1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/module.h>
25 #include <linux/err.h>
26 #include <crypto/algapi.h>
27 #include <crypto/aes.h>
28 #include <crypto/cryptd.h>
29 #include <crypto/ctr.h>
30 #include <crypto/b128ops.h>
31 #include <crypto/xts.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/fpu/api.h>
34 #include <asm/crypto/aes.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/internal/simd.h>
38 #include <crypto/internal/skcipher.h>
39 #include <linux/workqueue.h>
40 #include <linux/spinlock.h>
41 #ifdef CONFIG_X86_64
42 #include <asm/crypto/glue_helper.h>
43 #endif
44 
45 
46 #define AESNI_ALIGN	16
47 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
48 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
49 #define RFC4106_HASH_SUBKEY_SIZE 16
50 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
51 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
52 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
53 
54 /* This data is stored at the end of the crypto_tfm struct.
55  * It's a type of per "session" data storage location.
56  * This needs to be 16 byte aligned.
57  */
58 struct aesni_rfc4106_gcm_ctx {
59 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
60 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
61 	u8 nonce[4];
62 };
63 
64 struct aesni_xts_ctx {
65 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 };
68 
69 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
70 			     unsigned int key_len);
71 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
72 			  const u8 *in);
73 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
74 			  const u8 *in);
75 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
76 			      const u8 *in, unsigned int len);
77 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
78 			      const u8 *in, unsigned int len);
79 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
80 			      const u8 *in, unsigned int len, u8 *iv);
81 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
82 			      const u8 *in, unsigned int len, u8 *iv);
83 
84 int crypto_fpu_init(void);
85 void crypto_fpu_exit(void);
86 
87 #define AVX_GEN2_OPTSIZE 640
88 #define AVX_GEN4_OPTSIZE 4096
89 
90 #ifdef CONFIG_X86_64
91 
92 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
93 			      const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len, u8 *iv);
96 
97 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
98 				 const u8 *in, bool enc, u8 *iv);
99 
100 /* asmlinkage void aesni_gcm_enc()
101  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
102  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
103  * const u8 *in, Plaintext input
104  * unsigned long plaintext_len, Length of data in bytes for encryption.
105  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
106  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
107  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
108  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
109  * const u8 *aad, Additional Authentication Data (AAD)
110  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
111  *          is going to be 8 or 12 bytes
112  * u8 *auth_tag, Authenticated Tag output.
113  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
114  *          Valid values are 16 (most likely), 12 or 8.
115  */
116 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
117 			const u8 *in, unsigned long plaintext_len, u8 *iv,
118 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
119 			u8 *auth_tag, unsigned long auth_tag_len);
120 
121 /* asmlinkage void aesni_gcm_dec()
122  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
123  * u8 *out, Plaintext output. Decrypt in-place is allowed.
124  * const u8 *in, Ciphertext input
125  * unsigned long ciphertext_len, Length of data in bytes for decryption.
126  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
127  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
128  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
129  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
130  * const u8 *aad, Additional Authentication Data (AAD)
131  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
132  * to be 8 or 12 bytes
133  * u8 *auth_tag, Authenticated Tag output.
134  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
135  * Valid values are 16 (most likely), 12 or 8.
136  */
137 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
138 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
139 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
140 			u8 *auth_tag, unsigned long auth_tag_len);
141 
142 
143 #ifdef CONFIG_AS_AVX
144 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
145 		void *keys, u8 *out, unsigned int num_bytes);
146 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
147 		void *keys, u8 *out, unsigned int num_bytes);
148 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
149 		void *keys, u8 *out, unsigned int num_bytes);
150 /*
151  * asmlinkage void aesni_gcm_precomp_avx_gen2()
152  * gcm_data *my_ctx_data, context data
153  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
154  */
155 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
156 
157 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
158 			const u8 *in, unsigned long plaintext_len, u8 *iv,
159 			const u8 *aad, unsigned long aad_len,
160 			u8 *auth_tag, unsigned long auth_tag_len);
161 
162 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
163 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
164 			const u8 *aad, unsigned long aad_len,
165 			u8 *auth_tag, unsigned long auth_tag_len);
166 
167 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
168 			const u8 *in, unsigned long plaintext_len, u8 *iv,
169 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
170 			u8 *auth_tag, unsigned long auth_tag_len)
171 {
172         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
173 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
174 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
175 				aad_len, auth_tag, auth_tag_len);
176 	} else {
177 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
178 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
179 					aad_len, auth_tag, auth_tag_len);
180 	}
181 }
182 
183 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
184 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
185 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
186 			u8 *auth_tag, unsigned long auth_tag_len)
187 {
188         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
189 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
190 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
191 				aad_len, auth_tag, auth_tag_len);
192 	} else {
193 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
194 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
195 					aad_len, auth_tag, auth_tag_len);
196 	}
197 }
198 #endif
199 
200 #ifdef CONFIG_AS_AVX2
201 /*
202  * asmlinkage void aesni_gcm_precomp_avx_gen4()
203  * gcm_data *my_ctx_data, context data
204  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
205  */
206 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
207 
208 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
209 			const u8 *in, unsigned long plaintext_len, u8 *iv,
210 			const u8 *aad, unsigned long aad_len,
211 			u8 *auth_tag, unsigned long auth_tag_len);
212 
213 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
214 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
215 			const u8 *aad, unsigned long aad_len,
216 			u8 *auth_tag, unsigned long auth_tag_len);
217 
218 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
219 			const u8 *in, unsigned long plaintext_len, u8 *iv,
220 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
221 			u8 *auth_tag, unsigned long auth_tag_len)
222 {
223        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
224 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
225 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
226 				aad_len, auth_tag, auth_tag_len);
227 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
228 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
229 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
230 					aad_len, auth_tag, auth_tag_len);
231 	} else {
232 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
233 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
234 					aad_len, auth_tag, auth_tag_len);
235 	}
236 }
237 
238 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
239 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
240 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
241 			u8 *auth_tag, unsigned long auth_tag_len)
242 {
243        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
244 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
245 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
246 				aad, aad_len, auth_tag, auth_tag_len);
247 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
248 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
249 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
250 					aad_len, auth_tag, auth_tag_len);
251 	} else {
252 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
253 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
254 					aad_len, auth_tag, auth_tag_len);
255 	}
256 }
257 #endif
258 
259 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
260 			const u8 *in, unsigned long plaintext_len, u8 *iv,
261 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
262 			u8 *auth_tag, unsigned long auth_tag_len);
263 
264 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
265 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
266 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
267 			u8 *auth_tag, unsigned long auth_tag_len);
268 
269 static inline struct
270 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
271 {
272 	unsigned long align = AESNI_ALIGN;
273 
274 	if (align <= crypto_tfm_ctx_alignment())
275 		align = 1;
276 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
277 }
278 #endif
279 
280 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
281 {
282 	unsigned long addr = (unsigned long)raw_ctx;
283 	unsigned long align = AESNI_ALIGN;
284 
285 	if (align <= crypto_tfm_ctx_alignment())
286 		align = 1;
287 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
288 }
289 
290 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
291 			      const u8 *in_key, unsigned int key_len)
292 {
293 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
294 	u32 *flags = &tfm->crt_flags;
295 	int err;
296 
297 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
298 	    key_len != AES_KEYSIZE_256) {
299 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
300 		return -EINVAL;
301 	}
302 
303 	if (!irq_fpu_usable())
304 		err = crypto_aes_expand_key(ctx, in_key, key_len);
305 	else {
306 		kernel_fpu_begin();
307 		err = aesni_set_key(ctx, in_key, key_len);
308 		kernel_fpu_end();
309 	}
310 
311 	return err;
312 }
313 
314 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
315 		       unsigned int key_len)
316 {
317 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
318 }
319 
320 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
321 {
322 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
323 
324 	if (!irq_fpu_usable())
325 		crypto_aes_encrypt_x86(ctx, dst, src);
326 	else {
327 		kernel_fpu_begin();
328 		aesni_enc(ctx, dst, src);
329 		kernel_fpu_end();
330 	}
331 }
332 
333 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
334 {
335 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
336 
337 	if (!irq_fpu_usable())
338 		crypto_aes_decrypt_x86(ctx, dst, src);
339 	else {
340 		kernel_fpu_begin();
341 		aesni_dec(ctx, dst, src);
342 		kernel_fpu_end();
343 	}
344 }
345 
346 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
347 {
348 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
349 
350 	aesni_enc(ctx, dst, src);
351 }
352 
353 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
354 {
355 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
356 
357 	aesni_dec(ctx, dst, src);
358 }
359 
360 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
361 			         unsigned int len)
362 {
363 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
364 				  crypto_skcipher_ctx(tfm), key, len);
365 }
366 
367 static int ecb_encrypt(struct skcipher_request *req)
368 {
369 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
370 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
371 	struct skcipher_walk walk;
372 	unsigned int nbytes;
373 	int err;
374 
375 	err = skcipher_walk_virt(&walk, req, true);
376 
377 	kernel_fpu_begin();
378 	while ((nbytes = walk.nbytes)) {
379 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
380 			      nbytes & AES_BLOCK_MASK);
381 		nbytes &= AES_BLOCK_SIZE - 1;
382 		err = skcipher_walk_done(&walk, nbytes);
383 	}
384 	kernel_fpu_end();
385 
386 	return err;
387 }
388 
389 static int ecb_decrypt(struct skcipher_request *req)
390 {
391 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
392 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
393 	struct skcipher_walk walk;
394 	unsigned int nbytes;
395 	int err;
396 
397 	err = skcipher_walk_virt(&walk, req, true);
398 
399 	kernel_fpu_begin();
400 	while ((nbytes = walk.nbytes)) {
401 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
402 			      nbytes & AES_BLOCK_MASK);
403 		nbytes &= AES_BLOCK_SIZE - 1;
404 		err = skcipher_walk_done(&walk, nbytes);
405 	}
406 	kernel_fpu_end();
407 
408 	return err;
409 }
410 
411 static int cbc_encrypt(struct skcipher_request *req)
412 {
413 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
414 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
415 	struct skcipher_walk walk;
416 	unsigned int nbytes;
417 	int err;
418 
419 	err = skcipher_walk_virt(&walk, req, true);
420 
421 	kernel_fpu_begin();
422 	while ((nbytes = walk.nbytes)) {
423 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
424 			      nbytes & AES_BLOCK_MASK, walk.iv);
425 		nbytes &= AES_BLOCK_SIZE - 1;
426 		err = skcipher_walk_done(&walk, nbytes);
427 	}
428 	kernel_fpu_end();
429 
430 	return err;
431 }
432 
433 static int cbc_decrypt(struct skcipher_request *req)
434 {
435 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
436 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
437 	struct skcipher_walk walk;
438 	unsigned int nbytes;
439 	int err;
440 
441 	err = skcipher_walk_virt(&walk, req, true);
442 
443 	kernel_fpu_begin();
444 	while ((nbytes = walk.nbytes)) {
445 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
446 			      nbytes & AES_BLOCK_MASK, walk.iv);
447 		nbytes &= AES_BLOCK_SIZE - 1;
448 		err = skcipher_walk_done(&walk, nbytes);
449 	}
450 	kernel_fpu_end();
451 
452 	return err;
453 }
454 
455 #ifdef CONFIG_X86_64
456 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
457 			    struct skcipher_walk *walk)
458 {
459 	u8 *ctrblk = walk->iv;
460 	u8 keystream[AES_BLOCK_SIZE];
461 	u8 *src = walk->src.virt.addr;
462 	u8 *dst = walk->dst.virt.addr;
463 	unsigned int nbytes = walk->nbytes;
464 
465 	aesni_enc(ctx, keystream, ctrblk);
466 	crypto_xor(keystream, src, nbytes);
467 	memcpy(dst, keystream, nbytes);
468 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
469 }
470 
471 #ifdef CONFIG_AS_AVX
472 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
473 			      const u8 *in, unsigned int len, u8 *iv)
474 {
475 	/*
476 	 * based on key length, override with the by8 version
477 	 * of ctr mode encryption/decryption for improved performance
478 	 * aes_set_key_common() ensures that key length is one of
479 	 * {128,192,256}
480 	 */
481 	if (ctx->key_length == AES_KEYSIZE_128)
482 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
483 	else if (ctx->key_length == AES_KEYSIZE_192)
484 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
485 	else
486 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
487 }
488 #endif
489 
490 static int ctr_crypt(struct skcipher_request *req)
491 {
492 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
493 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
494 	struct skcipher_walk walk;
495 	unsigned int nbytes;
496 	int err;
497 
498 	err = skcipher_walk_virt(&walk, req, true);
499 
500 	kernel_fpu_begin();
501 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
502 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
503 			              nbytes & AES_BLOCK_MASK, walk.iv);
504 		nbytes &= AES_BLOCK_SIZE - 1;
505 		err = skcipher_walk_done(&walk, nbytes);
506 	}
507 	if (walk.nbytes) {
508 		ctr_crypt_final(ctx, &walk);
509 		err = skcipher_walk_done(&walk, 0);
510 	}
511 	kernel_fpu_end();
512 
513 	return err;
514 }
515 
516 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
517 			    unsigned int keylen)
518 {
519 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
520 	int err;
521 
522 	err = xts_verify_key(tfm, key, keylen);
523 	if (err)
524 		return err;
525 
526 	keylen /= 2;
527 
528 	/* first half of xts-key is for crypt */
529 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
530 				 key, keylen);
531 	if (err)
532 		return err;
533 
534 	/* second half of xts-key is for tweak */
535 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
536 				  key + keylen, keylen);
537 }
538 
539 
540 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
541 {
542 	aesni_enc(ctx, out, in);
543 }
544 
545 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
546 {
547 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
548 }
549 
550 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
551 {
552 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
553 }
554 
555 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
556 {
557 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
558 }
559 
560 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
561 {
562 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
563 }
564 
565 static const struct common_glue_ctx aesni_enc_xts = {
566 	.num_funcs = 2,
567 	.fpu_blocks_limit = 1,
568 
569 	.funcs = { {
570 		.num_blocks = 8,
571 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
572 	}, {
573 		.num_blocks = 1,
574 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
575 	} }
576 };
577 
578 static const struct common_glue_ctx aesni_dec_xts = {
579 	.num_funcs = 2,
580 	.fpu_blocks_limit = 1,
581 
582 	.funcs = { {
583 		.num_blocks = 8,
584 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
585 	}, {
586 		.num_blocks = 1,
587 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
588 	} }
589 };
590 
591 static int xts_encrypt(struct skcipher_request *req)
592 {
593 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
594 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
595 
596 	return glue_xts_req_128bit(&aesni_enc_xts, req,
597 				   XTS_TWEAK_CAST(aesni_xts_tweak),
598 				   aes_ctx(ctx->raw_tweak_ctx),
599 				   aes_ctx(ctx->raw_crypt_ctx));
600 }
601 
602 static int xts_decrypt(struct skcipher_request *req)
603 {
604 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
605 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
606 
607 	return glue_xts_req_128bit(&aesni_dec_xts, req,
608 				   XTS_TWEAK_CAST(aesni_xts_tweak),
609 				   aes_ctx(ctx->raw_tweak_ctx),
610 				   aes_ctx(ctx->raw_crypt_ctx));
611 }
612 
613 static int rfc4106_init(struct crypto_aead *aead)
614 {
615 	struct cryptd_aead *cryptd_tfm;
616 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
617 
618 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
619 				       CRYPTO_ALG_INTERNAL,
620 				       CRYPTO_ALG_INTERNAL);
621 	if (IS_ERR(cryptd_tfm))
622 		return PTR_ERR(cryptd_tfm);
623 
624 	*ctx = cryptd_tfm;
625 	crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
626 	return 0;
627 }
628 
629 static void rfc4106_exit(struct crypto_aead *aead)
630 {
631 	struct cryptd_aead **ctx = crypto_aead_ctx(aead);
632 
633 	cryptd_free_aead(*ctx);
634 }
635 
636 static int
637 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
638 {
639 	struct crypto_cipher *tfm;
640 	int ret;
641 
642 	tfm = crypto_alloc_cipher("aes", 0, 0);
643 	if (IS_ERR(tfm))
644 		return PTR_ERR(tfm);
645 
646 	ret = crypto_cipher_setkey(tfm, key, key_len);
647 	if (ret)
648 		goto out_free_cipher;
649 
650 	/* Clear the data in the hash sub key container to zero.*/
651 	/* We want to cipher all zeros to create the hash sub key. */
652 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
653 
654 	crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
655 
656 out_free_cipher:
657 	crypto_free_cipher(tfm);
658 	return ret;
659 }
660 
661 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
662 				  unsigned int key_len)
663 {
664 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
665 
666 	if (key_len < 4) {
667 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
668 		return -EINVAL;
669 	}
670 	/*Account for 4 byte nonce at the end.*/
671 	key_len -= 4;
672 
673 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
674 
675 	return aes_set_key_common(crypto_aead_tfm(aead),
676 				  &ctx->aes_key_expanded, key, key_len) ?:
677 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
678 }
679 
680 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
681 			   unsigned int key_len)
682 {
683 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
684 	struct cryptd_aead *cryptd_tfm = *ctx;
685 
686 	return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
687 }
688 
689 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
690 				       unsigned int authsize)
691 {
692 	switch (authsize) {
693 	case 8:
694 	case 12:
695 	case 16:
696 		break;
697 	default:
698 		return -EINVAL;
699 	}
700 
701 	return 0;
702 }
703 
704 /* This is the Integrity Check Value (aka the authentication tag length and can
705  * be 8, 12 or 16 bytes long. */
706 static int rfc4106_set_authsize(struct crypto_aead *parent,
707 				unsigned int authsize)
708 {
709 	struct cryptd_aead **ctx = crypto_aead_ctx(parent);
710 	struct cryptd_aead *cryptd_tfm = *ctx;
711 
712 	return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
713 }
714 
715 static int helper_rfc4106_encrypt(struct aead_request *req)
716 {
717 	u8 one_entry_in_sg = 0;
718 	u8 *src, *dst, *assoc;
719 	__be32 counter = cpu_to_be32(1);
720 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
721 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
722 	void *aes_ctx = &(ctx->aes_key_expanded);
723 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
724 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
725 	struct scatter_walk src_sg_walk;
726 	struct scatter_walk dst_sg_walk = {};
727 	unsigned int i;
728 
729 	/* Assuming we are supporting rfc4106 64-bit extended */
730 	/* sequence numbers We need to have the AAD length equal */
731 	/* to 16 or 20 bytes */
732 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
733 		return -EINVAL;
734 
735 	/* IV below built */
736 	for (i = 0; i < 4; i++)
737 		*(iv+i) = ctx->nonce[i];
738 	for (i = 0; i < 8; i++)
739 		*(iv+4+i) = req->iv[i];
740 	*((__be32 *)(iv+12)) = counter;
741 
742 	if (sg_is_last(req->src) &&
743 	    (!PageHighMem(sg_page(req->src)) ||
744 	    req->src->offset + req->src->length <= PAGE_SIZE) &&
745 	    sg_is_last(req->dst) &&
746 	    (!PageHighMem(sg_page(req->dst)) ||
747 	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
748 		one_entry_in_sg = 1;
749 		scatterwalk_start(&src_sg_walk, req->src);
750 		assoc = scatterwalk_map(&src_sg_walk);
751 		src = assoc + req->assoclen;
752 		dst = src;
753 		if (unlikely(req->src != req->dst)) {
754 			scatterwalk_start(&dst_sg_walk, req->dst);
755 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
756 		}
757 	} else {
758 		/* Allocate memory for src, dst, assoc */
759 		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
760 			GFP_ATOMIC);
761 		if (unlikely(!assoc))
762 			return -ENOMEM;
763 		scatterwalk_map_and_copy(assoc, req->src, 0,
764 					 req->assoclen + req->cryptlen, 0);
765 		src = assoc + req->assoclen;
766 		dst = src;
767 	}
768 
769 	kernel_fpu_begin();
770 	aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
771 			  ctx->hash_subkey, assoc, req->assoclen - 8,
772 			  dst + req->cryptlen, auth_tag_len);
773 	kernel_fpu_end();
774 
775 	/* The authTag (aka the Integrity Check Value) needs to be written
776 	 * back to the packet. */
777 	if (one_entry_in_sg) {
778 		if (unlikely(req->src != req->dst)) {
779 			scatterwalk_unmap(dst - req->assoclen);
780 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
781 			scatterwalk_done(&dst_sg_walk, 1, 0);
782 		}
783 		scatterwalk_unmap(assoc);
784 		scatterwalk_advance(&src_sg_walk, req->src->length);
785 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
786 	} else {
787 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
788 					 req->cryptlen + auth_tag_len, 1);
789 		kfree(assoc);
790 	}
791 	return 0;
792 }
793 
794 static int helper_rfc4106_decrypt(struct aead_request *req)
795 {
796 	u8 one_entry_in_sg = 0;
797 	u8 *src, *dst, *assoc;
798 	unsigned long tempCipherLen = 0;
799 	__be32 counter = cpu_to_be32(1);
800 	int retval = 0;
801 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
802 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
803 	void *aes_ctx = &(ctx->aes_key_expanded);
804 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
805 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
806 	u8 authTag[16];
807 	struct scatter_walk src_sg_walk;
808 	struct scatter_walk dst_sg_walk = {};
809 	unsigned int i;
810 
811 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
812 		return -EINVAL;
813 
814 	/* Assuming we are supporting rfc4106 64-bit extended */
815 	/* sequence numbers We need to have the AAD length */
816 	/* equal to 16 or 20 bytes */
817 
818 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
819 	/* IV below built */
820 	for (i = 0; i < 4; i++)
821 		*(iv+i) = ctx->nonce[i];
822 	for (i = 0; i < 8; i++)
823 		*(iv+4+i) = req->iv[i];
824 	*((__be32 *)(iv+12)) = counter;
825 
826 	if (sg_is_last(req->src) &&
827 	    (!PageHighMem(sg_page(req->src)) ||
828 	    req->src->offset + req->src->length <= PAGE_SIZE) &&
829 	    sg_is_last(req->dst) &&
830 	    (!PageHighMem(sg_page(req->dst)) ||
831 	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
832 		one_entry_in_sg = 1;
833 		scatterwalk_start(&src_sg_walk, req->src);
834 		assoc = scatterwalk_map(&src_sg_walk);
835 		src = assoc + req->assoclen;
836 		dst = src;
837 		if (unlikely(req->src != req->dst)) {
838 			scatterwalk_start(&dst_sg_walk, req->dst);
839 			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
840 		}
841 
842 	} else {
843 		/* Allocate memory for src, dst, assoc */
844 		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
845 		if (!assoc)
846 			return -ENOMEM;
847 		scatterwalk_map_and_copy(assoc, req->src, 0,
848 					 req->assoclen + req->cryptlen, 0);
849 		src = assoc + req->assoclen;
850 		dst = src;
851 	}
852 
853 	kernel_fpu_begin();
854 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
855 			  ctx->hash_subkey, assoc, req->assoclen - 8,
856 			  authTag, auth_tag_len);
857 	kernel_fpu_end();
858 
859 	/* Compare generated tag with passed in tag. */
860 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
861 		-EBADMSG : 0;
862 
863 	if (one_entry_in_sg) {
864 		if (unlikely(req->src != req->dst)) {
865 			scatterwalk_unmap(dst - req->assoclen);
866 			scatterwalk_advance(&dst_sg_walk, req->dst->length);
867 			scatterwalk_done(&dst_sg_walk, 1, 0);
868 		}
869 		scatterwalk_unmap(assoc);
870 		scatterwalk_advance(&src_sg_walk, req->src->length);
871 		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
872 	} else {
873 		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
874 					 tempCipherLen, 1);
875 		kfree(assoc);
876 	}
877 	return retval;
878 }
879 
880 static int rfc4106_encrypt(struct aead_request *req)
881 {
882 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
883 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
884 	struct cryptd_aead *cryptd_tfm = *ctx;
885 
886 	tfm = &cryptd_tfm->base;
887 	if (irq_fpu_usable() && (!in_atomic() ||
888 				 !cryptd_aead_queued(cryptd_tfm)))
889 		tfm = cryptd_aead_child(cryptd_tfm);
890 
891 	aead_request_set_tfm(req, tfm);
892 
893 	return crypto_aead_encrypt(req);
894 }
895 
896 static int rfc4106_decrypt(struct aead_request *req)
897 {
898 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
899 	struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
900 	struct cryptd_aead *cryptd_tfm = *ctx;
901 
902 	tfm = &cryptd_tfm->base;
903 	if (irq_fpu_usable() && (!in_atomic() ||
904 				 !cryptd_aead_queued(cryptd_tfm)))
905 		tfm = cryptd_aead_child(cryptd_tfm);
906 
907 	aead_request_set_tfm(req, tfm);
908 
909 	return crypto_aead_decrypt(req);
910 }
911 #endif
912 
913 static struct crypto_alg aesni_algs[] = { {
914 	.cra_name		= "aes",
915 	.cra_driver_name	= "aes-aesni",
916 	.cra_priority		= 300,
917 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
918 	.cra_blocksize		= AES_BLOCK_SIZE,
919 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
920 	.cra_module		= THIS_MODULE,
921 	.cra_u	= {
922 		.cipher	= {
923 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
924 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
925 			.cia_setkey		= aes_set_key,
926 			.cia_encrypt		= aes_encrypt,
927 			.cia_decrypt		= aes_decrypt
928 		}
929 	}
930 }, {
931 	.cra_name		= "__aes",
932 	.cra_driver_name	= "__aes-aesni",
933 	.cra_priority		= 300,
934 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
935 	.cra_blocksize		= AES_BLOCK_SIZE,
936 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
937 	.cra_module		= THIS_MODULE,
938 	.cra_u	= {
939 		.cipher	= {
940 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
941 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
942 			.cia_setkey		= aes_set_key,
943 			.cia_encrypt		= __aes_encrypt,
944 			.cia_decrypt		= __aes_decrypt
945 		}
946 	}
947 } };
948 
949 static struct skcipher_alg aesni_skciphers[] = {
950 	{
951 		.base = {
952 			.cra_name		= "__ecb(aes)",
953 			.cra_driver_name	= "__ecb-aes-aesni",
954 			.cra_priority		= 400,
955 			.cra_flags		= CRYPTO_ALG_INTERNAL,
956 			.cra_blocksize		= AES_BLOCK_SIZE,
957 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
958 			.cra_module		= THIS_MODULE,
959 		},
960 		.min_keysize	= AES_MIN_KEY_SIZE,
961 		.max_keysize	= AES_MAX_KEY_SIZE,
962 		.setkey		= aesni_skcipher_setkey,
963 		.encrypt	= ecb_encrypt,
964 		.decrypt	= ecb_decrypt,
965 	}, {
966 		.base = {
967 			.cra_name		= "__cbc(aes)",
968 			.cra_driver_name	= "__cbc-aes-aesni",
969 			.cra_priority		= 400,
970 			.cra_flags		= CRYPTO_ALG_INTERNAL,
971 			.cra_blocksize		= AES_BLOCK_SIZE,
972 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
973 			.cra_module		= THIS_MODULE,
974 		},
975 		.min_keysize	= AES_MIN_KEY_SIZE,
976 		.max_keysize	= AES_MAX_KEY_SIZE,
977 		.ivsize		= AES_BLOCK_SIZE,
978 		.setkey		= aesni_skcipher_setkey,
979 		.encrypt	= cbc_encrypt,
980 		.decrypt	= cbc_decrypt,
981 #ifdef CONFIG_X86_64
982 	}, {
983 		.base = {
984 			.cra_name		= "__ctr(aes)",
985 			.cra_driver_name	= "__ctr-aes-aesni",
986 			.cra_priority		= 400,
987 			.cra_flags		= CRYPTO_ALG_INTERNAL,
988 			.cra_blocksize		= 1,
989 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
990 			.cra_module		= THIS_MODULE,
991 		},
992 		.min_keysize	= AES_MIN_KEY_SIZE,
993 		.max_keysize	= AES_MAX_KEY_SIZE,
994 		.ivsize		= AES_BLOCK_SIZE,
995 		.chunksize	= AES_BLOCK_SIZE,
996 		.setkey		= aesni_skcipher_setkey,
997 		.encrypt	= ctr_crypt,
998 		.decrypt	= ctr_crypt,
999 	}, {
1000 		.base = {
1001 			.cra_name		= "__xts(aes)",
1002 			.cra_driver_name	= "__xts-aes-aesni",
1003 			.cra_priority		= 401,
1004 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1005 			.cra_blocksize		= AES_BLOCK_SIZE,
1006 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1007 			.cra_module		= THIS_MODULE,
1008 		},
1009 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1010 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1011 		.ivsize		= AES_BLOCK_SIZE,
1012 		.setkey		= xts_aesni_setkey,
1013 		.encrypt	= xts_encrypt,
1014 		.decrypt	= xts_decrypt,
1015 #endif
1016 	}
1017 };
1018 
1019 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1020 
1021 struct {
1022 	const char *algname;
1023 	const char *drvname;
1024 	const char *basename;
1025 	struct simd_skcipher_alg *simd;
1026 } aesni_simd_skciphers2[] = {
1027 #if (defined(MODULE) && IS_ENABLED(CONFIG_CRYPTO_PCBC)) || \
1028     IS_BUILTIN(CONFIG_CRYPTO_PCBC)
1029 	{
1030 		.algname	= "pcbc(aes)",
1031 		.drvname	= "pcbc-aes-aesni",
1032 		.basename	= "fpu(pcbc(__aes-aesni))",
1033 	},
1034 #endif
1035 };
1036 
1037 #ifdef CONFIG_X86_64
1038 static struct aead_alg aesni_aead_algs[] = { {
1039 	.setkey			= common_rfc4106_set_key,
1040 	.setauthsize		= common_rfc4106_set_authsize,
1041 	.encrypt		= helper_rfc4106_encrypt,
1042 	.decrypt		= helper_rfc4106_decrypt,
1043 	.ivsize			= 8,
1044 	.maxauthsize		= 16,
1045 	.base = {
1046 		.cra_name		= "__gcm-aes-aesni",
1047 		.cra_driver_name	= "__driver-gcm-aes-aesni",
1048 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1049 		.cra_blocksize		= 1,
1050 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1051 		.cra_alignmask		= AESNI_ALIGN - 1,
1052 		.cra_module		= THIS_MODULE,
1053 	},
1054 }, {
1055 	.init			= rfc4106_init,
1056 	.exit			= rfc4106_exit,
1057 	.setkey			= rfc4106_set_key,
1058 	.setauthsize		= rfc4106_set_authsize,
1059 	.encrypt		= rfc4106_encrypt,
1060 	.decrypt		= rfc4106_decrypt,
1061 	.ivsize			= 8,
1062 	.maxauthsize		= 16,
1063 	.base = {
1064 		.cra_name		= "rfc4106(gcm(aes))",
1065 		.cra_driver_name	= "rfc4106-gcm-aesni",
1066 		.cra_priority		= 400,
1067 		.cra_flags		= CRYPTO_ALG_ASYNC,
1068 		.cra_blocksize		= 1,
1069 		.cra_ctxsize		= sizeof(struct cryptd_aead *),
1070 		.cra_module		= THIS_MODULE,
1071 	},
1072 } };
1073 #else
1074 static struct aead_alg aesni_aead_algs[0];
1075 #endif
1076 
1077 
1078 static const struct x86_cpu_id aesni_cpu_id[] = {
1079 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1080 	{}
1081 };
1082 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1083 
1084 static void aesni_free_simds(void)
1085 {
1086 	int i;
1087 
1088 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers) &&
1089 		    aesni_simd_skciphers[i]; i++)
1090 		simd_skcipher_free(aesni_simd_skciphers[i]);
1091 
1092 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++)
1093 		if (aesni_simd_skciphers2[i].simd)
1094 			simd_skcipher_free(aesni_simd_skciphers2[i].simd);
1095 }
1096 
1097 static int __init aesni_init(void)
1098 {
1099 	struct simd_skcipher_alg *simd;
1100 	const char *basename;
1101 	const char *algname;
1102 	const char *drvname;
1103 	int err;
1104 	int i;
1105 
1106 	if (!x86_match_cpu(aesni_cpu_id))
1107 		return -ENODEV;
1108 #ifdef CONFIG_X86_64
1109 #ifdef CONFIG_AS_AVX2
1110 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1111 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1112 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1113 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1114 	} else
1115 #endif
1116 #ifdef CONFIG_AS_AVX
1117 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1118 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1119 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1120 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1121 	} else
1122 #endif
1123 	{
1124 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1125 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1126 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1127 	}
1128 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1129 #ifdef CONFIG_AS_AVX
1130 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1131 		/* optimize performance of ctr mode encryption transform */
1132 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1133 		pr_info("AES CTR mode by8 optimization enabled\n");
1134 	}
1135 #endif
1136 #endif
1137 
1138 	err = crypto_fpu_init();
1139 	if (err)
1140 		return err;
1141 
1142 	err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1143 	if (err)
1144 		goto fpu_exit;
1145 
1146 	err = crypto_register_skciphers(aesni_skciphers,
1147 					ARRAY_SIZE(aesni_skciphers));
1148 	if (err)
1149 		goto unregister_algs;
1150 
1151 	err = crypto_register_aeads(aesni_aead_algs,
1152 				    ARRAY_SIZE(aesni_aead_algs));
1153 	if (err)
1154 		goto unregister_skciphers;
1155 
1156 	for (i = 0; i < ARRAY_SIZE(aesni_skciphers); i++) {
1157 		algname = aesni_skciphers[i].base.cra_name + 2;
1158 		drvname = aesni_skciphers[i].base.cra_driver_name + 2;
1159 		basename = aesni_skciphers[i].base.cra_driver_name;
1160 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1161 		err = PTR_ERR(simd);
1162 		if (IS_ERR(simd))
1163 			goto unregister_simds;
1164 
1165 		aesni_simd_skciphers[i] = simd;
1166 	}
1167 
1168 	for (i = 0; i < ARRAY_SIZE(aesni_simd_skciphers2); i++) {
1169 		algname = aesni_simd_skciphers2[i].algname;
1170 		drvname = aesni_simd_skciphers2[i].drvname;
1171 		basename = aesni_simd_skciphers2[i].basename;
1172 		simd = simd_skcipher_create_compat(algname, drvname, basename);
1173 		err = PTR_ERR(simd);
1174 		if (IS_ERR(simd))
1175 			continue;
1176 
1177 		aesni_simd_skciphers2[i].simd = simd;
1178 	}
1179 
1180 	return 0;
1181 
1182 unregister_simds:
1183 	aesni_free_simds();
1184 	crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1185 unregister_skciphers:
1186 	crypto_unregister_skciphers(aesni_skciphers,
1187 				    ARRAY_SIZE(aesni_skciphers));
1188 unregister_algs:
1189 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1190 fpu_exit:
1191 	crypto_fpu_exit();
1192 	return err;
1193 }
1194 
1195 static void __exit aesni_exit(void)
1196 {
1197 	aesni_free_simds();
1198 	crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1199 	crypto_unregister_skciphers(aesni_skciphers,
1200 				    ARRAY_SIZE(aesni_skciphers));
1201 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1202 
1203 	crypto_fpu_exit();
1204 }
1205 
1206 late_initcall(aesni_init);
1207 module_exit(aesni_exit);
1208 
1209 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1210 MODULE_LICENSE("GPL");
1211 MODULE_ALIAS_CRYPTO("aes");
1212