1 /*
2  * Support for Intel AES-NI instructions. This file contains glue
3  * code, the real AES implementation is in intel-aes_asm.S.
4  *
5  * Copyright (C) 2008, Intel Corp.
6  *    Author: Huang Ying <ying.huang@intel.com>
7  *
8  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9  * interface for 64-bit kernels.
10  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
11  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
12  *             Tadeusz Struk (tadeusz.struk@intel.com)
13  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
14  *    Copyright (c) 2010, Intel Corporation.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  */
21 
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/i387.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45 
46 
47 /* This data is stored at the end of the crypto_tfm struct.
48  * It's a type of per "session" data storage location.
49  * This needs to be 16 byte aligned.
50  */
51 struct aesni_rfc4106_gcm_ctx {
52 	u8 hash_subkey[16];
53 	struct crypto_aes_ctx aes_key_expanded;
54 	u8 nonce[4];
55 	struct cryptd_aead *cryptd_tfm;
56 };
57 
58 struct aesni_gcm_set_hash_subkey_result {
59 	int err;
60 	struct completion completion;
61 };
62 
63 struct aesni_hash_subkey_req_data {
64 	u8 iv[16];
65 	struct aesni_gcm_set_hash_subkey_result result;
66 	struct scatterlist sg;
67 };
68 
69 #define AESNI_ALIGN	(16)
70 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE-1))
71 #define RFC4106_HASH_SUBKEY_SIZE 16
72 
73 struct aesni_lrw_ctx {
74 	struct lrw_table_ctx lrw_table;
75 	u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77 
78 struct aesni_xts_ctx {
79 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82 
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 			     unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 			  const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 			  const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 			      const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 			      const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 			      const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 			      const u8 *in, unsigned int len, u8 *iv);
97 
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100 
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103 
104 #ifdef CONFIG_X86_64
105 
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 			      const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 			      const u8 *in, unsigned int len, u8 *iv);
110 
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 				 const u8 *in, bool enc, u8 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117  * const u8 *in, Plaintext input
118  * unsigned long plaintext_len, Length of data in bytes for encryption.
119  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
121  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125  *          is going to be 8 or 12 bytes
126  * u8 *auth_tag, Authenticated Tag output.
127  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128  *          Valid values are 16 (most likely), 12 or 8.
129  */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * u8 *out, Plaintext output. Decrypt in-place is allowed.
138  * const u8 *in, Ciphertext input
139  * unsigned long ciphertext_len, Length of data in bytes for decryption.
140  * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141  *         concatenated with 8 byte Initialisation Vector (from IPSec ESP
142  *         Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 			u8 *auth_tag, unsigned long auth_tag_len);
155 
156 
157 #ifdef CONFIG_AS_AVX
158 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
159 		void *keys, u8 *out, unsigned int num_bytes);
160 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
161 		void *keys, u8 *out, unsigned int num_bytes);
162 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
163 		void *keys, u8 *out, unsigned int num_bytes);
164 /*
165  * asmlinkage void aesni_gcm_precomp_avx_gen2()
166  * gcm_data *my_ctx_data, context data
167  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
168  */
169 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
170 
171 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
172 			const u8 *in, unsigned long plaintext_len, u8 *iv,
173 			const u8 *aad, unsigned long aad_len,
174 			u8 *auth_tag, unsigned long auth_tag_len);
175 
176 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
177 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
178 			const u8 *aad, unsigned long aad_len,
179 			u8 *auth_tag, unsigned long auth_tag_len);
180 
181 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
182 			const u8 *in, unsigned long plaintext_len, u8 *iv,
183 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
184 			u8 *auth_tag, unsigned long auth_tag_len)
185 {
186         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
187 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
189 				aad_len, auth_tag, auth_tag_len);
190 	} else {
191 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
192 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
193 					aad_len, auth_tag, auth_tag_len);
194 	}
195 }
196 
197 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
198 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
199 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
200 			u8 *auth_tag, unsigned long auth_tag_len)
201 {
202         struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
203 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
205 				aad_len, auth_tag, auth_tag_len);
206 	} else {
207 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
208 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
209 					aad_len, auth_tag, auth_tag_len);
210 	}
211 }
212 #endif
213 
214 #ifdef CONFIG_AS_AVX2
215 /*
216  * asmlinkage void aesni_gcm_precomp_avx_gen4()
217  * gcm_data *my_ctx_data, context data
218  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
219  */
220 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
221 
222 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
228 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 			const u8 *aad, unsigned long aad_len,
230 			u8 *auth_tag, unsigned long auth_tag_len);
231 
232 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
233 			const u8 *in, unsigned long plaintext_len, u8 *iv,
234 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
235 			u8 *auth_tag, unsigned long auth_tag_len)
236 {
237        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
238 	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 		aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
240 				aad_len, auth_tag, auth_tag_len);
241 	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
242 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
243 		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
244 					aad_len, auth_tag, auth_tag_len);
245 	} else {
246 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
247 		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
248 					aad_len, auth_tag, auth_tag_len);
249 	}
250 }
251 
252 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
253 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
254 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
255 			u8 *auth_tag, unsigned long auth_tag_len)
256 {
257        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
258 	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 		aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
260 				aad, aad_len, auth_tag, auth_tag_len);
261 	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
262 		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
263 		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
264 					aad_len, auth_tag, auth_tag_len);
265 	} else {
266 		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
267 		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
268 					aad_len, auth_tag, auth_tag_len);
269 	}
270 }
271 #endif
272 
273 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
274 			const u8 *in, unsigned long plaintext_len, u8 *iv,
275 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 			u8 *auth_tag, unsigned long auth_tag_len);
277 
278 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
279 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
280 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
281 			u8 *auth_tag, unsigned long auth_tag_len);
282 
283 static inline struct
284 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
285 {
286 	return
287 		(struct aesni_rfc4106_gcm_ctx *)
288 		PTR_ALIGN((u8 *)
289 		crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
290 }
291 #endif
292 
293 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
294 {
295 	unsigned long addr = (unsigned long)raw_ctx;
296 	unsigned long align = AESNI_ALIGN;
297 
298 	if (align <= crypto_tfm_ctx_alignment())
299 		align = 1;
300 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
301 }
302 
303 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
304 			      const u8 *in_key, unsigned int key_len)
305 {
306 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
307 	u32 *flags = &tfm->crt_flags;
308 	int err;
309 
310 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
311 	    key_len != AES_KEYSIZE_256) {
312 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
313 		return -EINVAL;
314 	}
315 
316 	if (!irq_fpu_usable())
317 		err = crypto_aes_expand_key(ctx, in_key, key_len);
318 	else {
319 		kernel_fpu_begin();
320 		err = aesni_set_key(ctx, in_key, key_len);
321 		kernel_fpu_end();
322 	}
323 
324 	return err;
325 }
326 
327 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
328 		       unsigned int key_len)
329 {
330 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
331 }
332 
333 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
334 {
335 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
336 
337 	if (!irq_fpu_usable())
338 		crypto_aes_encrypt_x86(ctx, dst, src);
339 	else {
340 		kernel_fpu_begin();
341 		aesni_enc(ctx, dst, src);
342 		kernel_fpu_end();
343 	}
344 }
345 
346 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
347 {
348 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
349 
350 	if (!irq_fpu_usable())
351 		crypto_aes_decrypt_x86(ctx, dst, src);
352 	else {
353 		kernel_fpu_begin();
354 		aesni_dec(ctx, dst, src);
355 		kernel_fpu_end();
356 	}
357 }
358 
359 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
360 {
361 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
362 
363 	aesni_enc(ctx, dst, src);
364 }
365 
366 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
367 {
368 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
369 
370 	aesni_dec(ctx, dst, src);
371 }
372 
373 static int ecb_encrypt(struct blkcipher_desc *desc,
374 		       struct scatterlist *dst, struct scatterlist *src,
375 		       unsigned int nbytes)
376 {
377 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
378 	struct blkcipher_walk walk;
379 	int err;
380 
381 	blkcipher_walk_init(&walk, dst, src, nbytes);
382 	err = blkcipher_walk_virt(desc, &walk);
383 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
384 
385 	kernel_fpu_begin();
386 	while ((nbytes = walk.nbytes)) {
387 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
388 			      nbytes & AES_BLOCK_MASK);
389 		nbytes &= AES_BLOCK_SIZE - 1;
390 		err = blkcipher_walk_done(desc, &walk, nbytes);
391 	}
392 	kernel_fpu_end();
393 
394 	return err;
395 }
396 
397 static int ecb_decrypt(struct blkcipher_desc *desc,
398 		       struct scatterlist *dst, struct scatterlist *src,
399 		       unsigned int nbytes)
400 {
401 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
402 	struct blkcipher_walk walk;
403 	int err;
404 
405 	blkcipher_walk_init(&walk, dst, src, nbytes);
406 	err = blkcipher_walk_virt(desc, &walk);
407 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
408 
409 	kernel_fpu_begin();
410 	while ((nbytes = walk.nbytes)) {
411 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
412 			      nbytes & AES_BLOCK_MASK);
413 		nbytes &= AES_BLOCK_SIZE - 1;
414 		err = blkcipher_walk_done(desc, &walk, nbytes);
415 	}
416 	kernel_fpu_end();
417 
418 	return err;
419 }
420 
421 static int cbc_encrypt(struct blkcipher_desc *desc,
422 		       struct scatterlist *dst, struct scatterlist *src,
423 		       unsigned int nbytes)
424 {
425 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
426 	struct blkcipher_walk walk;
427 	int err;
428 
429 	blkcipher_walk_init(&walk, dst, src, nbytes);
430 	err = blkcipher_walk_virt(desc, &walk);
431 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
432 
433 	kernel_fpu_begin();
434 	while ((nbytes = walk.nbytes)) {
435 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
436 			      nbytes & AES_BLOCK_MASK, walk.iv);
437 		nbytes &= AES_BLOCK_SIZE - 1;
438 		err = blkcipher_walk_done(desc, &walk, nbytes);
439 	}
440 	kernel_fpu_end();
441 
442 	return err;
443 }
444 
445 static int cbc_decrypt(struct blkcipher_desc *desc,
446 		       struct scatterlist *dst, struct scatterlist *src,
447 		       unsigned int nbytes)
448 {
449 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
450 	struct blkcipher_walk walk;
451 	int err;
452 
453 	blkcipher_walk_init(&walk, dst, src, nbytes);
454 	err = blkcipher_walk_virt(desc, &walk);
455 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
456 
457 	kernel_fpu_begin();
458 	while ((nbytes = walk.nbytes)) {
459 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
460 			      nbytes & AES_BLOCK_MASK, walk.iv);
461 		nbytes &= AES_BLOCK_SIZE - 1;
462 		err = blkcipher_walk_done(desc, &walk, nbytes);
463 	}
464 	kernel_fpu_end();
465 
466 	return err;
467 }
468 
469 #ifdef CONFIG_X86_64
470 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
471 			    struct blkcipher_walk *walk)
472 {
473 	u8 *ctrblk = walk->iv;
474 	u8 keystream[AES_BLOCK_SIZE];
475 	u8 *src = walk->src.virt.addr;
476 	u8 *dst = walk->dst.virt.addr;
477 	unsigned int nbytes = walk->nbytes;
478 
479 	aesni_enc(ctx, keystream, ctrblk);
480 	crypto_xor(keystream, src, nbytes);
481 	memcpy(dst, keystream, nbytes);
482 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
483 }
484 
485 #ifdef CONFIG_AS_AVX
486 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
487 			      const u8 *in, unsigned int len, u8 *iv)
488 {
489 	/*
490 	 * based on key length, override with the by8 version
491 	 * of ctr mode encryption/decryption for improved performance
492 	 * aes_set_key_common() ensures that key length is one of
493 	 * {128,192,256}
494 	 */
495 	if (ctx->key_length == AES_KEYSIZE_128)
496 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
497 	else if (ctx->key_length == AES_KEYSIZE_192)
498 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
499 	else
500 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
501 }
502 #endif
503 
504 static int ctr_crypt(struct blkcipher_desc *desc,
505 		     struct scatterlist *dst, struct scatterlist *src,
506 		     unsigned int nbytes)
507 {
508 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
509 	struct blkcipher_walk walk;
510 	int err;
511 
512 	blkcipher_walk_init(&walk, dst, src, nbytes);
513 	err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
514 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
515 
516 	kernel_fpu_begin();
517 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
518 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
519 			              nbytes & AES_BLOCK_MASK, walk.iv);
520 		nbytes &= AES_BLOCK_SIZE - 1;
521 		err = blkcipher_walk_done(desc, &walk, nbytes);
522 	}
523 	if (walk.nbytes) {
524 		ctr_crypt_final(ctx, &walk);
525 		err = blkcipher_walk_done(desc, &walk, 0);
526 	}
527 	kernel_fpu_end();
528 
529 	return err;
530 }
531 #endif
532 
533 static int ablk_ecb_init(struct crypto_tfm *tfm)
534 {
535 	return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
536 }
537 
538 static int ablk_cbc_init(struct crypto_tfm *tfm)
539 {
540 	return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
541 }
542 
543 #ifdef CONFIG_X86_64
544 static int ablk_ctr_init(struct crypto_tfm *tfm)
545 {
546 	return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
547 }
548 
549 #endif
550 
551 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
552 static int ablk_pcbc_init(struct crypto_tfm *tfm)
553 {
554 	return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
555 }
556 #endif
557 
558 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
559 {
560 	aesni_ecb_enc(ctx, blks, blks, nbytes);
561 }
562 
563 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
564 {
565 	aesni_ecb_dec(ctx, blks, blks, nbytes);
566 }
567 
568 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
569 			    unsigned int keylen)
570 {
571 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
572 	int err;
573 
574 	err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
575 				 keylen - AES_BLOCK_SIZE);
576 	if (err)
577 		return err;
578 
579 	return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
580 }
581 
582 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
583 {
584 	struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
585 
586 	lrw_free_table(&ctx->lrw_table);
587 }
588 
589 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
590 		       struct scatterlist *src, unsigned int nbytes)
591 {
592 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
593 	be128 buf[8];
594 	struct lrw_crypt_req req = {
595 		.tbuf = buf,
596 		.tbuflen = sizeof(buf),
597 
598 		.table_ctx = &ctx->lrw_table,
599 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
600 		.crypt_fn = lrw_xts_encrypt_callback,
601 	};
602 	int ret;
603 
604 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
605 
606 	kernel_fpu_begin();
607 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
608 	kernel_fpu_end();
609 
610 	return ret;
611 }
612 
613 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
614 		       struct scatterlist *src, unsigned int nbytes)
615 {
616 	struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
617 	be128 buf[8];
618 	struct lrw_crypt_req req = {
619 		.tbuf = buf,
620 		.tbuflen = sizeof(buf),
621 
622 		.table_ctx = &ctx->lrw_table,
623 		.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
624 		.crypt_fn = lrw_xts_decrypt_callback,
625 	};
626 	int ret;
627 
628 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
629 
630 	kernel_fpu_begin();
631 	ret = lrw_crypt(desc, dst, src, nbytes, &req);
632 	kernel_fpu_end();
633 
634 	return ret;
635 }
636 
637 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
638 			    unsigned int keylen)
639 {
640 	struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
641 	u32 *flags = &tfm->crt_flags;
642 	int err;
643 
644 	/* key consists of keys of equal size concatenated, therefore
645 	 * the length must be even
646 	 */
647 	if (keylen % 2) {
648 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
649 		return -EINVAL;
650 	}
651 
652 	/* first half of xts-key is for crypt */
653 	err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
654 	if (err)
655 		return err;
656 
657 	/* second half of xts-key is for tweak */
658 	return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
659 				  keylen / 2);
660 }
661 
662 
663 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
664 {
665 	aesni_enc(ctx, out, in);
666 }
667 
668 #ifdef CONFIG_X86_64
669 
670 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
671 {
672 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
673 }
674 
675 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
676 {
677 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
678 }
679 
680 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
681 {
682 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
683 }
684 
685 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
686 {
687 	aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
688 }
689 
690 static const struct common_glue_ctx aesni_enc_xts = {
691 	.num_funcs = 2,
692 	.fpu_blocks_limit = 1,
693 
694 	.funcs = { {
695 		.num_blocks = 8,
696 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
697 	}, {
698 		.num_blocks = 1,
699 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
700 	} }
701 };
702 
703 static const struct common_glue_ctx aesni_dec_xts = {
704 	.num_funcs = 2,
705 	.fpu_blocks_limit = 1,
706 
707 	.funcs = { {
708 		.num_blocks = 8,
709 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
710 	}, {
711 		.num_blocks = 1,
712 		.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
713 	} }
714 };
715 
716 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
717 		       struct scatterlist *src, unsigned int nbytes)
718 {
719 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
720 
721 	return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
722 				     XTS_TWEAK_CAST(aesni_xts_tweak),
723 				     aes_ctx(ctx->raw_tweak_ctx),
724 				     aes_ctx(ctx->raw_crypt_ctx));
725 }
726 
727 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
728 		       struct scatterlist *src, unsigned int nbytes)
729 {
730 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
731 
732 	return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
733 				     XTS_TWEAK_CAST(aesni_xts_tweak),
734 				     aes_ctx(ctx->raw_tweak_ctx),
735 				     aes_ctx(ctx->raw_crypt_ctx));
736 }
737 
738 #else
739 
740 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
741 		       struct scatterlist *src, unsigned int nbytes)
742 {
743 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
744 	be128 buf[8];
745 	struct xts_crypt_req req = {
746 		.tbuf = buf,
747 		.tbuflen = sizeof(buf),
748 
749 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
750 		.tweak_fn = aesni_xts_tweak,
751 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
752 		.crypt_fn = lrw_xts_encrypt_callback,
753 	};
754 	int ret;
755 
756 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
757 
758 	kernel_fpu_begin();
759 	ret = xts_crypt(desc, dst, src, nbytes, &req);
760 	kernel_fpu_end();
761 
762 	return ret;
763 }
764 
765 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
766 		       struct scatterlist *src, unsigned int nbytes)
767 {
768 	struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
769 	be128 buf[8];
770 	struct xts_crypt_req req = {
771 		.tbuf = buf,
772 		.tbuflen = sizeof(buf),
773 
774 		.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
775 		.tweak_fn = aesni_xts_tweak,
776 		.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
777 		.crypt_fn = lrw_xts_decrypt_callback,
778 	};
779 	int ret;
780 
781 	desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
782 
783 	kernel_fpu_begin();
784 	ret = xts_crypt(desc, dst, src, nbytes, &req);
785 	kernel_fpu_end();
786 
787 	return ret;
788 }
789 
790 #endif
791 
792 #ifdef CONFIG_X86_64
793 static int rfc4106_init(struct crypto_tfm *tfm)
794 {
795 	struct cryptd_aead *cryptd_tfm;
796 	struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
797 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
798 	struct crypto_aead *cryptd_child;
799 	struct aesni_rfc4106_gcm_ctx *child_ctx;
800 	cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
801 				       CRYPTO_ALG_INTERNAL,
802 				       CRYPTO_ALG_INTERNAL);
803 	if (IS_ERR(cryptd_tfm))
804 		return PTR_ERR(cryptd_tfm);
805 
806 	cryptd_child = cryptd_aead_child(cryptd_tfm);
807 	child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
808 	memcpy(child_ctx, ctx, sizeof(*ctx));
809 	ctx->cryptd_tfm = cryptd_tfm;
810 	tfm->crt_aead.reqsize = sizeof(struct aead_request)
811 		+ crypto_aead_reqsize(&cryptd_tfm->base);
812 	return 0;
813 }
814 
815 static void rfc4106_exit(struct crypto_tfm *tfm)
816 {
817 	struct aesni_rfc4106_gcm_ctx *ctx =
818 		(struct aesni_rfc4106_gcm_ctx *)
819 		PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
820 	if (!IS_ERR(ctx->cryptd_tfm))
821 		cryptd_free_aead(ctx->cryptd_tfm);
822 	return;
823 }
824 
825 static void
826 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
827 {
828 	struct aesni_gcm_set_hash_subkey_result *result = req->data;
829 
830 	if (err == -EINPROGRESS)
831 		return;
832 	result->err = err;
833 	complete(&result->completion);
834 }
835 
836 static int
837 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
838 {
839 	struct crypto_ablkcipher *ctr_tfm;
840 	struct ablkcipher_request *req;
841 	int ret = -EINVAL;
842 	struct aesni_hash_subkey_req_data *req_data;
843 
844 	ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
845 	if (IS_ERR(ctr_tfm))
846 		return PTR_ERR(ctr_tfm);
847 
848 	crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
849 
850 	ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
851 	if (ret)
852 		goto out_free_ablkcipher;
853 
854 	ret = -ENOMEM;
855 	req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
856 	if (!req)
857 		goto out_free_ablkcipher;
858 
859 	req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
860 	if (!req_data)
861 		goto out_free_request;
862 
863 	memset(req_data->iv, 0, sizeof(req_data->iv));
864 
865 	/* Clear the data in the hash sub key container to zero.*/
866 	/* We want to cipher all zeros to create the hash sub key. */
867 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
868 
869 	init_completion(&req_data->result.completion);
870 	sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
871 	ablkcipher_request_set_tfm(req, ctr_tfm);
872 	ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
873 					CRYPTO_TFM_REQ_MAY_BACKLOG,
874 					rfc4106_set_hash_subkey_done,
875 					&req_data->result);
876 
877 	ablkcipher_request_set_crypt(req, &req_data->sg,
878 		&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
879 
880 	ret = crypto_ablkcipher_encrypt(req);
881 	if (ret == -EINPROGRESS || ret == -EBUSY) {
882 		ret = wait_for_completion_interruptible
883 			(&req_data->result.completion);
884 		if (!ret)
885 			ret = req_data->result.err;
886 	}
887 	kfree(req_data);
888 out_free_request:
889 	ablkcipher_request_free(req);
890 out_free_ablkcipher:
891 	crypto_free_ablkcipher(ctr_tfm);
892 	return ret;
893 }
894 
895 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
896 				  unsigned int key_len)
897 {
898 	int ret = 0;
899 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
900 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
901 	u8 *new_key_align, *new_key_mem = NULL;
902 
903 	if (key_len < 4) {
904 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
905 		return -EINVAL;
906 	}
907 	/*Account for 4 byte nonce at the end.*/
908 	key_len -= 4;
909 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
910 	    key_len != AES_KEYSIZE_256) {
911 		crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
912 		return -EINVAL;
913 	}
914 
915 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
916 	/*This must be on a 16 byte boundary!*/
917 	if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
918 		return -EINVAL;
919 
920 	if ((unsigned long)key % AESNI_ALIGN) {
921 		/*key is not aligned: use an auxuliar aligned pointer*/
922 		new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
923 		if (!new_key_mem)
924 			return -ENOMEM;
925 
926 		new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
927 		memcpy(new_key_align, key, key_len);
928 		key = new_key_align;
929 	}
930 
931 	if (!irq_fpu_usable())
932 		ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
933 		key, key_len);
934 	else {
935 		kernel_fpu_begin();
936 		ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
937 		kernel_fpu_end();
938 	}
939 	/*This must be on a 16 byte boundary!*/
940 	if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
941 		ret = -EINVAL;
942 		goto exit;
943 	}
944 	ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
945 exit:
946 	kfree(new_key_mem);
947 	return ret;
948 }
949 
950 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
951 			   unsigned int key_len)
952 {
953 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
954 	struct crypto_aead *child = cryptd_aead_child(ctx->cryptd_tfm);
955 	struct aesni_rfc4106_gcm_ctx *c_ctx = aesni_rfc4106_gcm_ctx_get(child);
956 	struct cryptd_aead *cryptd_tfm = ctx->cryptd_tfm;
957 	int ret;
958 
959 	ret = crypto_aead_setkey(child, key, key_len);
960 	if (!ret) {
961 		memcpy(ctx, c_ctx, sizeof(*ctx));
962 		ctx->cryptd_tfm = cryptd_tfm;
963 	}
964 	return ret;
965 }
966 
967 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
968 				       unsigned int authsize)
969 {
970 	switch (authsize) {
971 	case 8:
972 	case 12:
973 	case 16:
974 		break;
975 	default:
976 		return -EINVAL;
977 	}
978 	crypto_aead_crt(aead)->authsize = authsize;
979 	return 0;
980 }
981 
982 /* This is the Integrity Check Value (aka the authentication tag length and can
983  * be 8, 12 or 16 bytes long. */
984 static int rfc4106_set_authsize(struct crypto_aead *parent,
985 				unsigned int authsize)
986 {
987 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
988 	struct crypto_aead *child = cryptd_aead_child(ctx->cryptd_tfm);
989 	int ret;
990 
991 	ret = crypto_aead_setauthsize(child, authsize);
992 	if (!ret)
993 		crypto_aead_crt(parent)->authsize = authsize;
994 	return ret;
995 }
996 
997 static int __driver_rfc4106_encrypt(struct aead_request *req)
998 {
999 	u8 one_entry_in_sg = 0;
1000 	u8 *src, *dst, *assoc;
1001 	__be32 counter = cpu_to_be32(1);
1002 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1003 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1004 	u32 key_len = ctx->aes_key_expanded.key_length;
1005 	void *aes_ctx = &(ctx->aes_key_expanded);
1006 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1007 	u8 iv_tab[16+AESNI_ALIGN];
1008 	u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
1009 	struct scatter_walk src_sg_walk;
1010 	struct scatter_walk assoc_sg_walk;
1011 	struct scatter_walk dst_sg_walk;
1012 	unsigned int i;
1013 
1014 	/* Assuming we are supporting rfc4106 64-bit extended */
1015 	/* sequence numbers We need to have the AAD length equal */
1016 	/* to 8 or 12 bytes */
1017 	if (unlikely(req->assoclen != 8 && req->assoclen != 12))
1018 		return -EINVAL;
1019 	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
1020 	        return -EINVAL;
1021 	if (unlikely(key_len != AES_KEYSIZE_128 &&
1022 	             key_len != AES_KEYSIZE_192 &&
1023 	             key_len != AES_KEYSIZE_256))
1024 	        return -EINVAL;
1025 
1026 	/* IV below built */
1027 	for (i = 0; i < 4; i++)
1028 		*(iv+i) = ctx->nonce[i];
1029 	for (i = 0; i < 8; i++)
1030 		*(iv+4+i) = req->iv[i];
1031 	*((__be32 *)(iv+12)) = counter;
1032 
1033 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1034 		one_entry_in_sg = 1;
1035 		scatterwalk_start(&src_sg_walk, req->src);
1036 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1037 		src = scatterwalk_map(&src_sg_walk);
1038 		assoc = scatterwalk_map(&assoc_sg_walk);
1039 		dst = src;
1040 		if (unlikely(req->src != req->dst)) {
1041 			scatterwalk_start(&dst_sg_walk, req->dst);
1042 			dst = scatterwalk_map(&dst_sg_walk);
1043 		}
1044 
1045 	} else {
1046 		/* Allocate memory for src, dst, assoc */
1047 		src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
1048 			GFP_ATOMIC);
1049 		if (unlikely(!src))
1050 			return -ENOMEM;
1051 		assoc = (src + req->cryptlen + auth_tag_len);
1052 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1053 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1054 					req->assoclen, 0);
1055 		dst = src;
1056 	}
1057 
1058 	aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
1059 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
1060 		+ ((unsigned long)req->cryptlen), auth_tag_len);
1061 
1062 	/* The authTag (aka the Integrity Check Value) needs to be written
1063 	 * back to the packet. */
1064 	if (one_entry_in_sg) {
1065 		if (unlikely(req->src != req->dst)) {
1066 			scatterwalk_unmap(dst);
1067 			scatterwalk_done(&dst_sg_walk, 0, 0);
1068 		}
1069 		scatterwalk_unmap(src);
1070 		scatterwalk_unmap(assoc);
1071 		scatterwalk_done(&src_sg_walk, 0, 0);
1072 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1073 	} else {
1074 		scatterwalk_map_and_copy(dst, req->dst, 0,
1075 			req->cryptlen + auth_tag_len, 1);
1076 		kfree(src);
1077 	}
1078 	return 0;
1079 }
1080 
1081 static int __driver_rfc4106_decrypt(struct aead_request *req)
1082 {
1083 	u8 one_entry_in_sg = 0;
1084 	u8 *src, *dst, *assoc;
1085 	unsigned long tempCipherLen = 0;
1086 	__be32 counter = cpu_to_be32(1);
1087 	int retval = 0;
1088 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1089 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1090 	u32 key_len = ctx->aes_key_expanded.key_length;
1091 	void *aes_ctx = &(ctx->aes_key_expanded);
1092 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1093 	u8 iv_and_authTag[32+AESNI_ALIGN];
1094 	u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
1095 	u8 *authTag = iv + 16;
1096 	struct scatter_walk src_sg_walk;
1097 	struct scatter_walk assoc_sg_walk;
1098 	struct scatter_walk dst_sg_walk;
1099 	unsigned int i;
1100 
1101 	if (unlikely((req->cryptlen < auth_tag_len) ||
1102 		(req->assoclen != 8 && req->assoclen != 12)))
1103 		return -EINVAL;
1104 	if (unlikely(auth_tag_len != 8 && auth_tag_len != 12 && auth_tag_len != 16))
1105 	        return -EINVAL;
1106 	if (unlikely(key_len != AES_KEYSIZE_128 &&
1107 	             key_len != AES_KEYSIZE_192 &&
1108 	             key_len != AES_KEYSIZE_256))
1109 	        return -EINVAL;
1110 
1111 	/* Assuming we are supporting rfc4106 64-bit extended */
1112 	/* sequence numbers We need to have the AAD length */
1113 	/* equal to 8 or 12 bytes */
1114 
1115 	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1116 	/* IV below built */
1117 	for (i = 0; i < 4; i++)
1118 		*(iv+i) = ctx->nonce[i];
1119 	for (i = 0; i < 8; i++)
1120 		*(iv+4+i) = req->iv[i];
1121 	*((__be32 *)(iv+12)) = counter;
1122 
1123 	if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
1124 		one_entry_in_sg = 1;
1125 		scatterwalk_start(&src_sg_walk, req->src);
1126 		scatterwalk_start(&assoc_sg_walk, req->assoc);
1127 		src = scatterwalk_map(&src_sg_walk);
1128 		assoc = scatterwalk_map(&assoc_sg_walk);
1129 		dst = src;
1130 		if (unlikely(req->src != req->dst)) {
1131 			scatterwalk_start(&dst_sg_walk, req->dst);
1132 			dst = scatterwalk_map(&dst_sg_walk);
1133 		}
1134 
1135 	} else {
1136 		/* Allocate memory for src, dst, assoc */
1137 		src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1138 		if (!src)
1139 			return -ENOMEM;
1140 		assoc = (src + req->cryptlen);
1141 		scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
1142 		scatterwalk_map_and_copy(assoc, req->assoc, 0,
1143 			req->assoclen, 0);
1144 		dst = src;
1145 	}
1146 
1147 	aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1148 		ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
1149 		authTag, auth_tag_len);
1150 
1151 	/* Compare generated tag with passed in tag. */
1152 	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1153 		-EBADMSG : 0;
1154 
1155 	if (one_entry_in_sg) {
1156 		if (unlikely(req->src != req->dst)) {
1157 			scatterwalk_unmap(dst);
1158 			scatterwalk_done(&dst_sg_walk, 0, 0);
1159 		}
1160 		scatterwalk_unmap(src);
1161 		scatterwalk_unmap(assoc);
1162 		scatterwalk_done(&src_sg_walk, 0, 0);
1163 		scatterwalk_done(&assoc_sg_walk, 0, 0);
1164 	} else {
1165 		scatterwalk_map_and_copy(dst, req->dst, 0, tempCipherLen, 1);
1166 		kfree(src);
1167 	}
1168 	return retval;
1169 }
1170 
1171 static int rfc4106_encrypt(struct aead_request *req)
1172 {
1173 	int ret;
1174 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1175 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1176 
1177 	if (!irq_fpu_usable()) {
1178 		struct aead_request *cryptd_req =
1179 			(struct aead_request *) aead_request_ctx(req);
1180 
1181 		memcpy(cryptd_req, req, sizeof(*req));
1182 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
1183 		ret = crypto_aead_encrypt(cryptd_req);
1184 	} else {
1185 		kernel_fpu_begin();
1186 		ret = __driver_rfc4106_encrypt(req);
1187 		kernel_fpu_end();
1188 	}
1189 	return ret;
1190 }
1191 
1192 static int rfc4106_decrypt(struct aead_request *req)
1193 {
1194 	int ret;
1195 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1196 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1197 
1198 	if (!irq_fpu_usable()) {
1199 		struct aead_request *cryptd_req =
1200 			(struct aead_request *) aead_request_ctx(req);
1201 
1202 		memcpy(cryptd_req, req, sizeof(*req));
1203 		aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
1204 		ret = crypto_aead_decrypt(cryptd_req);
1205 	} else {
1206 		kernel_fpu_begin();
1207 		ret = __driver_rfc4106_decrypt(req);
1208 		kernel_fpu_end();
1209 	}
1210 	return ret;
1211 }
1212 
1213 static int helper_rfc4106_encrypt(struct aead_request *req)
1214 {
1215 	int ret;
1216 
1217 	if (unlikely(!irq_fpu_usable())) {
1218 		WARN_ONCE(1, "__gcm-aes-aesni alg used in invalid context");
1219 		ret = -EINVAL;
1220 	} else {
1221 		kernel_fpu_begin();
1222 		ret = __driver_rfc4106_encrypt(req);
1223 		kernel_fpu_end();
1224 	}
1225 	return ret;
1226 }
1227 
1228 static int helper_rfc4106_decrypt(struct aead_request *req)
1229 {
1230 	int ret;
1231 
1232 	if (unlikely(!irq_fpu_usable())) {
1233 		WARN_ONCE(1, "__gcm-aes-aesni alg used in invalid context");
1234 		ret = -EINVAL;
1235 	} else {
1236 		kernel_fpu_begin();
1237 		ret = __driver_rfc4106_decrypt(req);
1238 		kernel_fpu_end();
1239 	}
1240 	return ret;
1241 }
1242 #endif
1243 
1244 static struct crypto_alg aesni_algs[] = { {
1245 	.cra_name		= "aes",
1246 	.cra_driver_name	= "aes-aesni",
1247 	.cra_priority		= 300,
1248 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1249 	.cra_blocksize		= AES_BLOCK_SIZE,
1250 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1251 				  AESNI_ALIGN - 1,
1252 	.cra_alignmask		= 0,
1253 	.cra_module		= THIS_MODULE,
1254 	.cra_u	= {
1255 		.cipher	= {
1256 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1257 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1258 			.cia_setkey		= aes_set_key,
1259 			.cia_encrypt		= aes_encrypt,
1260 			.cia_decrypt		= aes_decrypt
1261 		}
1262 	}
1263 }, {
1264 	.cra_name		= "__aes-aesni",
1265 	.cra_driver_name	= "__driver-aes-aesni",
1266 	.cra_priority		= 0,
1267 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1268 	.cra_blocksize		= AES_BLOCK_SIZE,
1269 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1270 				  AESNI_ALIGN - 1,
1271 	.cra_alignmask		= 0,
1272 	.cra_module		= THIS_MODULE,
1273 	.cra_u	= {
1274 		.cipher	= {
1275 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1276 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1277 			.cia_setkey		= aes_set_key,
1278 			.cia_encrypt		= __aes_encrypt,
1279 			.cia_decrypt		= __aes_decrypt
1280 		}
1281 	}
1282 }, {
1283 	.cra_name		= "__ecb-aes-aesni",
1284 	.cra_driver_name	= "__driver-ecb-aes-aesni",
1285 	.cra_priority		= 0,
1286 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1287 				  CRYPTO_ALG_INTERNAL,
1288 	.cra_blocksize		= AES_BLOCK_SIZE,
1289 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1290 				  AESNI_ALIGN - 1,
1291 	.cra_alignmask		= 0,
1292 	.cra_type		= &crypto_blkcipher_type,
1293 	.cra_module		= THIS_MODULE,
1294 	.cra_u = {
1295 		.blkcipher = {
1296 			.min_keysize	= AES_MIN_KEY_SIZE,
1297 			.max_keysize	= AES_MAX_KEY_SIZE,
1298 			.setkey		= aes_set_key,
1299 			.encrypt	= ecb_encrypt,
1300 			.decrypt	= ecb_decrypt,
1301 		},
1302 	},
1303 }, {
1304 	.cra_name		= "__cbc-aes-aesni",
1305 	.cra_driver_name	= "__driver-cbc-aes-aesni",
1306 	.cra_priority		= 0,
1307 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1308 				  CRYPTO_ALG_INTERNAL,
1309 	.cra_blocksize		= AES_BLOCK_SIZE,
1310 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1311 				  AESNI_ALIGN - 1,
1312 	.cra_alignmask		= 0,
1313 	.cra_type		= &crypto_blkcipher_type,
1314 	.cra_module		= THIS_MODULE,
1315 	.cra_u = {
1316 		.blkcipher = {
1317 			.min_keysize	= AES_MIN_KEY_SIZE,
1318 			.max_keysize	= AES_MAX_KEY_SIZE,
1319 			.setkey		= aes_set_key,
1320 			.encrypt	= cbc_encrypt,
1321 			.decrypt	= cbc_decrypt,
1322 		},
1323 	},
1324 }, {
1325 	.cra_name		= "ecb(aes)",
1326 	.cra_driver_name	= "ecb-aes-aesni",
1327 	.cra_priority		= 400,
1328 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1329 	.cra_blocksize		= AES_BLOCK_SIZE,
1330 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1331 	.cra_alignmask		= 0,
1332 	.cra_type		= &crypto_ablkcipher_type,
1333 	.cra_module		= THIS_MODULE,
1334 	.cra_init		= ablk_ecb_init,
1335 	.cra_exit		= ablk_exit,
1336 	.cra_u = {
1337 		.ablkcipher = {
1338 			.min_keysize	= AES_MIN_KEY_SIZE,
1339 			.max_keysize	= AES_MAX_KEY_SIZE,
1340 			.setkey		= ablk_set_key,
1341 			.encrypt	= ablk_encrypt,
1342 			.decrypt	= ablk_decrypt,
1343 		},
1344 	},
1345 }, {
1346 	.cra_name		= "cbc(aes)",
1347 	.cra_driver_name	= "cbc-aes-aesni",
1348 	.cra_priority		= 400,
1349 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350 	.cra_blocksize		= AES_BLOCK_SIZE,
1351 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1352 	.cra_alignmask		= 0,
1353 	.cra_type		= &crypto_ablkcipher_type,
1354 	.cra_module		= THIS_MODULE,
1355 	.cra_init		= ablk_cbc_init,
1356 	.cra_exit		= ablk_exit,
1357 	.cra_u = {
1358 		.ablkcipher = {
1359 			.min_keysize	= AES_MIN_KEY_SIZE,
1360 			.max_keysize	= AES_MAX_KEY_SIZE,
1361 			.ivsize		= AES_BLOCK_SIZE,
1362 			.setkey		= ablk_set_key,
1363 			.encrypt	= ablk_encrypt,
1364 			.decrypt	= ablk_decrypt,
1365 		},
1366 	},
1367 #ifdef CONFIG_X86_64
1368 }, {
1369 	.cra_name		= "__ctr-aes-aesni",
1370 	.cra_driver_name	= "__driver-ctr-aes-aesni",
1371 	.cra_priority		= 0,
1372 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1373 				  CRYPTO_ALG_INTERNAL,
1374 	.cra_blocksize		= 1,
1375 	.cra_ctxsize		= sizeof(struct crypto_aes_ctx) +
1376 				  AESNI_ALIGN - 1,
1377 	.cra_alignmask		= 0,
1378 	.cra_type		= &crypto_blkcipher_type,
1379 	.cra_module		= THIS_MODULE,
1380 	.cra_u = {
1381 		.blkcipher = {
1382 			.min_keysize	= AES_MIN_KEY_SIZE,
1383 			.max_keysize	= AES_MAX_KEY_SIZE,
1384 			.ivsize		= AES_BLOCK_SIZE,
1385 			.setkey		= aes_set_key,
1386 			.encrypt	= ctr_crypt,
1387 			.decrypt	= ctr_crypt,
1388 		},
1389 	},
1390 }, {
1391 	.cra_name		= "ctr(aes)",
1392 	.cra_driver_name	= "ctr-aes-aesni",
1393 	.cra_priority		= 400,
1394 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1395 	.cra_blocksize		= 1,
1396 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1397 	.cra_alignmask		= 0,
1398 	.cra_type		= &crypto_ablkcipher_type,
1399 	.cra_module		= THIS_MODULE,
1400 	.cra_init		= ablk_ctr_init,
1401 	.cra_exit		= ablk_exit,
1402 	.cra_u = {
1403 		.ablkcipher = {
1404 			.min_keysize	= AES_MIN_KEY_SIZE,
1405 			.max_keysize	= AES_MAX_KEY_SIZE,
1406 			.ivsize		= AES_BLOCK_SIZE,
1407 			.setkey		= ablk_set_key,
1408 			.encrypt	= ablk_encrypt,
1409 			.decrypt	= ablk_encrypt,
1410 			.geniv		= "chainiv",
1411 		},
1412 	},
1413 }, {
1414 	.cra_name		= "__gcm-aes-aesni",
1415 	.cra_driver_name	= "__driver-gcm-aes-aesni",
1416 	.cra_priority		= 0,
1417 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_INTERNAL,
1418 	.cra_blocksize		= 1,
1419 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1420 				  AESNI_ALIGN,
1421 	.cra_alignmask		= 0,
1422 	.cra_type		= &crypto_aead_type,
1423 	.cra_module		= THIS_MODULE,
1424 	.cra_u = {
1425 		.aead = {
1426 			.setkey		= common_rfc4106_set_key,
1427 			.setauthsize	= common_rfc4106_set_authsize,
1428 			.encrypt	= helper_rfc4106_encrypt,
1429 			.decrypt	= helper_rfc4106_decrypt,
1430 			.ivsize		= 8,
1431 			.maxauthsize	= 16,
1432 		},
1433 	},
1434 }, {
1435 	.cra_name		= "rfc4106(gcm(aes))",
1436 	.cra_driver_name	= "rfc4106-gcm-aesni",
1437 	.cra_priority		= 400,
1438 	.cra_flags		= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
1439 	.cra_blocksize		= 1,
1440 	.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx) +
1441 				  AESNI_ALIGN,
1442 	.cra_alignmask		= 0,
1443 	.cra_type		= &crypto_nivaead_type,
1444 	.cra_module		= THIS_MODULE,
1445 	.cra_init		= rfc4106_init,
1446 	.cra_exit		= rfc4106_exit,
1447 	.cra_u = {
1448 		.aead = {
1449 			.setkey		= rfc4106_set_key,
1450 			.setauthsize	= rfc4106_set_authsize,
1451 			.encrypt	= rfc4106_encrypt,
1452 			.decrypt	= rfc4106_decrypt,
1453 			.geniv		= "seqiv",
1454 			.ivsize		= 8,
1455 			.maxauthsize	= 16,
1456 		},
1457 	},
1458 #endif
1459 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1460 }, {
1461 	.cra_name		= "pcbc(aes)",
1462 	.cra_driver_name	= "pcbc-aes-aesni",
1463 	.cra_priority		= 400,
1464 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1465 	.cra_blocksize		= AES_BLOCK_SIZE,
1466 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1467 	.cra_alignmask		= 0,
1468 	.cra_type		= &crypto_ablkcipher_type,
1469 	.cra_module		= THIS_MODULE,
1470 	.cra_init		= ablk_pcbc_init,
1471 	.cra_exit		= ablk_exit,
1472 	.cra_u = {
1473 		.ablkcipher = {
1474 			.min_keysize	= AES_MIN_KEY_SIZE,
1475 			.max_keysize	= AES_MAX_KEY_SIZE,
1476 			.ivsize		= AES_BLOCK_SIZE,
1477 			.setkey		= ablk_set_key,
1478 			.encrypt	= ablk_encrypt,
1479 			.decrypt	= ablk_decrypt,
1480 		},
1481 	},
1482 #endif
1483 }, {
1484 	.cra_name		= "__lrw-aes-aesni",
1485 	.cra_driver_name	= "__driver-lrw-aes-aesni",
1486 	.cra_priority		= 0,
1487 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1488 				  CRYPTO_ALG_INTERNAL,
1489 	.cra_blocksize		= AES_BLOCK_SIZE,
1490 	.cra_ctxsize		= sizeof(struct aesni_lrw_ctx),
1491 	.cra_alignmask		= 0,
1492 	.cra_type		= &crypto_blkcipher_type,
1493 	.cra_module		= THIS_MODULE,
1494 	.cra_exit		= lrw_aesni_exit_tfm,
1495 	.cra_u = {
1496 		.blkcipher = {
1497 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1498 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1499 			.ivsize		= AES_BLOCK_SIZE,
1500 			.setkey		= lrw_aesni_setkey,
1501 			.encrypt	= lrw_encrypt,
1502 			.decrypt	= lrw_decrypt,
1503 		},
1504 	},
1505 }, {
1506 	.cra_name		= "__xts-aes-aesni",
1507 	.cra_driver_name	= "__driver-xts-aes-aesni",
1508 	.cra_priority		= 0,
1509 	.cra_flags		= CRYPTO_ALG_TYPE_BLKCIPHER |
1510 				  CRYPTO_ALG_INTERNAL,
1511 	.cra_blocksize		= AES_BLOCK_SIZE,
1512 	.cra_ctxsize		= sizeof(struct aesni_xts_ctx),
1513 	.cra_alignmask		= 0,
1514 	.cra_type		= &crypto_blkcipher_type,
1515 	.cra_module		= THIS_MODULE,
1516 	.cra_u = {
1517 		.blkcipher = {
1518 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1519 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1520 			.ivsize		= AES_BLOCK_SIZE,
1521 			.setkey		= xts_aesni_setkey,
1522 			.encrypt	= xts_encrypt,
1523 			.decrypt	= xts_decrypt,
1524 		},
1525 	},
1526 }, {
1527 	.cra_name		= "lrw(aes)",
1528 	.cra_driver_name	= "lrw-aes-aesni",
1529 	.cra_priority		= 400,
1530 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1531 	.cra_blocksize		= AES_BLOCK_SIZE,
1532 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1533 	.cra_alignmask		= 0,
1534 	.cra_type		= &crypto_ablkcipher_type,
1535 	.cra_module		= THIS_MODULE,
1536 	.cra_init		= ablk_init,
1537 	.cra_exit		= ablk_exit,
1538 	.cra_u = {
1539 		.ablkcipher = {
1540 			.min_keysize	= AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1541 			.max_keysize	= AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1542 			.ivsize		= AES_BLOCK_SIZE,
1543 			.setkey		= ablk_set_key,
1544 			.encrypt	= ablk_encrypt,
1545 			.decrypt	= ablk_decrypt,
1546 		},
1547 	},
1548 }, {
1549 	.cra_name		= "xts(aes)",
1550 	.cra_driver_name	= "xts-aes-aesni",
1551 	.cra_priority		= 400,
1552 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1553 	.cra_blocksize		= AES_BLOCK_SIZE,
1554 	.cra_ctxsize		= sizeof(struct async_helper_ctx),
1555 	.cra_alignmask		= 0,
1556 	.cra_type		= &crypto_ablkcipher_type,
1557 	.cra_module		= THIS_MODULE,
1558 	.cra_init		= ablk_init,
1559 	.cra_exit		= ablk_exit,
1560 	.cra_u = {
1561 		.ablkcipher = {
1562 			.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1563 			.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1564 			.ivsize		= AES_BLOCK_SIZE,
1565 			.setkey		= ablk_set_key,
1566 			.encrypt	= ablk_encrypt,
1567 			.decrypt	= ablk_decrypt,
1568 		},
1569 	},
1570 } };
1571 
1572 
1573 static const struct x86_cpu_id aesni_cpu_id[] = {
1574 	X86_FEATURE_MATCH(X86_FEATURE_AES),
1575 	{}
1576 };
1577 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1578 
1579 static int __init aesni_init(void)
1580 {
1581 	int err;
1582 
1583 	if (!x86_match_cpu(aesni_cpu_id))
1584 		return -ENODEV;
1585 #ifdef CONFIG_X86_64
1586 #ifdef CONFIG_AS_AVX2
1587 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1588 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1589 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1590 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1591 	} else
1592 #endif
1593 #ifdef CONFIG_AS_AVX
1594 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1595 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1596 		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1597 		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1598 	} else
1599 #endif
1600 	{
1601 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1602 		aesni_gcm_enc_tfm = aesni_gcm_enc;
1603 		aesni_gcm_dec_tfm = aesni_gcm_dec;
1604 	}
1605 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1606 #ifdef CONFIG_AS_AVX
1607 	if (cpu_has_avx) {
1608 		/* optimize performance of ctr mode encryption transform */
1609 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1610 		pr_info("AES CTR mode by8 optimization enabled\n");
1611 	}
1612 #endif
1613 #endif
1614 
1615 	err = crypto_fpu_init();
1616 	if (err)
1617 		return err;
1618 
1619 	return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1620 }
1621 
1622 static void __exit aesni_exit(void)
1623 {
1624 	crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1625 
1626 	crypto_fpu_exit();
1627 }
1628 
1629 module_init(aesni_init);
1630 module_exit(aesni_exit);
1631 
1632 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1633 MODULE_LICENSE("GPL");
1634 MODULE_ALIAS_CRYPTO("aes");
1635