1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for Intel AES-NI instructions. This file contains glue
4  * code, the real AES implementation is in intel-aes_asm.S.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  */
17 
18 #include <linux/hardirq.h>
19 #include <linux/types.h>
20 #include <linux/module.h>
21 #include <linux/err.h>
22 #include <crypto/algapi.h>
23 #include <crypto/aes.h>
24 #include <crypto/ctr.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gcm.h>
27 #include <crypto/xts.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/simd.h>
30 #include <crypto/scatterwalk.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/workqueue.h>
35 #include <linux/spinlock.h>
36 #ifdef CONFIG_X86_64
37 #include <asm/crypto/glue_helper.h>
38 #endif
39 
40 
41 #define AESNI_ALIGN	16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
44 #define RFC4106_HASH_SUBKEY_SIZE 16
45 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
46 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
47 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
48 
49 /* This data is stored at the end of the crypto_tfm struct.
50  * It's a type of per "session" data storage location.
51  * This needs to be 16 byte aligned.
52  */
53 struct aesni_rfc4106_gcm_ctx {
54 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
55 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
56 	u8 nonce[4];
57 };
58 
59 struct generic_gcmaes_ctx {
60 	u8 hash_subkey[16] AESNI_ALIGN_ATTR;
61 	struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
62 };
63 
64 struct aesni_xts_ctx {
65 	u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
66 	u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
67 };
68 
69 #define GCM_BLOCK_LEN 16
70 
71 struct gcm_context_data {
72 	/* init, update and finalize context data */
73 	u8 aad_hash[GCM_BLOCK_LEN];
74 	u64 aad_length;
75 	u64 in_length;
76 	u8 partial_block_enc_key[GCM_BLOCK_LEN];
77 	u8 orig_IV[GCM_BLOCK_LEN];
78 	u8 current_counter[GCM_BLOCK_LEN];
79 	u64 partial_block_len;
80 	u64 unused;
81 	u8 hash_keys[GCM_BLOCK_LEN * 16];
82 };
83 
84 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
85 			     unsigned int key_len);
86 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
87 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
88 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
89 			      const u8 *in, unsigned int len);
90 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
91 			      const u8 *in, unsigned int len);
92 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
93 			      const u8 *in, unsigned int len, u8 *iv);
94 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
95 			      const u8 *in, unsigned int len, u8 *iv);
96 asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
97 				  const u8 *in, unsigned int len, u8 *iv);
98 asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
99 				  const u8 *in, unsigned int len, u8 *iv);
100 
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103 
104 #ifdef CONFIG_X86_64
105 
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 			      const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 			      const u8 *in, unsigned int len, u8 *iv);
110 
111 asmlinkage void aesni_xts_crypt8(const struct crypto_aes_ctx *ctx, u8 *out,
112 				 const u8 *in, bool enc, le128 *iv);
113 
114 /* asmlinkage void aesni_gcm_enc()
115  * void *ctx,  AES Key schedule. Starts on a 16 byte boundary.
116  * struct gcm_context_data.  May be uninitialized.
117  * u8 *out, Ciphertext output. Encrypt in-place is allowed.
118  * const u8 *in, Plaintext input
119  * unsigned long plaintext_len, Length of data in bytes for encryption.
120  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
121  *         16-byte aligned pointer.
122  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123  * const u8 *aad, Additional Authentication Data (AAD)
124  * unsigned long aad_len, Length of AAD in bytes.
125  * u8 *auth_tag, Authenticated Tag output.
126  * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
127  *          Valid values are 16 (most likely), 12 or 8.
128  */
129 asmlinkage void aesni_gcm_enc(void *ctx,
130 			struct gcm_context_data *gdata, u8 *out,
131 			const u8 *in, unsigned long plaintext_len, u8 *iv,
132 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 			u8 *auth_tag, unsigned long auth_tag_len);
134 
135 /* asmlinkage void aesni_gcm_dec()
136  * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137  * struct gcm_context_data.  May be uninitialized.
138  * u8 *out, Plaintext output. Decrypt in-place is allowed.
139  * const u8 *in, Ciphertext input
140  * unsigned long ciphertext_len, Length of data in bytes for decryption.
141  * u8 *iv, Pre-counter block j0: 12 byte IV concatenated with 0x00000001.
142  *         16-byte aligned pointer.
143  * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144  * const u8 *aad, Additional Authentication Data (AAD)
145  * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146  * to be 8 or 12 bytes
147  * u8 *auth_tag, Authenticated Tag output.
148  * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149  * Valid values are 16 (most likely), 12 or 8.
150  */
151 asmlinkage void aesni_gcm_dec(void *ctx,
152 			struct gcm_context_data *gdata, u8 *out,
153 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
154 			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
155 			u8 *auth_tag, unsigned long auth_tag_len);
156 
157 /* Scatter / Gather routines, with args similar to above */
158 asmlinkage void aesni_gcm_init(void *ctx,
159 			       struct gcm_context_data *gdata,
160 			       u8 *iv,
161 			       u8 *hash_subkey, const u8 *aad,
162 			       unsigned long aad_len);
163 asmlinkage void aesni_gcm_enc_update(void *ctx,
164 				     struct gcm_context_data *gdata, u8 *out,
165 				     const u8 *in, unsigned long plaintext_len);
166 asmlinkage void aesni_gcm_dec_update(void *ctx,
167 				     struct gcm_context_data *gdata, u8 *out,
168 				     const u8 *in,
169 				     unsigned long ciphertext_len);
170 asmlinkage void aesni_gcm_finalize(void *ctx,
171 				   struct gcm_context_data *gdata,
172 				   u8 *auth_tag, unsigned long auth_tag_len);
173 
174 static const struct aesni_gcm_tfm_s {
175 	void (*init)(void *ctx, struct gcm_context_data *gdata, u8 *iv,
176 		     u8 *hash_subkey, const u8 *aad, unsigned long aad_len);
177 	void (*enc_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
178 			   const u8 *in, unsigned long plaintext_len);
179 	void (*dec_update)(void *ctx, struct gcm_context_data *gdata, u8 *out,
180 			   const u8 *in, unsigned long ciphertext_len);
181 	void (*finalize)(void *ctx, struct gcm_context_data *gdata,
182 			 u8 *auth_tag, unsigned long auth_tag_len);
183 } *aesni_gcm_tfm;
184 
185 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
186 	.init = &aesni_gcm_init,
187 	.enc_update = &aesni_gcm_enc_update,
188 	.dec_update = &aesni_gcm_dec_update,
189 	.finalize = &aesni_gcm_finalize,
190 };
191 
192 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
193 		void *keys, u8 *out, unsigned int num_bytes);
194 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
195 		void *keys, u8 *out, unsigned int num_bytes);
196 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
197 		void *keys, u8 *out, unsigned int num_bytes);
198 /*
199  * asmlinkage void aesni_gcm_init_avx_gen2()
200  * gcm_data *my_ctx_data, context data
201  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
202  */
203 asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
204 					struct gcm_context_data *gdata,
205 					u8 *iv,
206 					u8 *hash_subkey,
207 					const u8 *aad,
208 					unsigned long aad_len);
209 
210 asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
211 				     struct gcm_context_data *gdata, u8 *out,
212 				     const u8 *in, unsigned long plaintext_len);
213 asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
214 				     struct gcm_context_data *gdata, u8 *out,
215 				     const u8 *in,
216 				     unsigned long ciphertext_len);
217 asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
218 				   struct gcm_context_data *gdata,
219 				   u8 *auth_tag, unsigned long auth_tag_len);
220 
221 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
222 				struct gcm_context_data *gdata, u8 *out,
223 			const u8 *in, unsigned long plaintext_len, u8 *iv,
224 			const u8 *aad, unsigned long aad_len,
225 			u8 *auth_tag, unsigned long auth_tag_len);
226 
227 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
228 				struct gcm_context_data *gdata, u8 *out,
229 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
230 			const u8 *aad, unsigned long aad_len,
231 			u8 *auth_tag, unsigned long auth_tag_len);
232 
233 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
234 	.init = &aesni_gcm_init_avx_gen2,
235 	.enc_update = &aesni_gcm_enc_update_avx_gen2,
236 	.dec_update = &aesni_gcm_dec_update_avx_gen2,
237 	.finalize = &aesni_gcm_finalize_avx_gen2,
238 };
239 
240 /*
241  * asmlinkage void aesni_gcm_init_avx_gen4()
242  * gcm_data *my_ctx_data, context data
243  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
244  */
245 asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
246 					struct gcm_context_data *gdata,
247 					u8 *iv,
248 					u8 *hash_subkey,
249 					const u8 *aad,
250 					unsigned long aad_len);
251 
252 asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
253 				     struct gcm_context_data *gdata, u8 *out,
254 				     const u8 *in, unsigned long plaintext_len);
255 asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
256 				     struct gcm_context_data *gdata, u8 *out,
257 				     const u8 *in,
258 				     unsigned long ciphertext_len);
259 asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
260 				   struct gcm_context_data *gdata,
261 				   u8 *auth_tag, unsigned long auth_tag_len);
262 
263 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
264 				struct gcm_context_data *gdata, u8 *out,
265 			const u8 *in, unsigned long plaintext_len, u8 *iv,
266 			const u8 *aad, unsigned long aad_len,
267 			u8 *auth_tag, unsigned long auth_tag_len);
268 
269 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
270 				struct gcm_context_data *gdata, u8 *out,
271 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
272 			const u8 *aad, unsigned long aad_len,
273 			u8 *auth_tag, unsigned long auth_tag_len);
274 
275 static const struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
276 	.init = &aesni_gcm_init_avx_gen4,
277 	.enc_update = &aesni_gcm_enc_update_avx_gen4,
278 	.dec_update = &aesni_gcm_dec_update_avx_gen4,
279 	.finalize = &aesni_gcm_finalize_avx_gen4,
280 };
281 
282 static inline struct
283 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
284 {
285 	unsigned long align = AESNI_ALIGN;
286 
287 	if (align <= crypto_tfm_ctx_alignment())
288 		align = 1;
289 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
290 }
291 
292 static inline struct
293 generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
294 {
295 	unsigned long align = AESNI_ALIGN;
296 
297 	if (align <= crypto_tfm_ctx_alignment())
298 		align = 1;
299 	return PTR_ALIGN(crypto_aead_ctx(tfm), align);
300 }
301 #endif
302 
303 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
304 {
305 	unsigned long addr = (unsigned long)raw_ctx;
306 	unsigned long align = AESNI_ALIGN;
307 
308 	if (align <= crypto_tfm_ctx_alignment())
309 		align = 1;
310 	return (struct crypto_aes_ctx *)ALIGN(addr, align);
311 }
312 
313 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
314 			      const u8 *in_key, unsigned int key_len)
315 {
316 	struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
317 	int err;
318 
319 	if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
320 	    key_len != AES_KEYSIZE_256)
321 		return -EINVAL;
322 
323 	if (!crypto_simd_usable())
324 		err = aes_expandkey(ctx, in_key, key_len);
325 	else {
326 		kernel_fpu_begin();
327 		err = aesni_set_key(ctx, in_key, key_len);
328 		kernel_fpu_end();
329 	}
330 
331 	return err;
332 }
333 
334 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
335 		       unsigned int key_len)
336 {
337 	return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
338 }
339 
340 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
341 {
342 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
343 
344 	if (!crypto_simd_usable()) {
345 		aes_encrypt(ctx, dst, src);
346 	} else {
347 		kernel_fpu_begin();
348 		aesni_enc(ctx, dst, src);
349 		kernel_fpu_end();
350 	}
351 }
352 
353 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
354 {
355 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
356 
357 	if (!crypto_simd_usable()) {
358 		aes_decrypt(ctx, dst, src);
359 	} else {
360 		kernel_fpu_begin();
361 		aesni_dec(ctx, dst, src);
362 		kernel_fpu_end();
363 	}
364 }
365 
366 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
367 			         unsigned int len)
368 {
369 	return aes_set_key_common(crypto_skcipher_tfm(tfm),
370 				  crypto_skcipher_ctx(tfm), key, len);
371 }
372 
373 static int ecb_encrypt(struct skcipher_request *req)
374 {
375 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
376 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
377 	struct skcipher_walk walk;
378 	unsigned int nbytes;
379 	int err;
380 
381 	err = skcipher_walk_virt(&walk, req, true);
382 
383 	kernel_fpu_begin();
384 	while ((nbytes = walk.nbytes)) {
385 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
386 			      nbytes & AES_BLOCK_MASK);
387 		nbytes &= AES_BLOCK_SIZE - 1;
388 		err = skcipher_walk_done(&walk, nbytes);
389 	}
390 	kernel_fpu_end();
391 
392 	return err;
393 }
394 
395 static int ecb_decrypt(struct skcipher_request *req)
396 {
397 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
398 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
399 	struct skcipher_walk walk;
400 	unsigned int nbytes;
401 	int err;
402 
403 	err = skcipher_walk_virt(&walk, req, true);
404 
405 	kernel_fpu_begin();
406 	while ((nbytes = walk.nbytes)) {
407 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
408 			      nbytes & AES_BLOCK_MASK);
409 		nbytes &= AES_BLOCK_SIZE - 1;
410 		err = skcipher_walk_done(&walk, nbytes);
411 	}
412 	kernel_fpu_end();
413 
414 	return err;
415 }
416 
417 static int cbc_encrypt(struct skcipher_request *req)
418 {
419 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
420 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
421 	struct skcipher_walk walk;
422 	unsigned int nbytes;
423 	int err;
424 
425 	err = skcipher_walk_virt(&walk, req, true);
426 
427 	kernel_fpu_begin();
428 	while ((nbytes = walk.nbytes)) {
429 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
430 			      nbytes & AES_BLOCK_MASK, walk.iv);
431 		nbytes &= AES_BLOCK_SIZE - 1;
432 		err = skcipher_walk_done(&walk, nbytes);
433 	}
434 	kernel_fpu_end();
435 
436 	return err;
437 }
438 
439 static int cbc_decrypt(struct skcipher_request *req)
440 {
441 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
442 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
443 	struct skcipher_walk walk;
444 	unsigned int nbytes;
445 	int err;
446 
447 	err = skcipher_walk_virt(&walk, req, true);
448 
449 	kernel_fpu_begin();
450 	while ((nbytes = walk.nbytes)) {
451 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
452 			      nbytes & AES_BLOCK_MASK, walk.iv);
453 		nbytes &= AES_BLOCK_SIZE - 1;
454 		err = skcipher_walk_done(&walk, nbytes);
455 	}
456 	kernel_fpu_end();
457 
458 	return err;
459 }
460 
461 static int cts_cbc_encrypt(struct skcipher_request *req)
462 {
463 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
464 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
465 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
466 	struct scatterlist *src = req->src, *dst = req->dst;
467 	struct scatterlist sg_src[2], sg_dst[2];
468 	struct skcipher_request subreq;
469 	struct skcipher_walk walk;
470 	int err;
471 
472 	skcipher_request_set_tfm(&subreq, tfm);
473 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
474 				      NULL, NULL);
475 
476 	if (req->cryptlen <= AES_BLOCK_SIZE) {
477 		if (req->cryptlen < AES_BLOCK_SIZE)
478 			return -EINVAL;
479 		cbc_blocks = 1;
480 	}
481 
482 	if (cbc_blocks > 0) {
483 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
484 					   cbc_blocks * AES_BLOCK_SIZE,
485 					   req->iv);
486 
487 		err = cbc_encrypt(&subreq);
488 		if (err)
489 			return err;
490 
491 		if (req->cryptlen == AES_BLOCK_SIZE)
492 			return 0;
493 
494 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
495 		if (req->dst != req->src)
496 			dst = scatterwalk_ffwd(sg_dst, req->dst,
497 					       subreq.cryptlen);
498 	}
499 
500 	/* handle ciphertext stealing */
501 	skcipher_request_set_crypt(&subreq, src, dst,
502 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
503 				   req->iv);
504 
505 	err = skcipher_walk_virt(&walk, &subreq, false);
506 	if (err)
507 		return err;
508 
509 	kernel_fpu_begin();
510 	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
511 			  walk.nbytes, walk.iv);
512 	kernel_fpu_end();
513 
514 	return skcipher_walk_done(&walk, 0);
515 }
516 
517 static int cts_cbc_decrypt(struct skcipher_request *req)
518 {
519 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
520 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
521 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
522 	struct scatterlist *src = req->src, *dst = req->dst;
523 	struct scatterlist sg_src[2], sg_dst[2];
524 	struct skcipher_request subreq;
525 	struct skcipher_walk walk;
526 	int err;
527 
528 	skcipher_request_set_tfm(&subreq, tfm);
529 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
530 				      NULL, NULL);
531 
532 	if (req->cryptlen <= AES_BLOCK_SIZE) {
533 		if (req->cryptlen < AES_BLOCK_SIZE)
534 			return -EINVAL;
535 		cbc_blocks = 1;
536 	}
537 
538 	if (cbc_blocks > 0) {
539 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
540 					   cbc_blocks * AES_BLOCK_SIZE,
541 					   req->iv);
542 
543 		err = cbc_decrypt(&subreq);
544 		if (err)
545 			return err;
546 
547 		if (req->cryptlen == AES_BLOCK_SIZE)
548 			return 0;
549 
550 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
551 		if (req->dst != req->src)
552 			dst = scatterwalk_ffwd(sg_dst, req->dst,
553 					       subreq.cryptlen);
554 	}
555 
556 	/* handle ciphertext stealing */
557 	skcipher_request_set_crypt(&subreq, src, dst,
558 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
559 				   req->iv);
560 
561 	err = skcipher_walk_virt(&walk, &subreq, false);
562 	if (err)
563 		return err;
564 
565 	kernel_fpu_begin();
566 	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
567 			  walk.nbytes, walk.iv);
568 	kernel_fpu_end();
569 
570 	return skcipher_walk_done(&walk, 0);
571 }
572 
573 #ifdef CONFIG_X86_64
574 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
575 			    struct skcipher_walk *walk)
576 {
577 	u8 *ctrblk = walk->iv;
578 	u8 keystream[AES_BLOCK_SIZE];
579 	u8 *src = walk->src.virt.addr;
580 	u8 *dst = walk->dst.virt.addr;
581 	unsigned int nbytes = walk->nbytes;
582 
583 	aesni_enc(ctx, keystream, ctrblk);
584 	crypto_xor_cpy(dst, keystream, src, nbytes);
585 
586 	crypto_inc(ctrblk, AES_BLOCK_SIZE);
587 }
588 
589 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
590 			      const u8 *in, unsigned int len, u8 *iv)
591 {
592 	/*
593 	 * based on key length, override with the by8 version
594 	 * of ctr mode encryption/decryption for improved performance
595 	 * aes_set_key_common() ensures that key length is one of
596 	 * {128,192,256}
597 	 */
598 	if (ctx->key_length == AES_KEYSIZE_128)
599 		aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
600 	else if (ctx->key_length == AES_KEYSIZE_192)
601 		aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
602 	else
603 		aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
604 }
605 
606 static int ctr_crypt(struct skcipher_request *req)
607 {
608 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
609 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
610 	struct skcipher_walk walk;
611 	unsigned int nbytes;
612 	int err;
613 
614 	err = skcipher_walk_virt(&walk, req, true);
615 
616 	kernel_fpu_begin();
617 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
618 		aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
619 			              nbytes & AES_BLOCK_MASK, walk.iv);
620 		nbytes &= AES_BLOCK_SIZE - 1;
621 		err = skcipher_walk_done(&walk, nbytes);
622 	}
623 	if (walk.nbytes) {
624 		ctr_crypt_final(ctx, &walk);
625 		err = skcipher_walk_done(&walk, 0);
626 	}
627 	kernel_fpu_end();
628 
629 	return err;
630 }
631 
632 static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
633 			    unsigned int keylen)
634 {
635 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
636 	int err;
637 
638 	err = xts_verify_key(tfm, key, keylen);
639 	if (err)
640 		return err;
641 
642 	keylen /= 2;
643 
644 	/* first half of xts-key is for crypt */
645 	err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
646 				 key, keylen);
647 	if (err)
648 		return err;
649 
650 	/* second half of xts-key is for tweak */
651 	return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
652 				  key + keylen, keylen);
653 }
654 
655 
656 static void aesni_xts_enc(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
657 {
658 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_enc);
659 }
660 
661 static void aesni_xts_dec(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
662 {
663 	glue_xts_crypt_128bit_one(ctx, dst, src, iv, aesni_dec);
664 }
665 
666 static void aesni_xts_enc8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
667 {
668 	aesni_xts_crypt8(ctx, dst, src, true, iv);
669 }
670 
671 static void aesni_xts_dec8(const void *ctx, u8 *dst, const u8 *src, le128 *iv)
672 {
673 	aesni_xts_crypt8(ctx, dst, src, false, iv);
674 }
675 
676 static const struct common_glue_ctx aesni_enc_xts = {
677 	.num_funcs = 2,
678 	.fpu_blocks_limit = 1,
679 
680 	.funcs = { {
681 		.num_blocks = 8,
682 		.fn_u = { .xts = aesni_xts_enc8 }
683 	}, {
684 		.num_blocks = 1,
685 		.fn_u = { .xts = aesni_xts_enc }
686 	} }
687 };
688 
689 static const struct common_glue_ctx aesni_dec_xts = {
690 	.num_funcs = 2,
691 	.fpu_blocks_limit = 1,
692 
693 	.funcs = { {
694 		.num_blocks = 8,
695 		.fn_u = { .xts = aesni_xts_dec8 }
696 	}, {
697 		.num_blocks = 1,
698 		.fn_u = { .xts = aesni_xts_dec }
699 	} }
700 };
701 
702 static int xts_encrypt(struct skcipher_request *req)
703 {
704 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
705 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
706 
707 	return glue_xts_req_128bit(&aesni_enc_xts, req, aesni_enc,
708 				   aes_ctx(ctx->raw_tweak_ctx),
709 				   aes_ctx(ctx->raw_crypt_ctx),
710 				   false);
711 }
712 
713 static int xts_decrypt(struct skcipher_request *req)
714 {
715 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
716 	struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
717 
718 	return glue_xts_req_128bit(&aesni_dec_xts, req, aesni_enc,
719 				   aes_ctx(ctx->raw_tweak_ctx),
720 				   aes_ctx(ctx->raw_crypt_ctx),
721 				   true);
722 }
723 
724 static int
725 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
726 {
727 	struct crypto_aes_ctx ctx;
728 	int ret;
729 
730 	ret = aes_expandkey(&ctx, key, key_len);
731 	if (ret)
732 		return ret;
733 
734 	/* Clear the data in the hash sub key container to zero.*/
735 	/* We want to cipher all zeros to create the hash sub key. */
736 	memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
737 
738 	aes_encrypt(&ctx, hash_subkey, hash_subkey);
739 
740 	memzero_explicit(&ctx, sizeof(ctx));
741 	return 0;
742 }
743 
744 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
745 				  unsigned int key_len)
746 {
747 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
748 
749 	if (key_len < 4)
750 		return -EINVAL;
751 
752 	/*Account for 4 byte nonce at the end.*/
753 	key_len -= 4;
754 
755 	memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
756 
757 	return aes_set_key_common(crypto_aead_tfm(aead),
758 				  &ctx->aes_key_expanded, key, key_len) ?:
759 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
760 }
761 
762 /* This is the Integrity Check Value (aka the authentication tag) length and can
763  * be 8, 12 or 16 bytes long. */
764 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
765 				       unsigned int authsize)
766 {
767 	switch (authsize) {
768 	case 8:
769 	case 12:
770 	case 16:
771 		break;
772 	default:
773 		return -EINVAL;
774 	}
775 
776 	return 0;
777 }
778 
779 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
780 				       unsigned int authsize)
781 {
782 	switch (authsize) {
783 	case 4:
784 	case 8:
785 	case 12:
786 	case 13:
787 	case 14:
788 	case 15:
789 	case 16:
790 		break;
791 	default:
792 		return -EINVAL;
793 	}
794 
795 	return 0;
796 }
797 
798 static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
799 			      unsigned int assoclen, u8 *hash_subkey,
800 			      u8 *iv, void *aes_ctx)
801 {
802 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
803 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
804 	const struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
805 	struct gcm_context_data data AESNI_ALIGN_ATTR;
806 	struct scatter_walk dst_sg_walk = {};
807 	unsigned long left = req->cryptlen;
808 	unsigned long len, srclen, dstlen;
809 	struct scatter_walk assoc_sg_walk;
810 	struct scatter_walk src_sg_walk;
811 	struct scatterlist src_start[2];
812 	struct scatterlist dst_start[2];
813 	struct scatterlist *src_sg;
814 	struct scatterlist *dst_sg;
815 	u8 *src, *dst, *assoc;
816 	u8 *assocmem = NULL;
817 	u8 authTag[16];
818 
819 	if (!enc)
820 		left -= auth_tag_len;
821 
822 	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
823 		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
824 	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
825 		gcm_tfm = &aesni_gcm_tfm_sse;
826 
827 	/* Linearize assoc, if not already linear */
828 	if (req->src->length >= assoclen && req->src->length &&
829 		(!PageHighMem(sg_page(req->src)) ||
830 			req->src->offset + req->src->length <= PAGE_SIZE)) {
831 		scatterwalk_start(&assoc_sg_walk, req->src);
832 		assoc = scatterwalk_map(&assoc_sg_walk);
833 	} else {
834 		/* assoc can be any length, so must be on heap */
835 		assocmem = kmalloc(assoclen, GFP_ATOMIC);
836 		if (unlikely(!assocmem))
837 			return -ENOMEM;
838 		assoc = assocmem;
839 
840 		scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
841 	}
842 
843 	if (left) {
844 		src_sg = scatterwalk_ffwd(src_start, req->src, req->assoclen);
845 		scatterwalk_start(&src_sg_walk, src_sg);
846 		if (req->src != req->dst) {
847 			dst_sg = scatterwalk_ffwd(dst_start, req->dst,
848 						  req->assoclen);
849 			scatterwalk_start(&dst_sg_walk, dst_sg);
850 		}
851 	}
852 
853 	kernel_fpu_begin();
854 	gcm_tfm->init(aes_ctx, &data, iv,
855 		hash_subkey, assoc, assoclen);
856 	if (req->src != req->dst) {
857 		while (left) {
858 			src = scatterwalk_map(&src_sg_walk);
859 			dst = scatterwalk_map(&dst_sg_walk);
860 			srclen = scatterwalk_clamp(&src_sg_walk, left);
861 			dstlen = scatterwalk_clamp(&dst_sg_walk, left);
862 			len = min(srclen, dstlen);
863 			if (len) {
864 				if (enc)
865 					gcm_tfm->enc_update(aes_ctx, &data,
866 							     dst, src, len);
867 				else
868 					gcm_tfm->dec_update(aes_ctx, &data,
869 							     dst, src, len);
870 			}
871 			left -= len;
872 
873 			scatterwalk_unmap(src);
874 			scatterwalk_unmap(dst);
875 			scatterwalk_advance(&src_sg_walk, len);
876 			scatterwalk_advance(&dst_sg_walk, len);
877 			scatterwalk_done(&src_sg_walk, 0, left);
878 			scatterwalk_done(&dst_sg_walk, 1, left);
879 		}
880 	} else {
881 		while (left) {
882 			dst = src = scatterwalk_map(&src_sg_walk);
883 			len = scatterwalk_clamp(&src_sg_walk, left);
884 			if (len) {
885 				if (enc)
886 					gcm_tfm->enc_update(aes_ctx, &data,
887 							     src, src, len);
888 				else
889 					gcm_tfm->dec_update(aes_ctx, &data,
890 							     src, src, len);
891 			}
892 			left -= len;
893 			scatterwalk_unmap(src);
894 			scatterwalk_advance(&src_sg_walk, len);
895 			scatterwalk_done(&src_sg_walk, 1, left);
896 		}
897 	}
898 	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
899 	kernel_fpu_end();
900 
901 	if (!assocmem)
902 		scatterwalk_unmap(assoc);
903 	else
904 		kfree(assocmem);
905 
906 	if (!enc) {
907 		u8 authTagMsg[16];
908 
909 		/* Copy out original authTag */
910 		scatterwalk_map_and_copy(authTagMsg, req->src,
911 					 req->assoclen + req->cryptlen -
912 					 auth_tag_len,
913 					 auth_tag_len, 0);
914 
915 		/* Compare generated tag with passed in tag. */
916 		return crypto_memneq(authTagMsg, authTag, auth_tag_len) ?
917 			-EBADMSG : 0;
918 	}
919 
920 	/* Copy in the authTag */
921 	scatterwalk_map_and_copy(authTag, req->dst,
922 				 req->assoclen + req->cryptlen,
923 				 auth_tag_len, 1);
924 
925 	return 0;
926 }
927 
928 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
929 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
930 {
931 	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
932 				aes_ctx);
933 }
934 
935 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
936 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
937 {
938 	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
939 				aes_ctx);
940 }
941 
942 static int helper_rfc4106_encrypt(struct aead_request *req)
943 {
944 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
945 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
946 	void *aes_ctx = &(ctx->aes_key_expanded);
947 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
948 	unsigned int i;
949 	__be32 counter = cpu_to_be32(1);
950 
951 	/* Assuming we are supporting rfc4106 64-bit extended */
952 	/* sequence numbers We need to have the AAD length equal */
953 	/* to 16 or 20 bytes */
954 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
955 		return -EINVAL;
956 
957 	/* IV below built */
958 	for (i = 0; i < 4; i++)
959 		*(iv+i) = ctx->nonce[i];
960 	for (i = 0; i < 8; i++)
961 		*(iv+4+i) = req->iv[i];
962 	*((__be32 *)(iv+12)) = counter;
963 
964 	return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
965 			      aes_ctx);
966 }
967 
968 static int helper_rfc4106_decrypt(struct aead_request *req)
969 {
970 	__be32 counter = cpu_to_be32(1);
971 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
972 	struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
973 	void *aes_ctx = &(ctx->aes_key_expanded);
974 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
975 	unsigned int i;
976 
977 	if (unlikely(req->assoclen != 16 && req->assoclen != 20))
978 		return -EINVAL;
979 
980 	/* Assuming we are supporting rfc4106 64-bit extended */
981 	/* sequence numbers We need to have the AAD length */
982 	/* equal to 16 or 20 bytes */
983 
984 	/* IV below built */
985 	for (i = 0; i < 4; i++)
986 		*(iv+i) = ctx->nonce[i];
987 	for (i = 0; i < 8; i++)
988 		*(iv+4+i) = req->iv[i];
989 	*((__be32 *)(iv+12)) = counter;
990 
991 	return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
992 			      aes_ctx);
993 }
994 #endif
995 
996 static struct crypto_alg aesni_cipher_alg = {
997 	.cra_name		= "aes",
998 	.cra_driver_name	= "aes-aesni",
999 	.cra_priority		= 300,
1000 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
1001 	.cra_blocksize		= AES_BLOCK_SIZE,
1002 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1003 	.cra_module		= THIS_MODULE,
1004 	.cra_u	= {
1005 		.cipher	= {
1006 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
1007 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
1008 			.cia_setkey		= aes_set_key,
1009 			.cia_encrypt		= aesni_encrypt,
1010 			.cia_decrypt		= aesni_decrypt
1011 		}
1012 	}
1013 };
1014 
1015 static struct skcipher_alg aesni_skciphers[] = {
1016 	{
1017 		.base = {
1018 			.cra_name		= "__ecb(aes)",
1019 			.cra_driver_name	= "__ecb-aes-aesni",
1020 			.cra_priority		= 400,
1021 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1022 			.cra_blocksize		= AES_BLOCK_SIZE,
1023 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1024 			.cra_module		= THIS_MODULE,
1025 		},
1026 		.min_keysize	= AES_MIN_KEY_SIZE,
1027 		.max_keysize	= AES_MAX_KEY_SIZE,
1028 		.setkey		= aesni_skcipher_setkey,
1029 		.encrypt	= ecb_encrypt,
1030 		.decrypt	= ecb_decrypt,
1031 	}, {
1032 		.base = {
1033 			.cra_name		= "__cbc(aes)",
1034 			.cra_driver_name	= "__cbc-aes-aesni",
1035 			.cra_priority		= 400,
1036 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1037 			.cra_blocksize		= AES_BLOCK_SIZE,
1038 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1039 			.cra_module		= THIS_MODULE,
1040 		},
1041 		.min_keysize	= AES_MIN_KEY_SIZE,
1042 		.max_keysize	= AES_MAX_KEY_SIZE,
1043 		.ivsize		= AES_BLOCK_SIZE,
1044 		.setkey		= aesni_skcipher_setkey,
1045 		.encrypt	= cbc_encrypt,
1046 		.decrypt	= cbc_decrypt,
1047 	}, {
1048 		.base = {
1049 			.cra_name		= "__cts(cbc(aes))",
1050 			.cra_driver_name	= "__cts-cbc-aes-aesni",
1051 			.cra_priority		= 400,
1052 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1053 			.cra_blocksize		= AES_BLOCK_SIZE,
1054 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1055 			.cra_module		= THIS_MODULE,
1056 		},
1057 		.min_keysize	= AES_MIN_KEY_SIZE,
1058 		.max_keysize	= AES_MAX_KEY_SIZE,
1059 		.ivsize		= AES_BLOCK_SIZE,
1060 		.walksize	= 2 * AES_BLOCK_SIZE,
1061 		.setkey		= aesni_skcipher_setkey,
1062 		.encrypt	= cts_cbc_encrypt,
1063 		.decrypt	= cts_cbc_decrypt,
1064 #ifdef CONFIG_X86_64
1065 	}, {
1066 		.base = {
1067 			.cra_name		= "__ctr(aes)",
1068 			.cra_driver_name	= "__ctr-aes-aesni",
1069 			.cra_priority		= 400,
1070 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1071 			.cra_blocksize		= 1,
1072 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
1073 			.cra_module		= THIS_MODULE,
1074 		},
1075 		.min_keysize	= AES_MIN_KEY_SIZE,
1076 		.max_keysize	= AES_MAX_KEY_SIZE,
1077 		.ivsize		= AES_BLOCK_SIZE,
1078 		.chunksize	= AES_BLOCK_SIZE,
1079 		.setkey		= aesni_skcipher_setkey,
1080 		.encrypt	= ctr_crypt,
1081 		.decrypt	= ctr_crypt,
1082 	}, {
1083 		.base = {
1084 			.cra_name		= "__xts(aes)",
1085 			.cra_driver_name	= "__xts-aes-aesni",
1086 			.cra_priority		= 401,
1087 			.cra_flags		= CRYPTO_ALG_INTERNAL,
1088 			.cra_blocksize		= AES_BLOCK_SIZE,
1089 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
1090 			.cra_module		= THIS_MODULE,
1091 		},
1092 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1093 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1094 		.ivsize		= AES_BLOCK_SIZE,
1095 		.setkey		= xts_aesni_setkey,
1096 		.encrypt	= xts_encrypt,
1097 		.decrypt	= xts_decrypt,
1098 #endif
1099 	}
1100 };
1101 
1102 static
1103 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
1104 
1105 #ifdef CONFIG_X86_64
1106 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
1107 				  unsigned int key_len)
1108 {
1109 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
1110 
1111 	return aes_set_key_common(crypto_aead_tfm(aead),
1112 				  &ctx->aes_key_expanded, key, key_len) ?:
1113 	       rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
1114 }
1115 
1116 static int generic_gcmaes_encrypt(struct aead_request *req)
1117 {
1118 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1119 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1120 	void *aes_ctx = &(ctx->aes_key_expanded);
1121 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1122 	__be32 counter = cpu_to_be32(1);
1123 
1124 	memcpy(iv, req->iv, 12);
1125 	*((__be32 *)(iv+12)) = counter;
1126 
1127 	return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
1128 			      aes_ctx);
1129 }
1130 
1131 static int generic_gcmaes_decrypt(struct aead_request *req)
1132 {
1133 	__be32 counter = cpu_to_be32(1);
1134 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1135 	struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
1136 	void *aes_ctx = &(ctx->aes_key_expanded);
1137 	u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1138 
1139 	memcpy(iv, req->iv, 12);
1140 	*((__be32 *)(iv+12)) = counter;
1141 
1142 	return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
1143 			      aes_ctx);
1144 }
1145 
1146 static struct aead_alg aesni_aeads[] = { {
1147 	.setkey			= common_rfc4106_set_key,
1148 	.setauthsize		= common_rfc4106_set_authsize,
1149 	.encrypt		= helper_rfc4106_encrypt,
1150 	.decrypt		= helper_rfc4106_decrypt,
1151 	.ivsize			= GCM_RFC4106_IV_SIZE,
1152 	.maxauthsize		= 16,
1153 	.base = {
1154 		.cra_name		= "__rfc4106(gcm(aes))",
1155 		.cra_driver_name	= "__rfc4106-gcm-aesni",
1156 		.cra_priority		= 400,
1157 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1158 		.cra_blocksize		= 1,
1159 		.cra_ctxsize		= sizeof(struct aesni_rfc4106_gcm_ctx),
1160 		.cra_alignmask		= AESNI_ALIGN - 1,
1161 		.cra_module		= THIS_MODULE,
1162 	},
1163 }, {
1164 	.setkey			= generic_gcmaes_set_key,
1165 	.setauthsize		= generic_gcmaes_set_authsize,
1166 	.encrypt		= generic_gcmaes_encrypt,
1167 	.decrypt		= generic_gcmaes_decrypt,
1168 	.ivsize			= GCM_AES_IV_SIZE,
1169 	.maxauthsize		= 16,
1170 	.base = {
1171 		.cra_name		= "__gcm(aes)",
1172 		.cra_driver_name	= "__generic-gcm-aesni",
1173 		.cra_priority		= 400,
1174 		.cra_flags		= CRYPTO_ALG_INTERNAL,
1175 		.cra_blocksize		= 1,
1176 		.cra_ctxsize		= sizeof(struct generic_gcmaes_ctx),
1177 		.cra_alignmask		= AESNI_ALIGN - 1,
1178 		.cra_module		= THIS_MODULE,
1179 	},
1180 } };
1181 #else
1182 static struct aead_alg aesni_aeads[0];
1183 #endif
1184 
1185 static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
1186 
1187 static const struct x86_cpu_id aesni_cpu_id[] = {
1188 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1189 	{}
1190 };
1191 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1192 
1193 static int __init aesni_init(void)
1194 {
1195 	int err;
1196 
1197 	if (!x86_match_cpu(aesni_cpu_id))
1198 		return -ENODEV;
1199 #ifdef CONFIG_X86_64
1200 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
1201 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1202 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
1203 	} else
1204 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1205 		pr_info("AVX version of gcm_enc/dec engaged.\n");
1206 		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
1207 	} else {
1208 		pr_info("SSE version of gcm_enc/dec engaged.\n");
1209 		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
1210 	}
1211 	aesni_ctr_enc_tfm = aesni_ctr_enc;
1212 	if (boot_cpu_has(X86_FEATURE_AVX)) {
1213 		/* optimize performance of ctr mode encryption transform */
1214 		aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1215 		pr_info("AES CTR mode by8 optimization enabled\n");
1216 	}
1217 #endif
1218 
1219 	err = crypto_register_alg(&aesni_cipher_alg);
1220 	if (err)
1221 		return err;
1222 
1223 	err = simd_register_skciphers_compat(aesni_skciphers,
1224 					     ARRAY_SIZE(aesni_skciphers),
1225 					     aesni_simd_skciphers);
1226 	if (err)
1227 		goto unregister_cipher;
1228 
1229 	err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1230 					 aesni_simd_aeads);
1231 	if (err)
1232 		goto unregister_skciphers;
1233 
1234 	return 0;
1235 
1236 unregister_skciphers:
1237 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1238 				  aesni_simd_skciphers);
1239 unregister_cipher:
1240 	crypto_unregister_alg(&aesni_cipher_alg);
1241 	return err;
1242 }
1243 
1244 static void __exit aesni_exit(void)
1245 {
1246 	simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
1247 			      aesni_simd_aeads);
1248 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1249 				  aesni_simd_skciphers);
1250 	crypto_unregister_alg(&aesni_cipher_alg);
1251 }
1252 
1253 late_initcall(aesni_init);
1254 module_exit(aesni_exit);
1255 
1256 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1257 MODULE_LICENSE("GPL");
1258 MODULE_ALIAS_CRYPTO("aes");
1259