes) {
624 		ctr_crypt_final(ctx, &walk);
625 		err = skcipher_walk_done(&walk, 0);
626 	}
627 	kernel_fpu_end();
628 
629 	return err;
630 }
631 
632 static int
633 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
634 {
635 	struct crypto_aes_ctx ctx;
636 	int ret;
637 
638 	ret = aes_expandkey(&ctx, key, key_len);
639 	if (ret)
640 		return ret;
641 
642 	/* Clear the data in the hash sub key container to zero.*/
643 	/* We want to cipher all zeros to create the hash sub key. */
644 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
645 
646 	aes_encrypt(&ctx, hash_subkey, hash_subkey);
647 
648 	memzero_explicit(&ctx, sizeof(ctx));
649 	return 0;
650 }
651 
652 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
653 				  unsigned int key_len)
654 {
655 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
656 
657 	if (key_len < 4)
658 		return -EINVAL;
659 
660 	/*Account for 4 byte nonce at the end.*/
661 	key_len -= 4;
662 
663 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
664 
665 	return aes_set_key_common(crypto_aead_tfm(aead),
666 				  &ctx->aes_key_expanded, key, key_len) ?:
667 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
668 }
669 
670 /* This is the Integrity Check Value (aka the authentication tag) length and can
671  * be 8, 12 or 16 bytes long. */
672 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
673 				       unsigned int authsize)
674 {
675 	switch (authsize) {
676 	case 8:
677 	case 12:
678 	case 16:
679 		break;
680 	default:
681 		return -EINVAL;
682 	}
683 
684 	return 0;
685 }
686 
687 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
688 				       unsigned int authsize)
689 {
690 	switch (authsize) {
691 	case 4:
692 	case 8:
693 	case 12:
694 	case 13:
695 	case 14:
696 	case 15:
697 	case 16:
698 		break;
699 	default:
700 		return -EINVAL;
701 	}
702 
703 	return 0;
704 }
705 
706 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
707 			      unsigned int assoclen, u8 *hash_subkey,
708 			      u8 *iv, void *aes_ctx)
709 {
710 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
711 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
712 	const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
713 	struct gcm_context_data data AESNI_ALIGN_ATTR;
714 	struct scatter_walk dst_sg_walk = {};
715 	unsigned long left = req->cryptlen;
716 	unsigned long len, srclen, dstlen;
717 	struct scatter_walk assoc_sg_walk;
718 	struct scatter_walk src_sg_walk;
719 	struct scatterlist src_start[2];
720 	struct scatterlist dst_start[2];
721 	struct scatterlist *src_sg;
722 	struct scatterlist *dst_sg;
723 	u8 *src, *dst, *assoc;
724 	u8 *assocmem = NULL;
725 	u8 authTag[16];
726 
727 	if (!enc)
728 		left -= auth_tag_len;
729 
730 	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
731 		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
732 	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
733 		gcm_tfm = &aesni_gcm_tfm_sse;
734 
735 	/* Linearize assoc, if not already linear */
736 	if (req->src->length >= assoclen && req->src->length &&
737 		(!PageHighMem(sg_page(req->src)) ||
738 			req->src->offset + req->src->length <= PAGE_SIZE)) {
739 		scatterwalk_start(&assoc_sg_walk, req->src);
740 		assoc = scatterwalk_map(&assoc_sg_walk);
741 	} else {
742 		/* assoc can be any length, so must be on heap */
743 		assocmem = kmalloc(assoclen, GFP_ATOMIC);
744 		if (unlikely(!assocmem))
745 			return -ENOMEM;
746 		assoc = assocmem;
747 
748 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
749 	}
750 
751 	if (left) {
752 		src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
753 		scatterwalk_start(&src_sg_walk, src_sg);
754 		if (req->src != req->dst) {
755 			dst_sg = scatterwalk_ffwd(dst_start, req->dst,
756 						  req->assoclen);
757 			scatterwalk_start(&dst_sg_walk, dst_sg);
758 		}
759 	}
760 
761 	kernel_fpu_begin();
762 	gcm_tfm->init(aes_ctx, &data, iv,
763 		hash_subkey, assoc, assoclen);
764 	if (req->src != req->dst) {
765 		while (left) {
766 			src = scatterwalk_map(&src_sg_walk);
767 			dst = scatterwalk_map(&dst_sg_walk);
768 			srclen = scatterwalk_clamp(&src_sg_walk, left);
769 			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
770 			len = min(srclen, dstlen);
771 			if (len) {
772 				if (enc)
773 					gcm_tfm->enc_update(aes_ctx, &data,
774 							     dst, src, len);
775 				else
776 					gcm_tfm->dec_update(aes_ctx, &data,
777 							     dst, src, len);
778 			}
779 			left -= len;
780 
781 			scatterwalk_unmap(src);
782 			scatterwalk_unmap(dst);
783 			scatterwalk_advance(&src_sg_walk, len);
784 			scatterwalk_advance(&dst_sg_walk, len);
785 			scatterwalk_done(&src_sg_walk, 0, left);
786 			scatterwalk_done(&dst_sg_walk, 1, left);
787 		}
788 	} else {
789 		while (left) {
790 			dst = src = scatterwalk_map(&src_sg_walk);
791 			len = scatterwalk_clamp(&src_sg_walk, left);
792 			if (len) {
793 				if (enc)
794 					gcm_tfm->enc_update(aes_ctx, &data,
795 							     src, src, len);
796 				else
797 					gcm_tfm->dec_update(aes_ctx, &data,
798 							     src, src, len);
799 			}
800 			left -= len;
801 			scatterwalk_unmap(src);
802 			scatterwalk_advance(&src_sg_walk, len);
803 			scatterwalk_done(&src_sg_walk, 1, left);
804 		}
805 	}
806 	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
807 	kernel_fpu_end();
808 
809 	if (!assocmem)
810 		scatterwalk_unmap(assoc);
811 	else
812 		kfree(assocmem);
813 
814 	if (!enc) {
815 		u8 authTagMsg[16];
816 
817 		/* Copy out original authTag */
818 		scatterwalk_map_and_copy(authTagMsg, req->src,
819 					 req->assoclen + req->cryptlen -
820 					 auth_tag_len,
821 					 auth_tag_len, 0);
822 
823 		/* Compare generated tag with passed in tag. */
824 		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
825 			-EBADMSG : 0;
826 	}
827 
828 	/* Copy in the authTag */
829 	scatterwalk_map_and_copy(authTag, req->dst,
830 				 req->assoclen + req->cryptlen,
831 				 auth_tag_len, 1);
832 
833 	return 0;
834 }
835 
836 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
837 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
838 {
839 	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
840 				aes_ctx);
841 }
842 
843 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
844 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
845 {
846 	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
847 				aes_ctx);
848 }
849 
850 static int helper_rfc4106_encrypt(struct aead_request *req)
851 {
852 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
853 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
854 	void *aes_ctx = &(ctx->aes_key_expanded);
855 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
856 	unsigned int i;
857 	__be32 counter = cpu_to_be32(1);
858 
859 	/* Assuming we are supporting rfc4106 64-bit extended */
860 	/* sequence numbers We need to have the AAD length equal */
861 	/* to 16 or 20 bytes */
862 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
863 		return -EINVAL;
864 
865 	/* IV below built */
866 	for (i = 0; i < 4; i++)
867 		*(iv+i) = ctx->nonce[i];
868 	for (i = 0; i < 8; i++)
869 		*(iv+4+i) = req->iv[i];
870 	*((__be32 *)(iv+12)) = counter;
871 
872 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
873 			      aes_ctx);
874 }
875 
876 static int helper_rfc4106_decrypt(struct aead_request *req)
877 {
878 	__be32 counter = cpu_to_be32(1);
879 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
880 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
881 	void *aes_ctx = &(ctx->aes_key_expanded);
882 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
883 	unsigned int i;
884 
885 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
886 		return -EINVAL;
887 
888 	/* Assuming we are supporting rfc4106 64-bit extended */
889 	/* sequence numbers We need to have the AAD length */
890 	/* equal to 16 or 20 bytes */
891 
892 	/* IV below built */
893 	for (i = 0; i < 4; i++)
894 		*(iv+i) = ctx->nonce[i];
895 	for (i = 0; i < 8; i++)
896 		*(iv+4+i) = req->iv[i];
897 	*((__be32 *)(iv+12)) = counter;
898 
899 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
900 			      aes_ctx);
901 }
902 #endif
903 
904 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
905 			    unsigned int keylen)
906 {
907 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
908 	int err;
909 
910 	err = xts_verify_key(tfm, key, keylen);
911 	if (err)
912 		return err;
913 
914 	keylen /= 2;
915 
916 	/* first half of xts-key is for crypt */
917 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
918 				 key, keylen);
919 	if (err)
920 		return err;
921 
922 	/* second half of xts-key is for tweak */
923 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
924 				  key + keylen, keylen);
925 }
926 
927 static int xts_crypt(struct skcipher_request *req, bool encrypt)
928 {
929 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
930 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
931 	int tail = req->cryptlen % AES_BLOCK_SIZE;
932 	struct skcipher_request subreq;
933 	struct skcipher_walk walk;
934 	int err;
935 
936 	if (req->cryptlen < AES_BLOCK_SIZE)
937 		return -EINVAL;
938 
939 	err = skcipher_walk_virt(&walk, req, false);
940 
941 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
942 		int blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
943 
944 		skcipher_walk_abort(&walk);
945 
946 		skcipher_request_set_tfm(&subreq, tfm);
947 		skcipher_request_set_callback(&subreq,
948 					      skcipher_request_flags(req),
949 					      NULL, NULL);
950 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
951 					   blocks * AES_BLOCK_SIZE, req->iv);
952 		req = &subreq;
953 		err = skcipher_walk_virt(&walk, req, false);
954 	} else {
955 		tail = 0;
956 	}
957 
958 	kernel_fpu_begin();
959 
960 	/* calculate first value of T */
961 	aesni_enc(aes_ctx(ctx->raw_tweak_ctx), walk.iv, walk.iv);
962 
963 	while (walk.nbytes > 0) {
964 		int nbytes = walk.nbytes;
965 
966 		if (nbytes < walk.total)
967 			nbytes &= ~(AES_BLOCK_SIZE - 1);
968 
969 		if (encrypt)
970 			aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
971 					  walk.dst.virt.addr, walk.src.virt.addr,
972 					  nbytes, walk.iv);
973 		else
974 			aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
975 					  walk.dst.virt.addr, walk.src.virt.addr,
976 					  nbytes, walk.iv);
977 		kernel_fpu_end();
978 
979 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
980 
981 		if (walk.nbytes > 0)
982 			kernel_fpu_begin();
983 	}
984 
985 	if (unlikely(tail > 0 && !err)) {
986 		struct scatterlist sg_src[2], sg_dst[2];
987 		struct scatterlist *src, *dst;
988 
989 		dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
990 		if (req->dst != req->src)
991 			dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
992 
993 		skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
994 					   req->iv);
995 
996 		err = skcipher_walk_virt(&walk, &subreq, false);
997 		if (err)
998 			return err;
999 
1000 		kernel_fpu_begin();
1001 		if (encrypt)
1002 			aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
1003 					  walk.dst.virt.addr, walk.src.virt.addr,
1004 					  walk.nbytes, walk.iv);
1005 		else
1006 			aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
1007 					  walk.dst.virt.addr, walk.src.virt.addr,
1008 					  walk.nbytes, walk.iv);
1009 		kernel_fpu_end();
1010 
1011 		err = skcipher_walk_done(&walk, 0);
1012 	}
1013 	return err;
1014 }
1015 
1016 static int xts_encrypt(struct skcipher_request *req)
1017 {
1018 	return xts_crypt(req, true);
1019 }
1020 
1021 static int xts_decrypt(struct skcipher_request *req)
1022 {
1023 	return xts_crypt(req, false);
1024 }
1025 
1026 static struct crypto_alg aesni_cipher_alg = {
1027 	.cra_name		= "aes",
1028 	.cra_driver_name	= "aes-aesni",
1029 	.cra_priority		= 300,
1030 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1031 	.cra_blocksize		= AES_BLOCK_SIZE,
1032 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1033 	.cra_module		= THIS_MODULE,
1034 	.cra_u	= {
1035 		.cipher	= {
1036 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1037 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1038 			.cia_setkey		= aes_set_key,
1039 			.cia_encrypt		= aesni_encrypt,
1040 			.cia_decrypt		= aesni_decrypt
1041 		}
1042 	}
1043 };
1044 
1045 static struct skcipher_alg aesni_skciphers[] = {
1046 	{
1047 		.base = {
1048 			.cra_name		= "__ecb(aes)",
1049 			.cra_driver_name	= "__ecb-aes-aesni",
1050 			.cra_priority		= 400,
1051 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1052 			.cra_blocksize		= AES_BLOCK_SIZE,
1053 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1054 			.cra_module		= THIS_MODULE,
1055 		},
1056 		.min_keysize	= AES_MIN_KEY_SIZE,
1057 		.max_keysize	= AES_MAX_KEY_SIZE,
1058 		.setkey		= aesni_skcipher_setkey,
1059 		.encrypt	= ecb_encrypt,
1060 		.decrypt	= ecb_decrypt,
1061 	}, {
1062 		.base = {
1063 			.cra_name		= "__cbc(aes)",
1064 			.cra_driver_name	= "__cbc-aes-aesni",
1065 			.cra_priority		= 400,
1066 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1067 			.cra_blocksize		= AES_BLOCK_SIZE,
1068 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1069 			.cra_module		= THIS_MODULE,
1070 		},
1071 		.min_keysize	= AES_MIN_KEY_SIZE,
1072 		.max_keysize	= AES_MAX_KEY_SIZE,
1073 		.ivsize		= AES_BLOCK_SIZE,
1074 		.setkey		= aesni_skcipher_setkey,
1075 		.encrypt	= cbc_encrypt,
1076 		.decrypt	= cbc_decrypt,
1077 	}, {
1078 		.base = {
1079 			.cra_name		= "__cts(cbc(aes))",
1080 			.cra_driver_name	= "__cts-cbc-aes-aesni",
1081 			.cra_priority		= 400,
1082 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1083 			.cra_blocksize		= AES_BLOCK_SIZE,
1084 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1085 			.cra_module		= THIS_MODULE,
1086 		},
1087 		.min_keysize	= AES_MIN_KEY_SIZE,
1088 		.max_keysize	= AES_MAX_KEY_SIZE,
1089 		.ivsize		= AES_BLOCK_SIZE,
1090 		.walksize	= 2 * AES_BLOCK_SIZE,
1091 		.setkey		= aesni_skcipher_setkey,
1092 		.encrypt	= cts_cbc_encrypt,
1093 		.decrypt	= cts_cbc_decrypt,
1094 #ifdef CONFIG_X86_64
1095 	}, {
1096 		.base = {
1097 			.cra_name		= "__ctr(aes)",
1098 			.cra_driver_name	= "__ctr-aes-aesni",
1099 			.cra_priority		= 400,
1100 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1101 			.cra_blocksize		= 1,
1102 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1103 			.cra_module		= THIS_MODULE,
1104 		},
1105 		.min_keysize	= AES_MIN_KEY_SIZE,
1106 		.max_keysize	= AES_MAX_KEY_SIZE,
1107 		.ivsize		= AES_BLOCK_SIZE,
1108 		.chunksize	= AES_BLOCK_SIZE,
1109 		.setkey		= aesni_skcipher_setkey,
1110 		.encrypt	= ctr_crypt,
1111 		.decrypt	= ctr_crypt,
1112 #endif
1113 	}, {
1114 		.base = {
1115 			.cra_name		= "__xts(aes)",
1116 			.cra_driver_name	= "__xts-aes-aesni",
1117 			.cra_priority		= 401,
1118 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1119 			.cra_blocksize		= AES_BLOCK_SIZE,
1120 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1121 			.cra_module		= THIS_MODULE,
1122 		},
1123 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1124 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1125 		.ivsize		= AES_BLOCK_SIZE,
1126 		.walksize	= 2 * AES_BLOCK_SIZE,
1127 		.setkey		= xts_aesni_setkey,
1128 		.encrypt	= xts_encrypt,
1129 		.decrypt	= xts_decrypt,
1130 	}
1131 };
1132 
1133 static
1134 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1135 
1136 #ifdef CONFIG_X86_64
1137 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1138 				  unsigned int key_len)
1139 {
1140 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
1141 
1142 	return aes_set_key_common(crypto_aead_tfm(aead),
1143 				  &ctx->aes_key_expanded, key, key_len) ?:
1144 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
1145 }
1146 
1147 static int generic_gcmaes_encrypt(struct aead_request *req)
1148 {
1149 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1150 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1151 	void *aes_ctx = &(ctx->aes_key_expanded);
1152 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1153 	__be32 counter = cpu_to_be32(1);
1154 
1155 	memcpy(iv, req->iv, 12);
1156 	*((__be32 *)(iv+12)) = counter;
1157 
1158 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1159 			      aes_ctx);
1160 }
1161 
1162 static int generic_gcmaes_decrypt(struct aead_request *req)
1163 {
1164 	__be32 counter = cpu_to_be32(1);
1165 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1166 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1167 	void *aes_ctx = &(ctx->aes_key_expanded);
1168 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1169 
1170 	memcpy(iv, req->iv, 12);
1171 	*((__be32 *)(iv+12)) = counter;
1172 
1173 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1174 			      aes_ctx);
1175 }
1176 
1177 static struct aead_alg aesni_aeads[] = { {
1178 	.setkey			= common_rfc4106_set_key,
1179 	.setauthsize		= common_rfc4106_set_authsize,
1180 	.encrypt		= helper_rfc4106_encrypt,
1181 	.decrypt		= helper_rfc4106_decrypt,
1182 	.ivsize			= GCM_RFC4106_IV_SIZE,
1183 	.maxauthsize		= 16,
1184 	.base = {
1185 		.cra_name		= "__rfc4106(gcm(aes))",
1186 		.cra_driver_name	= "__rfc4106-gcm-aesni",
1187 		.cra_priority		= 400,
1188 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1189 		.cra_blocksize		= 1,
1190 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1191 		.cra_alignmask		= AESNI_ALIGN - 1,
1192 		.cra_module		= THIS_MODULE,
1193 	},
1194 }, {
1195 	.setkey			= generic_gcmaes_set_key,
1196 	.setauthsize		= generic_gcmaes_set_authsize,
1197 	.encrypt		= generic_gcmaes_encrypt,
1198 	.decrypt		= generic_gcmaes_decrypt,
1199 	.ivsize			= GCM_AES_IV_SIZE,
1200 	.maxauthsize		= 16,
1201 	.base = {
1202 		.cra_name		= "__gcm(aes)",
1203 		.cra_driver_name	= "__generic-gcm-aesni",
1204 		.cra_priority		= 400,
1205 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1206 		.cra_blocksize		= 1,
1207 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1208 		.cra_alignmask		= AESNI_ALIGN - 1,
1209 		.cra_module		= THIS_MODULE,
1210 	},
1211 } };
1212 #else
1213 static struct aead_alg aesni_aeads[0];
1214 #endif
1215 
1216 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1217 
1218 static const struct x86_cpu_id aesni_cpu_id[] = {
1219 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1220 	{}
1221 };
1222 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1223 
1224 static int __init aesni_init(void)
1225 {
1226 	int err;
1227 
1228 	if (!x86_match_cpu(aesni_cpu_id))
1229 		return -ENODEV;
1230 #ifdef CONFIG_X86_64
1231 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1232 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1233 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1234 	} else
1235 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1236 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1237 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1238 	} else {
1239 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1240 		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1241 	}
1242 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1243 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1244 		/* optimize performance of ctr mode encryption transform */
1245 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1246 		pr_info("AES CTR mode by8 optimization enabled\n");
1247 	}
1248 #endif
1249 
1250 	err = crypto_register_alg(&aesni_cipher_alg);
1251 	if (err)
1252 		return err;
1253 
1254 	err = simd_register_skciphers_compat(aesni_skciphers,
1255 					     ARRAY_SIZE(aesni_skciphers),
1256 					     aesni_simd_skciphers);
1257 	if (err)
1258 		goto unregister_cipher;
1259 
1260 	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1261 					 aesni_simd_aeads);
1262 	if (err)
1263 		goto unregister_skciphers;
1264 
1265 	return 0;
1266 
1267 unregister_skciphers:
1268 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1269 				  aesni_simd_skciphers);
1270 unregister_cipher:
1271 	crypto_unregister_alg(&aesni_cipher_alg);
1272 	return err;
1273 }
1274 
1275 static void __exit aesni_exit(void)
1276 {
1277 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1278 			      aesni_simd_aeads);
1279 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1280 				  aesni_simd_skciphers);
1281 	crypto_unregister_alg(&aesni_cipher_alg);
1282 }
1283 
1284 late_initcall(aesni_init);
1285 module_exit(aesni_exit);
1286 
1287 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1288 MODULE_LICENSE("GPL");
1289 MODULE_ALIAS_CRYPTO("aes");
1290