xref: /openbmc/linux/arch/x86/crypto/aesni-intel_asm.S (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1/*
2 * Implement AES algorithm in Intel AES-NI instructions.
3 *
4 * The white paper of AES-NI instructions can be downloaded from:
5 *   http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
6 *
7 * Copyright (C) 2008, Intel Corp.
8 *    Author: Huang Ying <ying.huang@intel.com>
9 *            Vinodh Gopal <vinodh.gopal@intel.com>
10 *            Kahraman Akdemir
11 *
12 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
13 * interface for 64-bit kernels.
14 *    Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
15 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
16 *             Adrian Hoban <adrian.hoban@intel.com>
17 *             James Guilford (james.guilford@intel.com)
18 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
19 *             Tadeusz Struk (tadeusz.struk@intel.com)
20 *             Wajdi Feghali (wajdi.k.feghali@intel.com)
21 *    Copyright (c) 2010, Intel Corporation.
22 *
23 * Ported x86_64 version to x86:
24 *    Author: Mathias Krause <minipli@googlemail.com>
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 */
31
32#include <linux/linkage.h>
33#include <asm/inst.h>
34
35#ifdef __x86_64__
36.data
37POLY:   .octa 0xC2000000000000000000000000000001
38TWOONE: .octa 0x00000001000000000000000000000001
39
40# order of these constants should not change.
41# more specifically, ALL_F should follow SHIFT_MASK,
42# and ZERO should follow ALL_F
43
44SHUF_MASK:  .octa 0x000102030405060708090A0B0C0D0E0F
45MASK1:      .octa 0x0000000000000000ffffffffffffffff
46MASK2:      .octa 0xffffffffffffffff0000000000000000
47SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
48ALL_F:      .octa 0xffffffffffffffffffffffffffffffff
49ZERO:       .octa 0x00000000000000000000000000000000
50ONE:        .octa 0x00000000000000000000000000000001
51F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
52dec:        .octa 0x1
53enc:        .octa 0x2
54
55
56.text
57
58
59#define	STACK_OFFSET    8*3
60#define	HashKey		16*0	// store HashKey <<1 mod poly here
61#define	HashKey_2	16*1	// store HashKey^2 <<1 mod poly here
62#define	HashKey_3	16*2	// store HashKey^3 <<1 mod poly here
63#define	HashKey_4	16*3	// store HashKey^4 <<1 mod poly here
64#define	HashKey_k	16*4	// store XOR of High 64 bits and Low 64
65				// bits of  HashKey <<1 mod poly here
66				//(for Karatsuba purposes)
67#define	HashKey_2_k	16*5	// store XOR of High 64 bits and Low 64
68				// bits of  HashKey^2 <<1 mod poly here
69				// (for Karatsuba purposes)
70#define	HashKey_3_k	16*6	// store XOR of High 64 bits and Low 64
71				// bits of  HashKey^3 <<1 mod poly here
72				// (for Karatsuba purposes)
73#define	HashKey_4_k	16*7	// store XOR of High 64 bits and Low 64
74				// bits of  HashKey^4 <<1 mod poly here
75				// (for Karatsuba purposes)
76#define	VARIABLE_OFFSET	16*8
77
78#define arg1 rdi
79#define arg2 rsi
80#define arg3 rdx
81#define arg4 rcx
82#define arg5 r8
83#define arg6 r9
84#define arg7 STACK_OFFSET+8(%r14)
85#define arg8 STACK_OFFSET+16(%r14)
86#define arg9 STACK_OFFSET+24(%r14)
87#define arg10 STACK_OFFSET+32(%r14)
88#endif
89
90
91#define STATE1	%xmm0
92#define STATE2	%xmm4
93#define STATE3	%xmm5
94#define STATE4	%xmm6
95#define STATE	STATE1
96#define IN1	%xmm1
97#define IN2	%xmm7
98#define IN3	%xmm8
99#define IN4	%xmm9
100#define IN	IN1
101#define KEY	%xmm2
102#define IV	%xmm3
103
104#define BSWAP_MASK %xmm10
105#define CTR	%xmm11
106#define INC	%xmm12
107
108#ifdef __x86_64__
109#define AREG	%rax
110#define KEYP	%rdi
111#define OUTP	%rsi
112#define UKEYP	OUTP
113#define INP	%rdx
114#define LEN	%rcx
115#define IVP	%r8
116#define KLEN	%r9d
117#define T1	%r10
118#define TKEYP	T1
119#define T2	%r11
120#define TCTR_LOW T2
121#else
122#define AREG	%eax
123#define KEYP	%edi
124#define OUTP	AREG
125#define UKEYP	OUTP
126#define INP	%edx
127#define LEN	%esi
128#define IVP	%ebp
129#define KLEN	%ebx
130#define T1	%ecx
131#define TKEYP	T1
132#endif
133
134
135#ifdef __x86_64__
136/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
137*
138*
139* Input: A and B (128-bits each, bit-reflected)
140* Output: C = A*B*x mod poly, (i.e. >>1 )
141* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
142* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
143*
144*/
145.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
146	movdqa	  \GH, \TMP1
147	pshufd	  $78, \GH, \TMP2
148	pshufd	  $78, \HK, \TMP3
149	pxor	  \GH, \TMP2            # TMP2 = a1+a0
150	pxor	  \HK, \TMP3            # TMP3 = b1+b0
151	PCLMULQDQ 0x11, \HK, \TMP1     # TMP1 = a1*b1
152	PCLMULQDQ 0x00, \HK, \GH       # GH = a0*b0
153	PCLMULQDQ 0x00, \TMP3, \TMP2   # TMP2 = (a0+a1)*(b1+b0)
154	pxor	  \GH, \TMP2
155	pxor	  \TMP1, \TMP2          # TMP2 = (a0*b0)+(a1*b0)
156	movdqa	  \TMP2, \TMP3
157	pslldq	  $8, \TMP3             # left shift TMP3 2 DWs
158	psrldq	  $8, \TMP2             # right shift TMP2 2 DWs
159	pxor	  \TMP3, \GH
160	pxor	  \TMP2, \TMP1          # TMP2:GH holds the result of GH*HK
161
162        # first phase of the reduction
163
164	movdqa    \GH, \TMP2
165	movdqa    \GH, \TMP3
166	movdqa    \GH, \TMP4            # copy GH into TMP2,TMP3 and TMP4
167					# in in order to perform
168					# independent shifts
169	pslld     $31, \TMP2            # packed right shift <<31
170	pslld     $30, \TMP3            # packed right shift <<30
171	pslld     $25, \TMP4            # packed right shift <<25
172	pxor      \TMP3, \TMP2          # xor the shifted versions
173	pxor      \TMP4, \TMP2
174	movdqa    \TMP2, \TMP5
175	psrldq    $4, \TMP5             # right shift TMP5 1 DW
176	pslldq    $12, \TMP2            # left shift TMP2 3 DWs
177	pxor      \TMP2, \GH
178
179        # second phase of the reduction
180
181	movdqa    \GH,\TMP2             # copy GH into TMP2,TMP3 and TMP4
182					# in in order to perform
183					# independent shifts
184	movdqa    \GH,\TMP3
185	movdqa    \GH,\TMP4
186	psrld     $1,\TMP2              # packed left shift >>1
187	psrld     $2,\TMP3              # packed left shift >>2
188	psrld     $7,\TMP4              # packed left shift >>7
189	pxor      \TMP3,\TMP2		# xor the shifted versions
190	pxor      \TMP4,\TMP2
191	pxor      \TMP5, \TMP2
192	pxor      \TMP2, \GH
193	pxor      \TMP1, \GH            # result is in TMP1
194.endm
195
196/*
197* if a = number of total plaintext bytes
198* b = floor(a/16)
199* num_initial_blocks = b mod 4
200* encrypt the initial num_initial_blocks blocks and apply ghash on
201* the ciphertext
202* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
203* are clobbered
204* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
205*/
206
207
208.macro INITIAL_BLOCKS_DEC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
209XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
210	mov	   arg7, %r10           # %r10 = AAD
211	mov	   arg8, %r12           # %r12 = aadLen
212	mov	   %r12, %r11
213	pxor	   %xmm\i, %xmm\i
214_get_AAD_loop\num_initial_blocks\operation:
215	movd	   (%r10), \TMP1
216	pslldq	   $12, \TMP1
217	psrldq	   $4, %xmm\i
218	pxor	   \TMP1, %xmm\i
219	add	   $4, %r10
220	sub	   $4, %r12
221	jne	   _get_AAD_loop\num_initial_blocks\operation
222	cmp	   $16, %r11
223	je	   _get_AAD_loop2_done\num_initial_blocks\operation
224	mov	   $16, %r12
225_get_AAD_loop2\num_initial_blocks\operation:
226	psrldq	   $4, %xmm\i
227	sub	   $4, %r12
228	cmp	   %r11, %r12
229	jne	   _get_AAD_loop2\num_initial_blocks\operation
230_get_AAD_loop2_done\num_initial_blocks\operation:
231        movdqa     SHUF_MASK(%rip), %xmm14
232	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data
233
234	xor	   %r11, %r11 # initialise the data pointer offset as zero
235
236        # start AES for num_initial_blocks blocks
237
238	mov	   %arg5, %rax                      # %rax = *Y0
239	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
240        movdqa     SHUF_MASK(%rip), %xmm14
241	PSHUFB_XMM   %xmm14, \XMM0
242
243.if (\i == 5) || (\i == 6) || (\i == 7)
244.irpc index, \i_seq
245	paddd	   ONE(%rip), \XMM0                 # INCR Y0
246	movdqa	   \XMM0, %xmm\index
247        movdqa     SHUF_MASK(%rip), %xmm14
248	PSHUFB_XMM   %xmm14, %xmm\index      # perform a 16 byte swap
249
250.endr
251.irpc index, \i_seq
252	pxor	   16*0(%arg1), %xmm\index
253.endr
254.irpc index, \i_seq
255	movaps 0x10(%rdi), \TMP1
256	AESENC     \TMP1, %xmm\index          # Round 1
257.endr
258.irpc index, \i_seq
259	movaps 0x20(%arg1), \TMP1
260	AESENC     \TMP1, %xmm\index          # Round 2
261.endr
262.irpc index, \i_seq
263	movaps 0x30(%arg1), \TMP1
264	AESENC     \TMP1, %xmm\index          # Round 2
265.endr
266.irpc index, \i_seq
267	movaps 0x40(%arg1), \TMP1
268	AESENC     \TMP1, %xmm\index          # Round 2
269.endr
270.irpc index, \i_seq
271	movaps 0x50(%arg1), \TMP1
272	AESENC     \TMP1, %xmm\index          # Round 2
273.endr
274.irpc index, \i_seq
275	movaps 0x60(%arg1), \TMP1
276	AESENC     \TMP1, %xmm\index          # Round 2
277.endr
278.irpc index, \i_seq
279	movaps 0x70(%arg1), \TMP1
280	AESENC     \TMP1, %xmm\index          # Round 2
281.endr
282.irpc index, \i_seq
283	movaps 0x80(%arg1), \TMP1
284	AESENC     \TMP1, %xmm\index          # Round 2
285.endr
286.irpc index, \i_seq
287	movaps 0x90(%arg1), \TMP1
288	AESENC     \TMP1, %xmm\index          # Round 2
289.endr
290.irpc index, \i_seq
291	movaps 0xa0(%arg1), \TMP1
292	AESENCLAST \TMP1, %xmm\index         # Round 10
293.endr
294.irpc index, \i_seq
295	movdqu	   (%arg3 , %r11, 1), \TMP1
296	pxor	   \TMP1, %xmm\index
297	movdqu	   %xmm\index, (%arg2 , %r11, 1)
298	# write back plaintext/ciphertext for num_initial_blocks
299	add	   $16, %r11
300
301	movdqa     \TMP1, %xmm\index
302        movdqa     SHUF_MASK(%rip), %xmm14
303	PSHUFB_XMM	   %xmm14, %xmm\index
304
305		# prepare plaintext/ciphertext for GHASH computation
306.endr
307.endif
308	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
309        # apply GHASH on num_initial_blocks blocks
310
311.if \i == 5
312        pxor       %xmm5, %xmm6
313	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
314        pxor       %xmm6, %xmm7
315	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
316        pxor       %xmm7, %xmm8
317	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
318.elseif \i == 6
319        pxor       %xmm6, %xmm7
320	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
321        pxor       %xmm7, %xmm8
322	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
323.elseif \i == 7
324        pxor       %xmm7, %xmm8
325	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
326.endif
327	cmp	   $64, %r13
328	jl	_initial_blocks_done\num_initial_blocks\operation
329	# no need for precomputed values
330/*
331*
332* Precomputations for HashKey parallel with encryption of first 4 blocks.
333* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
334*/
335	paddd	   ONE(%rip), \XMM0              # INCR Y0
336	movdqa	   \XMM0, \XMM1
337        movdqa     SHUF_MASK(%rip), %xmm14
338	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap
339
340	paddd	   ONE(%rip), \XMM0              # INCR Y0
341	movdqa	   \XMM0, \XMM2
342        movdqa     SHUF_MASK(%rip), %xmm14
343	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap
344
345	paddd	   ONE(%rip), \XMM0              # INCR Y0
346	movdqa	   \XMM0, \XMM3
347        movdqa     SHUF_MASK(%rip), %xmm14
348	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap
349
350	paddd	   ONE(%rip), \XMM0              # INCR Y0
351	movdqa	   \XMM0, \XMM4
352        movdqa     SHUF_MASK(%rip), %xmm14
353	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap
354
355	pxor	   16*0(%arg1), \XMM1
356	pxor	   16*0(%arg1), \XMM2
357	pxor	   16*0(%arg1), \XMM3
358	pxor	   16*0(%arg1), \XMM4
359	movdqa	   \TMP3, \TMP5
360	pshufd	   $78, \TMP3, \TMP1
361	pxor	   \TMP3, \TMP1
362	movdqa	   \TMP1, HashKey_k(%rsp)
363	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
364# TMP5 = HashKey^2<<1 (mod poly)
365	movdqa	   \TMP5, HashKey_2(%rsp)
366# HashKey_2 = HashKey^2<<1 (mod poly)
367	pshufd	   $78, \TMP5, \TMP1
368	pxor	   \TMP5, \TMP1
369	movdqa	   \TMP1, HashKey_2_k(%rsp)
370.irpc index, 1234 # do 4 rounds
371	movaps 0x10*\index(%arg1), \TMP1
372	AESENC	   \TMP1, \XMM1
373	AESENC	   \TMP1, \XMM2
374	AESENC	   \TMP1, \XMM3
375	AESENC	   \TMP1, \XMM4
376.endr
377	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
378# TMP5 = HashKey^3<<1 (mod poly)
379	movdqa	   \TMP5, HashKey_3(%rsp)
380	pshufd	   $78, \TMP5, \TMP1
381	pxor	   \TMP5, \TMP1
382	movdqa	   \TMP1, HashKey_3_k(%rsp)
383.irpc index, 56789 # do next 5 rounds
384	movaps 0x10*\index(%arg1), \TMP1
385	AESENC	   \TMP1, \XMM1
386	AESENC	   \TMP1, \XMM2
387	AESENC	   \TMP1, \XMM3
388	AESENC	   \TMP1, \XMM4
389.endr
390	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
391# TMP5 = HashKey^3<<1 (mod poly)
392	movdqa	   \TMP5, HashKey_4(%rsp)
393	pshufd	   $78, \TMP5, \TMP1
394	pxor	   \TMP5, \TMP1
395	movdqa	   \TMP1, HashKey_4_k(%rsp)
396	movaps 0xa0(%arg1), \TMP2
397	AESENCLAST \TMP2, \XMM1
398	AESENCLAST \TMP2, \XMM2
399	AESENCLAST \TMP2, \XMM3
400	AESENCLAST \TMP2, \XMM4
401	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
402	pxor	   \TMP1, \XMM1
403	movdqu	   \XMM1, 16*0(%arg2 , %r11 , 1)
404	movdqa     \TMP1, \XMM1
405	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
406	pxor	   \TMP1, \XMM2
407	movdqu	   \XMM2, 16*1(%arg2 , %r11 , 1)
408	movdqa     \TMP1, \XMM2
409	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
410	pxor	   \TMP1, \XMM3
411	movdqu	   \XMM3, 16*2(%arg2 , %r11 , 1)
412	movdqa     \TMP1, \XMM3
413	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
414	pxor	   \TMP1, \XMM4
415	movdqu	   \XMM4, 16*3(%arg2 , %r11 , 1)
416	movdqa     \TMP1, \XMM4
417	add	   $64, %r11
418        movdqa     SHUF_MASK(%rip), %xmm14
419	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
420	pxor	   \XMMDst, \XMM1
421# combine GHASHed value with the corresponding ciphertext
422        movdqa     SHUF_MASK(%rip), %xmm14
423	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
424        movdqa     SHUF_MASK(%rip), %xmm14
425	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
426        movdqa     SHUF_MASK(%rip), %xmm14
427	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
428
429_initial_blocks_done\num_initial_blocks\operation:
430
431.endm
432
433
434/*
435* if a = number of total plaintext bytes
436* b = floor(a/16)
437* num_initial_blocks = b mod 4
438* encrypt the initial num_initial_blocks blocks and apply ghash on
439* the ciphertext
440* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
441* are clobbered
442* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
443*/
444
445
446.macro INITIAL_BLOCKS_ENC num_initial_blocks TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
447XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
448	mov	   arg7, %r10           # %r10 = AAD
449	mov	   arg8, %r12           # %r12 = aadLen
450	mov	   %r12, %r11
451	pxor	   %xmm\i, %xmm\i
452_get_AAD_loop\num_initial_blocks\operation:
453	movd	   (%r10), \TMP1
454	pslldq	   $12, \TMP1
455	psrldq	   $4, %xmm\i
456	pxor	   \TMP1, %xmm\i
457	add	   $4, %r10
458	sub	   $4, %r12
459	jne	   _get_AAD_loop\num_initial_blocks\operation
460	cmp	   $16, %r11
461	je	   _get_AAD_loop2_done\num_initial_blocks\operation
462	mov	   $16, %r12
463_get_AAD_loop2\num_initial_blocks\operation:
464	psrldq	   $4, %xmm\i
465	sub	   $4, %r12
466	cmp	   %r11, %r12
467	jne	   _get_AAD_loop2\num_initial_blocks\operation
468_get_AAD_loop2_done\num_initial_blocks\operation:
469        movdqa     SHUF_MASK(%rip), %xmm14
470	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data
471
472	xor	   %r11, %r11 # initialise the data pointer offset as zero
473
474        # start AES for num_initial_blocks blocks
475
476	mov	   %arg5, %rax                      # %rax = *Y0
477	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
478        movdqa     SHUF_MASK(%rip), %xmm14
479	PSHUFB_XMM   %xmm14, \XMM0
480
481.if (\i == 5) || (\i == 6) || (\i == 7)
482.irpc index, \i_seq
483	paddd	   ONE(%rip), \XMM0                 # INCR Y0
484	movdqa	   \XMM0, %xmm\index
485        movdqa     SHUF_MASK(%rip), %xmm14
486	PSHUFB_XMM   %xmm14, %xmm\index      # perform a 16 byte swap
487
488.endr
489.irpc index, \i_seq
490	pxor	   16*0(%arg1), %xmm\index
491.endr
492.irpc index, \i_seq
493	movaps 0x10(%rdi), \TMP1
494	AESENC     \TMP1, %xmm\index          # Round 1
495.endr
496.irpc index, \i_seq
497	movaps 0x20(%arg1), \TMP1
498	AESENC     \TMP1, %xmm\index          # Round 2
499.endr
500.irpc index, \i_seq
501	movaps 0x30(%arg1), \TMP1
502	AESENC     \TMP1, %xmm\index          # Round 2
503.endr
504.irpc index, \i_seq
505	movaps 0x40(%arg1), \TMP1
506	AESENC     \TMP1, %xmm\index          # Round 2
507.endr
508.irpc index, \i_seq
509	movaps 0x50(%arg1), \TMP1
510	AESENC     \TMP1, %xmm\index          # Round 2
511.endr
512.irpc index, \i_seq
513	movaps 0x60(%arg1), \TMP1
514	AESENC     \TMP1, %xmm\index          # Round 2
515.endr
516.irpc index, \i_seq
517	movaps 0x70(%arg1), \TMP1
518	AESENC     \TMP1, %xmm\index          # Round 2
519.endr
520.irpc index, \i_seq
521	movaps 0x80(%arg1), \TMP1
522	AESENC     \TMP1, %xmm\index          # Round 2
523.endr
524.irpc index, \i_seq
525	movaps 0x90(%arg1), \TMP1
526	AESENC     \TMP1, %xmm\index          # Round 2
527.endr
528.irpc index, \i_seq
529	movaps 0xa0(%arg1), \TMP1
530	AESENCLAST \TMP1, %xmm\index         # Round 10
531.endr
532.irpc index, \i_seq
533	movdqu	   (%arg3 , %r11, 1), \TMP1
534	pxor	   \TMP1, %xmm\index
535	movdqu	   %xmm\index, (%arg2 , %r11, 1)
536	# write back plaintext/ciphertext for num_initial_blocks
537	add	   $16, %r11
538
539        movdqa     SHUF_MASK(%rip), %xmm14
540	PSHUFB_XMM	   %xmm14, %xmm\index
541
542		# prepare plaintext/ciphertext for GHASH computation
543.endr
544.endif
545	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
546        # apply GHASH on num_initial_blocks blocks
547
548.if \i == 5
549        pxor       %xmm5, %xmm6
550	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
551        pxor       %xmm6, %xmm7
552	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
553        pxor       %xmm7, %xmm8
554	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
555.elseif \i == 6
556        pxor       %xmm6, %xmm7
557	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
558        pxor       %xmm7, %xmm8
559	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
560.elseif \i == 7
561        pxor       %xmm7, %xmm8
562	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
563.endif
564	cmp	   $64, %r13
565	jl	_initial_blocks_done\num_initial_blocks\operation
566	# no need for precomputed values
567/*
568*
569* Precomputations for HashKey parallel with encryption of first 4 blocks.
570* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
571*/
572	paddd	   ONE(%rip), \XMM0              # INCR Y0
573	movdqa	   \XMM0, \XMM1
574        movdqa     SHUF_MASK(%rip), %xmm14
575	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap
576
577	paddd	   ONE(%rip), \XMM0              # INCR Y0
578	movdqa	   \XMM0, \XMM2
579        movdqa     SHUF_MASK(%rip), %xmm14
580	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap
581
582	paddd	   ONE(%rip), \XMM0              # INCR Y0
583	movdqa	   \XMM0, \XMM3
584        movdqa     SHUF_MASK(%rip), %xmm14
585	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap
586
587	paddd	   ONE(%rip), \XMM0              # INCR Y0
588	movdqa	   \XMM0, \XMM4
589        movdqa     SHUF_MASK(%rip), %xmm14
590	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap
591
592	pxor	   16*0(%arg1), \XMM1
593	pxor	   16*0(%arg1), \XMM2
594	pxor	   16*0(%arg1), \XMM3
595	pxor	   16*0(%arg1), \XMM4
596	movdqa	   \TMP3, \TMP5
597	pshufd	   $78, \TMP3, \TMP1
598	pxor	   \TMP3, \TMP1
599	movdqa	   \TMP1, HashKey_k(%rsp)
600	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
601# TMP5 = HashKey^2<<1 (mod poly)
602	movdqa	   \TMP5, HashKey_2(%rsp)
603# HashKey_2 = HashKey^2<<1 (mod poly)
604	pshufd	   $78, \TMP5, \TMP1
605	pxor	   \TMP5, \TMP1
606	movdqa	   \TMP1, HashKey_2_k(%rsp)
607.irpc index, 1234 # do 4 rounds
608	movaps 0x10*\index(%arg1), \TMP1
609	AESENC	   \TMP1, \XMM1
610	AESENC	   \TMP1, \XMM2
611	AESENC	   \TMP1, \XMM3
612	AESENC	   \TMP1, \XMM4
613.endr
614	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
615# TMP5 = HashKey^3<<1 (mod poly)
616	movdqa	   \TMP5, HashKey_3(%rsp)
617	pshufd	   $78, \TMP5, \TMP1
618	pxor	   \TMP5, \TMP1
619	movdqa	   \TMP1, HashKey_3_k(%rsp)
620.irpc index, 56789 # do next 5 rounds
621	movaps 0x10*\index(%arg1), \TMP1
622	AESENC	   \TMP1, \XMM1
623	AESENC	   \TMP1, \XMM2
624	AESENC	   \TMP1, \XMM3
625	AESENC	   \TMP1, \XMM4
626.endr
627	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
628# TMP5 = HashKey^3<<1 (mod poly)
629	movdqa	   \TMP5, HashKey_4(%rsp)
630	pshufd	   $78, \TMP5, \TMP1
631	pxor	   \TMP5, \TMP1
632	movdqa	   \TMP1, HashKey_4_k(%rsp)
633	movaps 0xa0(%arg1), \TMP2
634	AESENCLAST \TMP2, \XMM1
635	AESENCLAST \TMP2, \XMM2
636	AESENCLAST \TMP2, \XMM3
637	AESENCLAST \TMP2, \XMM4
638	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
639	pxor	   \TMP1, \XMM1
640	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
641	pxor	   \TMP1, \XMM2
642	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
643	pxor	   \TMP1, \XMM3
644	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
645	pxor	   \TMP1, \XMM4
646	movdqu     \XMM1, 16*0(%arg2 , %r11 , 1)
647	movdqu     \XMM2, 16*1(%arg2 , %r11 , 1)
648	movdqu     \XMM3, 16*2(%arg2 , %r11 , 1)
649	movdqu     \XMM4, 16*3(%arg2 , %r11 , 1)
650
651	add	   $64, %r11
652        movdqa     SHUF_MASK(%rip), %xmm14
653	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
654	pxor	   \XMMDst, \XMM1
655# combine GHASHed value with the corresponding ciphertext
656        movdqa     SHUF_MASK(%rip), %xmm14
657	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
658        movdqa     SHUF_MASK(%rip), %xmm14
659	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
660        movdqa     SHUF_MASK(%rip), %xmm14
661	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap
662
663_initial_blocks_done\num_initial_blocks\operation:
664
665.endm
666
667/*
668* encrypt 4 blocks at a time
669* ghash the 4 previously encrypted ciphertext blocks
670* arg1, %arg2, %arg3 are used as pointers only, not modified
671* %r11 is the data offset value
672*/
673.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
674TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
675
676	movdqa	  \XMM1, \XMM5
677	movdqa	  \XMM2, \XMM6
678	movdqa	  \XMM3, \XMM7
679	movdqa	  \XMM4, \XMM8
680
681        movdqa    SHUF_MASK(%rip), %xmm15
682        # multiply TMP5 * HashKey using karatsuba
683
684	movdqa	  \XMM5, \TMP4
685	pshufd	  $78, \XMM5, \TMP6
686	pxor	  \XMM5, \TMP6
687	paddd     ONE(%rip), \XMM0		# INCR CNT
688	movdqa	  HashKey_4(%rsp), \TMP5
689	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
690	movdqa    \XMM0, \XMM1
691	paddd     ONE(%rip), \XMM0		# INCR CNT
692	movdqa    \XMM0, \XMM2
693	paddd     ONE(%rip), \XMM0		# INCR CNT
694	movdqa    \XMM0, \XMM3
695	paddd     ONE(%rip), \XMM0		# INCR CNT
696	movdqa    \XMM0, \XMM4
697	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
698	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
699	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
700	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
701	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
702
703	pxor	  (%arg1), \XMM1
704	pxor	  (%arg1), \XMM2
705	pxor	  (%arg1), \XMM3
706	pxor	  (%arg1), \XMM4
707	movdqa	  HashKey_4_k(%rsp), \TMP5
708	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
709	movaps 0x10(%arg1), \TMP1
710	AESENC	  \TMP1, \XMM1              # Round 1
711	AESENC	  \TMP1, \XMM2
712	AESENC	  \TMP1, \XMM3
713	AESENC	  \TMP1, \XMM4
714	movaps 0x20(%arg1), \TMP1
715	AESENC	  \TMP1, \XMM1              # Round 2
716	AESENC	  \TMP1, \XMM2
717	AESENC	  \TMP1, \XMM3
718	AESENC	  \TMP1, \XMM4
719	movdqa	  \XMM6, \TMP1
720	pshufd	  $78, \XMM6, \TMP2
721	pxor	  \XMM6, \TMP2
722	movdqa	  HashKey_3(%rsp), \TMP5
723	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
724	movaps 0x30(%arg1), \TMP3
725	AESENC    \TMP3, \XMM1              # Round 3
726	AESENC    \TMP3, \XMM2
727	AESENC    \TMP3, \XMM3
728	AESENC    \TMP3, \XMM4
729	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
730	movaps 0x40(%arg1), \TMP3
731	AESENC	  \TMP3, \XMM1              # Round 4
732	AESENC	  \TMP3, \XMM2
733	AESENC	  \TMP3, \XMM3
734	AESENC	  \TMP3, \XMM4
735	movdqa	  HashKey_3_k(%rsp), \TMP5
736	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
737	movaps 0x50(%arg1), \TMP3
738	AESENC	  \TMP3, \XMM1              # Round 5
739	AESENC	  \TMP3, \XMM2
740	AESENC	  \TMP3, \XMM3
741	AESENC	  \TMP3, \XMM4
742	pxor	  \TMP1, \TMP4
743# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
744	pxor	  \XMM6, \XMM5
745	pxor	  \TMP2, \TMP6
746	movdqa	  \XMM7, \TMP1
747	pshufd	  $78, \XMM7, \TMP2
748	pxor	  \XMM7, \TMP2
749	movdqa	  HashKey_2(%rsp ), \TMP5
750
751        # Multiply TMP5 * HashKey using karatsuba
752
753	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
754	movaps 0x60(%arg1), \TMP3
755	AESENC	  \TMP3, \XMM1              # Round 6
756	AESENC	  \TMP3, \XMM2
757	AESENC	  \TMP3, \XMM3
758	AESENC	  \TMP3, \XMM4
759	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
760	movaps 0x70(%arg1), \TMP3
761	AESENC	  \TMP3, \XMM1             # Round 7
762	AESENC	  \TMP3, \XMM2
763	AESENC	  \TMP3, \XMM3
764	AESENC	  \TMP3, \XMM4
765	movdqa	  HashKey_2_k(%rsp), \TMP5
766	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
767	movaps 0x80(%arg1), \TMP3
768	AESENC	  \TMP3, \XMM1             # Round 8
769	AESENC	  \TMP3, \XMM2
770	AESENC	  \TMP3, \XMM3
771	AESENC	  \TMP3, \XMM4
772	pxor	  \TMP1, \TMP4
773# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
774	pxor	  \XMM7, \XMM5
775	pxor	  \TMP2, \TMP6
776
777        # Multiply XMM8 * HashKey
778        # XMM8 and TMP5 hold the values for the two operands
779
780	movdqa	  \XMM8, \TMP1
781	pshufd	  $78, \XMM8, \TMP2
782	pxor	  \XMM8, \TMP2
783	movdqa	  HashKey(%rsp), \TMP5
784	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
785	movaps 0x90(%arg1), \TMP3
786	AESENC	  \TMP3, \XMM1            # Round 9
787	AESENC	  \TMP3, \XMM2
788	AESENC	  \TMP3, \XMM3
789	AESENC	  \TMP3, \XMM4
790	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
791	movaps 0xa0(%arg1), \TMP3
792	AESENCLAST \TMP3, \XMM1           # Round 10
793	AESENCLAST \TMP3, \XMM2
794	AESENCLAST \TMP3, \XMM3
795	AESENCLAST \TMP3, \XMM4
796	movdqa    HashKey_k(%rsp), \TMP5
797	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
798	movdqu	  (%arg3,%r11,1), \TMP3
799	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
800	movdqu	  16(%arg3,%r11,1), \TMP3
801	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
802	movdqu	  32(%arg3,%r11,1), \TMP3
803	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
804	movdqu	  48(%arg3,%r11,1), \TMP3
805	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
806        movdqu    \XMM1, (%arg2,%r11,1)        # Write to the ciphertext buffer
807        movdqu    \XMM2, 16(%arg2,%r11,1)      # Write to the ciphertext buffer
808        movdqu    \XMM3, 32(%arg2,%r11,1)      # Write to the ciphertext buffer
809        movdqu    \XMM4, 48(%arg2,%r11,1)      # Write to the ciphertext buffer
810	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
811	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
812	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
813	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
814
815	pxor	  \TMP4, \TMP1
816	pxor	  \XMM8, \XMM5
817	pxor	  \TMP6, \TMP2
818	pxor	  \TMP1, \TMP2
819	pxor	  \XMM5, \TMP2
820	movdqa	  \TMP2, \TMP3
821	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
822	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
823	pxor	  \TMP3, \XMM5
824	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5
825
826        # first phase of reduction
827
828	movdqa    \XMM5, \TMP2
829	movdqa    \XMM5, \TMP3
830	movdqa    \XMM5, \TMP4
831# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
832	pslld     $31, \TMP2                   # packed right shift << 31
833	pslld     $30, \TMP3                   # packed right shift << 30
834	pslld     $25, \TMP4                   # packed right shift << 25
835	pxor      \TMP3, \TMP2	               # xor the shifted versions
836	pxor      \TMP4, \TMP2
837	movdqa    \TMP2, \TMP5
838	psrldq    $4, \TMP5                    # right shift T5 1 DW
839	pslldq    $12, \TMP2                   # left shift T2 3 DWs
840	pxor      \TMP2, \XMM5
841
842        # second phase of reduction
843
844	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
845	movdqa    \XMM5,\TMP3
846	movdqa    \XMM5,\TMP4
847	psrld     $1, \TMP2                    # packed left shift >>1
848	psrld     $2, \TMP3                    # packed left shift >>2
849	psrld     $7, \TMP4                    # packed left shift >>7
850	pxor      \TMP3,\TMP2		       # xor the shifted versions
851	pxor      \TMP4,\TMP2
852	pxor      \TMP5, \TMP2
853	pxor      \TMP2, \XMM5
854	pxor      \TMP1, \XMM5                 # result is in TMP1
855
856	pxor	  \XMM5, \XMM1
857.endm
858
859/*
860* decrypt 4 blocks at a time
861* ghash the 4 previously decrypted ciphertext blocks
862* arg1, %arg2, %arg3 are used as pointers only, not modified
863* %r11 is the data offset value
864*/
865.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
866TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation
867
868	movdqa	  \XMM1, \XMM5
869	movdqa	  \XMM2, \XMM6
870	movdqa	  \XMM3, \XMM7
871	movdqa	  \XMM4, \XMM8
872
873        movdqa    SHUF_MASK(%rip), %xmm15
874        # multiply TMP5 * HashKey using karatsuba
875
876	movdqa	  \XMM5, \TMP4
877	pshufd	  $78, \XMM5, \TMP6
878	pxor	  \XMM5, \TMP6
879	paddd     ONE(%rip), \XMM0		# INCR CNT
880	movdqa	  HashKey_4(%rsp), \TMP5
881	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
882	movdqa    \XMM0, \XMM1
883	paddd     ONE(%rip), \XMM0		# INCR CNT
884	movdqa    \XMM0, \XMM2
885	paddd     ONE(%rip), \XMM0		# INCR CNT
886	movdqa    \XMM0, \XMM3
887	paddd     ONE(%rip), \XMM0		# INCR CNT
888	movdqa    \XMM0, \XMM4
889	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
890	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
891	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
892	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
893	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
894
895	pxor	  (%arg1), \XMM1
896	pxor	  (%arg1), \XMM2
897	pxor	  (%arg1), \XMM3
898	pxor	  (%arg1), \XMM4
899	movdqa	  HashKey_4_k(%rsp), \TMP5
900	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
901	movaps 0x10(%arg1), \TMP1
902	AESENC	  \TMP1, \XMM1              # Round 1
903	AESENC	  \TMP1, \XMM2
904	AESENC	  \TMP1, \XMM3
905	AESENC	  \TMP1, \XMM4
906	movaps 0x20(%arg1), \TMP1
907	AESENC	  \TMP1, \XMM1              # Round 2
908	AESENC	  \TMP1, \XMM2
909	AESENC	  \TMP1, \XMM3
910	AESENC	  \TMP1, \XMM4
911	movdqa	  \XMM6, \TMP1
912	pshufd	  $78, \XMM6, \TMP2
913	pxor	  \XMM6, \TMP2
914	movdqa	  HashKey_3(%rsp), \TMP5
915	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
916	movaps 0x30(%arg1), \TMP3
917	AESENC    \TMP3, \XMM1              # Round 3
918	AESENC    \TMP3, \XMM2
919	AESENC    \TMP3, \XMM3
920	AESENC    \TMP3, \XMM4
921	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
922	movaps 0x40(%arg1), \TMP3
923	AESENC	  \TMP3, \XMM1              # Round 4
924	AESENC	  \TMP3, \XMM2
925	AESENC	  \TMP3, \XMM3
926	AESENC	  \TMP3, \XMM4
927	movdqa	  HashKey_3_k(%rsp), \TMP5
928	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
929	movaps 0x50(%arg1), \TMP3
930	AESENC	  \TMP3, \XMM1              # Round 5
931	AESENC	  \TMP3, \XMM2
932	AESENC	  \TMP3, \XMM3
933	AESENC	  \TMP3, \XMM4
934	pxor	  \TMP1, \TMP4
935# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
936	pxor	  \XMM6, \XMM5
937	pxor	  \TMP2, \TMP6
938	movdqa	  \XMM7, \TMP1
939	pshufd	  $78, \XMM7, \TMP2
940	pxor	  \XMM7, \TMP2
941	movdqa	  HashKey_2(%rsp ), \TMP5
942
943        # Multiply TMP5 * HashKey using karatsuba
944
945	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
946	movaps 0x60(%arg1), \TMP3
947	AESENC	  \TMP3, \XMM1              # Round 6
948	AESENC	  \TMP3, \XMM2
949	AESENC	  \TMP3, \XMM3
950	AESENC	  \TMP3, \XMM4
951	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
952	movaps 0x70(%arg1), \TMP3
953	AESENC	  \TMP3, \XMM1             # Round 7
954	AESENC	  \TMP3, \XMM2
955	AESENC	  \TMP3, \XMM3
956	AESENC	  \TMP3, \XMM4
957	movdqa	  HashKey_2_k(%rsp), \TMP5
958	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
959	movaps 0x80(%arg1), \TMP3
960	AESENC	  \TMP3, \XMM1             # Round 8
961	AESENC	  \TMP3, \XMM2
962	AESENC	  \TMP3, \XMM3
963	AESENC	  \TMP3, \XMM4
964	pxor	  \TMP1, \TMP4
965# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
966	pxor	  \XMM7, \XMM5
967	pxor	  \TMP2, \TMP6
968
969        # Multiply XMM8 * HashKey
970        # XMM8 and TMP5 hold the values for the two operands
971
972	movdqa	  \XMM8, \TMP1
973	pshufd	  $78, \XMM8, \TMP2
974	pxor	  \XMM8, \TMP2
975	movdqa	  HashKey(%rsp), \TMP5
976	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
977	movaps 0x90(%arg1), \TMP3
978	AESENC	  \TMP3, \XMM1            # Round 9
979	AESENC	  \TMP3, \XMM2
980	AESENC	  \TMP3, \XMM3
981	AESENC	  \TMP3, \XMM4
982	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
983	movaps 0xa0(%arg1), \TMP3
984	AESENCLAST \TMP3, \XMM1           # Round 10
985	AESENCLAST \TMP3, \XMM2
986	AESENCLAST \TMP3, \XMM3
987	AESENCLAST \TMP3, \XMM4
988	movdqa    HashKey_k(%rsp), \TMP5
989	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
990	movdqu	  (%arg3,%r11,1), \TMP3
991	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
992	movdqu	  \XMM1, (%arg2,%r11,1)        # Write to plaintext buffer
993	movdqa    \TMP3, \XMM1
994	movdqu	  16(%arg3,%r11,1), \TMP3
995	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
996	movdqu	  \XMM2, 16(%arg2,%r11,1)      # Write to plaintext buffer
997	movdqa    \TMP3, \XMM2
998	movdqu	  32(%arg3,%r11,1), \TMP3
999	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
1000	movdqu	  \XMM3, 32(%arg2,%r11,1)      # Write to plaintext buffer
1001	movdqa    \TMP3, \XMM3
1002	movdqu	  48(%arg3,%r11,1), \TMP3
1003	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
1004	movdqu	  \XMM4, 48(%arg2,%r11,1)      # Write to plaintext buffer
1005	movdqa    \TMP3, \XMM4
1006	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
1007	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
1008	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
1009	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
1010
1011	pxor	  \TMP4, \TMP1
1012	pxor	  \XMM8, \XMM5
1013	pxor	  \TMP6, \TMP2
1014	pxor	  \TMP1, \TMP2
1015	pxor	  \XMM5, \TMP2
1016	movdqa	  \TMP2, \TMP3
1017	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
1018	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
1019	pxor	  \TMP3, \XMM5
1020	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5
1021
1022        # first phase of reduction
1023
1024	movdqa    \XMM5, \TMP2
1025	movdqa    \XMM5, \TMP3
1026	movdqa    \XMM5, \TMP4
1027# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
1028	pslld     $31, \TMP2                   # packed right shift << 31
1029	pslld     $30, \TMP3                   # packed right shift << 30
1030	pslld     $25, \TMP4                   # packed right shift << 25
1031	pxor      \TMP3, \TMP2	               # xor the shifted versions
1032	pxor      \TMP4, \TMP2
1033	movdqa    \TMP2, \TMP5
1034	psrldq    $4, \TMP5                    # right shift T5 1 DW
1035	pslldq    $12, \TMP2                   # left shift T2 3 DWs
1036	pxor      \TMP2, \XMM5
1037
1038        # second phase of reduction
1039
1040	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
1041	movdqa    \XMM5,\TMP3
1042	movdqa    \XMM5,\TMP4
1043	psrld     $1, \TMP2                    # packed left shift >>1
1044	psrld     $2, \TMP3                    # packed left shift >>2
1045	psrld     $7, \TMP4                    # packed left shift >>7
1046	pxor      \TMP3,\TMP2		       # xor the shifted versions
1047	pxor      \TMP4,\TMP2
1048	pxor      \TMP5, \TMP2
1049	pxor      \TMP2, \XMM5
1050	pxor      \TMP1, \XMM5                 # result is in TMP1
1051
1052	pxor	  \XMM5, \XMM1
1053.endm
1054
1055/* GHASH the last 4 ciphertext blocks. */
1056.macro	GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
1057TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst
1058
1059        # Multiply TMP6 * HashKey (using Karatsuba)
1060
1061	movdqa	  \XMM1, \TMP6
1062	pshufd	  $78, \XMM1, \TMP2
1063	pxor	  \XMM1, \TMP2
1064	movdqa	  HashKey_4(%rsp), \TMP5
1065	PCLMULQDQ 0x11, \TMP5, \TMP6       # TMP6 = a1*b1
1066	PCLMULQDQ 0x00, \TMP5, \XMM1       # XMM1 = a0*b0
1067	movdqa	  HashKey_4_k(%rsp), \TMP4
1068	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
1069	movdqa	  \XMM1, \XMMDst
1070	movdqa	  \TMP2, \XMM1              # result in TMP6, XMMDst, XMM1
1071
1072        # Multiply TMP1 * HashKey (using Karatsuba)
1073
1074	movdqa	  \XMM2, \TMP1
1075	pshufd	  $78, \XMM2, \TMP2
1076	pxor	  \XMM2, \TMP2
1077	movdqa	  HashKey_3(%rsp), \TMP5
1078	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
1079	PCLMULQDQ 0x00, \TMP5, \XMM2       # XMM2 = a0*b0
1080	movdqa	  HashKey_3_k(%rsp), \TMP4
1081	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
1082	pxor	  \TMP1, \TMP6
1083	pxor	  \XMM2, \XMMDst
1084	pxor	  \TMP2, \XMM1
1085# results accumulated in TMP6, XMMDst, XMM1
1086
1087        # Multiply TMP1 * HashKey (using Karatsuba)
1088
1089	movdqa	  \XMM3, \TMP1
1090	pshufd	  $78, \XMM3, \TMP2
1091	pxor	  \XMM3, \TMP2
1092	movdqa	  HashKey_2(%rsp), \TMP5
1093	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
1094	PCLMULQDQ 0x00, \TMP5, \XMM3       # XMM3 = a0*b0
1095	movdqa	  HashKey_2_k(%rsp), \TMP4
1096	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
1097	pxor	  \TMP1, \TMP6
1098	pxor	  \XMM3, \XMMDst
1099	pxor	  \TMP2, \XMM1   # results accumulated in TMP6, XMMDst, XMM1
1100
1101        # Multiply TMP1 * HashKey (using Karatsuba)
1102	movdqa	  \XMM4, \TMP1
1103	pshufd	  $78, \XMM4, \TMP2
1104	pxor	  \XMM4, \TMP2
1105	movdqa	  HashKey(%rsp), \TMP5
1106	PCLMULQDQ 0x11, \TMP5, \TMP1	    # TMP1 = a1*b1
1107	PCLMULQDQ 0x00, \TMP5, \XMM4       # XMM4 = a0*b0
1108	movdqa	  HashKey_k(%rsp), \TMP4
1109	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
1110	pxor	  \TMP1, \TMP6
1111	pxor	  \XMM4, \XMMDst
1112	pxor	  \XMM1, \TMP2
1113	pxor	  \TMP6, \TMP2
1114	pxor	  \XMMDst, \TMP2
1115	# middle section of the temp results combined as in karatsuba algorithm
1116	movdqa	  \TMP2, \TMP4
1117	pslldq	  $8, \TMP4                 # left shift TMP4 2 DWs
1118	psrldq	  $8, \TMP2                 # right shift TMP2 2 DWs
1119	pxor	  \TMP4, \XMMDst
1120	pxor	  \TMP2, \TMP6
1121# TMP6:XMMDst holds the result of the accumulated carry-less multiplications
1122	# first phase of the reduction
1123	movdqa    \XMMDst, \TMP2
1124	movdqa    \XMMDst, \TMP3
1125	movdqa    \XMMDst, \TMP4
1126# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
1127	pslld     $31, \TMP2                # packed right shifting << 31
1128	pslld     $30, \TMP3                # packed right shifting << 30
1129	pslld     $25, \TMP4                # packed right shifting << 25
1130	pxor      \TMP3, \TMP2              # xor the shifted versions
1131	pxor      \TMP4, \TMP2
1132	movdqa    \TMP2, \TMP7
1133	psrldq    $4, \TMP7                 # right shift TMP7 1 DW
1134	pslldq    $12, \TMP2                # left shift TMP2 3 DWs
1135	pxor      \TMP2, \XMMDst
1136
1137        # second phase of the reduction
1138	movdqa    \XMMDst, \TMP2
1139	# make 3 copies of XMMDst for doing 3 shift operations
1140	movdqa    \XMMDst, \TMP3
1141	movdqa    \XMMDst, \TMP4
1142	psrld     $1, \TMP2                 # packed left shift >> 1
1143	psrld     $2, \TMP3                 # packed left shift >> 2
1144	psrld     $7, \TMP4                 # packed left shift >> 7
1145	pxor      \TMP3, \TMP2              # xor the shifted versions
1146	pxor      \TMP4, \TMP2
1147	pxor      \TMP7, \TMP2
1148	pxor      \TMP2, \XMMDst
1149	pxor      \TMP6, \XMMDst            # reduced result is in XMMDst
1150.endm
1151
1152/* Encryption of a single block done*/
1153.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1
1154
1155	pxor	(%arg1), \XMM0
1156        movaps 16(%arg1), \TMP1
1157	AESENC	\TMP1, \XMM0
1158        movaps 32(%arg1), \TMP1
1159	AESENC	\TMP1, \XMM0
1160        movaps 48(%arg1), \TMP1
1161	AESENC	\TMP1, \XMM0
1162        movaps 64(%arg1), \TMP1
1163	AESENC	\TMP1, \XMM0
1164        movaps 80(%arg1), \TMP1
1165	AESENC	\TMP1, \XMM0
1166        movaps 96(%arg1), \TMP1
1167	AESENC	\TMP1, \XMM0
1168        movaps 112(%arg1), \TMP1
1169	AESENC	\TMP1, \XMM0
1170        movaps 128(%arg1), \TMP1
1171	AESENC	\TMP1, \XMM0
1172        movaps 144(%arg1), \TMP1
1173	AESENC	\TMP1, \XMM0
1174        movaps 160(%arg1), \TMP1
1175	AESENCLAST	\TMP1, \XMM0
1176.endm
1177
1178
1179/*****************************************************************************
1180* void aesni_gcm_dec(void *aes_ctx,    // AES Key schedule. Starts on a 16 byte boundary.
1181*                   u8 *out,           // Plaintext output. Encrypt in-place is allowed.
1182*                   const u8 *in,      // Ciphertext input
1183*                   u64 plaintext_len, // Length of data in bytes for decryption.
1184*                   u8 *iv,            // Pre-counter block j0: 4 byte salt (from Security Association)
1185*                                      // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1186*                                      // concatenated with 0x00000001. 16-byte aligned pointer.
1187*                   u8 *hash_subkey,   // H, the Hash sub key input. Data starts on a 16-byte boundary.
1188*                   const u8 *aad,     // Additional Authentication Data (AAD)
1189*                   u64 aad_len,       // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1190*                   u8  *auth_tag,     // Authenticated Tag output. The driver will compare this to the
1191*                                      // given authentication tag and only return the plaintext if they match.
1192*                   u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
1193*                                      // (most likely), 12 or 8.
1194*
1195* Assumptions:
1196*
1197* keys:
1198*       keys are pre-expanded and aligned to 16 bytes. we are using the first
1199*       set of 11 keys in the data structure void *aes_ctx
1200*
1201* iv:
1202*       0                   1                   2                   3
1203*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1204*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205*       |                             Salt  (From the SA)               |
1206*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207*       |                     Initialization Vector                     |
1208*       |         (This is the sequence number from IPSec header)       |
1209*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210*       |                              0x1                              |
1211*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1212*
1213*
1214*
1215* AAD:
1216*       AAD padded to 128 bits with 0
1217*       for example, assume AAD is a u32 vector
1218*
1219*       if AAD is 8 bytes:
1220*       AAD[3] = {A0, A1};
1221*       padded AAD in xmm register = {A1 A0 0 0}
1222*
1223*       0                   1                   2                   3
1224*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1225*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1226*       |                               SPI (A1)                        |
1227*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1228*       |                     32-bit Sequence Number (A0)               |
1229*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1230*       |                              0x0                              |
1231*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1232*
1233*                                       AAD Format with 32-bit Sequence Number
1234*
1235*       if AAD is 12 bytes:
1236*       AAD[3] = {A0, A1, A2};
1237*       padded AAD in xmm register = {A2 A1 A0 0}
1238*
1239*       0                   1                   2                   3
1240*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1241*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1242*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1243*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1244*       |                               SPI (A2)                        |
1245*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1246*       |                 64-bit Extended Sequence Number {A1,A0}       |
1247*       |                                                               |
1248*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1249*       |                              0x0                              |
1250*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1251*
1252*                        AAD Format with 64-bit Extended Sequence Number
1253*
1254* aadLen:
1255*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
1256*       The code supports 16 too but for other sizes, the code will fail.
1257*
1258* TLen:
1259*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
1260*       For other sizes, the code will fail.
1261*
1262* poly = x^128 + x^127 + x^126 + x^121 + 1
1263*
1264*****************************************************************************/
1265
1266ENTRY(aesni_gcm_dec)
1267	push	%r12
1268	push	%r13
1269	push	%r14
1270	mov	%rsp, %r14
1271/*
1272* states of %xmm registers %xmm6:%xmm15 not saved
1273* all %xmm registers are clobbered
1274*/
1275	sub	$VARIABLE_OFFSET, %rsp
1276	and	$~63, %rsp                        # align rsp to 64 bytes
1277	mov	%arg6, %r12
1278	movdqu	(%r12), %xmm13			  # %xmm13 = HashKey
1279        movdqa  SHUF_MASK(%rip), %xmm2
1280	PSHUFB_XMM %xmm2, %xmm13
1281
1282
1283# Precompute HashKey<<1 (mod poly) from the hash key (required for GHASH)
1284
1285	movdqa	%xmm13, %xmm2
1286	psllq	$1, %xmm13
1287	psrlq	$63, %xmm2
1288	movdqa	%xmm2, %xmm1
1289	pslldq	$8, %xmm2
1290	psrldq	$8, %xmm1
1291	por	%xmm2, %xmm13
1292
1293        # Reduction
1294
1295	pshufd	$0x24, %xmm1, %xmm2
1296	pcmpeqd TWOONE(%rip), %xmm2
1297	pand	POLY(%rip), %xmm2
1298	pxor	%xmm2, %xmm13     # %xmm13 holds the HashKey<<1 (mod poly)
1299
1300
1301        # Decrypt first few blocks
1302
1303	movdqa %xmm13, HashKey(%rsp)           # store HashKey<<1 (mod poly)
1304	mov %arg4, %r13    # save the number of bytes of plaintext/ciphertext
1305	and $-16, %r13                      # %r13 = %r13 - (%r13 mod 16)
1306	mov %r13, %r12
1307	and $(3<<4), %r12
1308	jz _initial_num_blocks_is_0_decrypt
1309	cmp $(2<<4), %r12
1310	jb _initial_num_blocks_is_1_decrypt
1311	je _initial_num_blocks_is_2_decrypt
1312_initial_num_blocks_is_3_decrypt:
1313	INITIAL_BLOCKS_DEC 3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1314%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, dec
1315	sub	$48, %r13
1316	jmp	_initial_blocks_decrypted
1317_initial_num_blocks_is_2_decrypt:
1318	INITIAL_BLOCKS_DEC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1319%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, dec
1320	sub	$32, %r13
1321	jmp	_initial_blocks_decrypted
1322_initial_num_blocks_is_1_decrypt:
1323	INITIAL_BLOCKS_DEC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1324%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, dec
1325	sub	$16, %r13
1326	jmp	_initial_blocks_decrypted
1327_initial_num_blocks_is_0_decrypt:
1328	INITIAL_BLOCKS_DEC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1329%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, dec
1330_initial_blocks_decrypted:
1331	cmp	$0, %r13
1332	je	_zero_cipher_left_decrypt
1333	sub	$64, %r13
1334	je	_four_cipher_left_decrypt
1335_decrypt_by_4:
1336	GHASH_4_ENCRYPT_4_PARALLEL_DEC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1337%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, dec
1338	add	$64, %r11
1339	sub	$64, %r13
1340	jne	_decrypt_by_4
1341_four_cipher_left_decrypt:
1342	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
1343%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
1344_zero_cipher_left_decrypt:
1345	mov	%arg4, %r13
1346	and	$15, %r13				# %r13 = arg4 (mod 16)
1347	je	_multiple_of_16_bytes_decrypt
1348
1349        # Handle the last <16 byte block seperately
1350
1351	paddd ONE(%rip), %xmm0         # increment CNT to get Yn
1352        movdqa SHUF_MASK(%rip), %xmm10
1353	PSHUFB_XMM %xmm10, %xmm0
1354
1355	ENCRYPT_SINGLE_BLOCK  %xmm0, %xmm1    # E(K, Yn)
1356	sub $16, %r11
1357	add %r13, %r11
1358	movdqu (%arg3,%r11,1), %xmm1   # recieve the last <16 byte block
1359	lea SHIFT_MASK+16(%rip), %r12
1360	sub %r13, %r12
1361# adjust the shuffle mask pointer to be able to shift 16-%r13 bytes
1362# (%r13 is the number of bytes in plaintext mod 16)
1363	movdqu (%r12), %xmm2           # get the appropriate shuffle mask
1364	PSHUFB_XMM %xmm2, %xmm1            # right shift 16-%r13 butes
1365
1366	movdqa  %xmm1, %xmm2
1367	pxor %xmm1, %xmm0            # Ciphertext XOR E(K, Yn)
1368	movdqu ALL_F-SHIFT_MASK(%r12), %xmm1
1369	# get the appropriate mask to mask out top 16-%r13 bytes of %xmm0
1370	pand %xmm1, %xmm0            # mask out top 16-%r13 bytes of %xmm0
1371	pand    %xmm1, %xmm2
1372        movdqa SHUF_MASK(%rip), %xmm10
1373	PSHUFB_XMM %xmm10 ,%xmm2
1374
1375	pxor %xmm2, %xmm8
1376	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
1377	          # GHASH computation for the last <16 byte block
1378	sub %r13, %r11
1379	add $16, %r11
1380
1381        # output %r13 bytes
1382	MOVQ_R64_XMM	%xmm0, %rax
1383	cmp	$8, %r13
1384	jle	_less_than_8_bytes_left_decrypt
1385	mov	%rax, (%arg2 , %r11, 1)
1386	add	$8, %r11
1387	psrldq	$8, %xmm0
1388	MOVQ_R64_XMM	%xmm0, %rax
1389	sub	$8, %r13
1390_less_than_8_bytes_left_decrypt:
1391	mov	%al,  (%arg2, %r11, 1)
1392	add	$1, %r11
1393	shr	$8, %rax
1394	sub	$1, %r13
1395	jne	_less_than_8_bytes_left_decrypt
1396_multiple_of_16_bytes_decrypt:
1397	mov	arg8, %r12		  # %r13 = aadLen (number of bytes)
1398	shl	$3, %r12		  # convert into number of bits
1399	movd	%r12d, %xmm15		  # len(A) in %xmm15
1400	shl	$3, %arg4		  # len(C) in bits (*128)
1401	MOVQ_R64_XMM	%arg4, %xmm1
1402	pslldq	$8, %xmm15		  # %xmm15 = len(A)||0x0000000000000000
1403	pxor	%xmm1, %xmm15		  # %xmm15 = len(A)||len(C)
1404	pxor	%xmm15, %xmm8
1405	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
1406	         # final GHASH computation
1407        movdqa SHUF_MASK(%rip), %xmm10
1408	PSHUFB_XMM %xmm10, %xmm8
1409
1410	mov	%arg5, %rax		  # %rax = *Y0
1411	movdqu	(%rax), %xmm0		  # %xmm0 = Y0
1412	ENCRYPT_SINGLE_BLOCK	%xmm0,  %xmm1	  # E(K, Y0)
1413	pxor	%xmm8, %xmm0
1414_return_T_decrypt:
1415	mov	arg9, %r10                # %r10 = authTag
1416	mov	arg10, %r11               # %r11 = auth_tag_len
1417	cmp	$16, %r11
1418	je	_T_16_decrypt
1419	cmp	$12, %r11
1420	je	_T_12_decrypt
1421_T_8_decrypt:
1422	MOVQ_R64_XMM	%xmm0, %rax
1423	mov	%rax, (%r10)
1424	jmp	_return_T_done_decrypt
1425_T_12_decrypt:
1426	MOVQ_R64_XMM	%xmm0, %rax
1427	mov	%rax, (%r10)
1428	psrldq	$8, %xmm0
1429	movd	%xmm0, %eax
1430	mov	%eax, 8(%r10)
1431	jmp	_return_T_done_decrypt
1432_T_16_decrypt:
1433	movdqu	%xmm0, (%r10)
1434_return_T_done_decrypt:
1435	mov	%r14, %rsp
1436	pop	%r14
1437	pop	%r13
1438	pop	%r12
1439	ret
1440
1441
1442/*****************************************************************************
1443* void aesni_gcm_enc(void *aes_ctx,      // AES Key schedule. Starts on a 16 byte boundary.
1444*                    u8 *out,            // Ciphertext output. Encrypt in-place is allowed.
1445*                    const u8 *in,       // Plaintext input
1446*                    u64 plaintext_len,  // Length of data in bytes for encryption.
1447*                    u8 *iv,             // Pre-counter block j0: 4 byte salt (from Security Association)
1448*                                        // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
1449*                                        // concatenated with 0x00000001. 16-byte aligned pointer.
1450*                    u8 *hash_subkey,    // H, the Hash sub key input. Data starts on a 16-byte boundary.
1451*                    const u8 *aad,      // Additional Authentication Data (AAD)
1452*                    u64 aad_len,        // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
1453*                    u8 *auth_tag,       // Authenticated Tag output.
1454*                    u64 auth_tag_len);  // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
1455*                                        // 12 or 8.
1456*
1457* Assumptions:
1458*
1459* keys:
1460*       keys are pre-expanded and aligned to 16 bytes. we are using the
1461*       first set of 11 keys in the data structure void *aes_ctx
1462*
1463*
1464* iv:
1465*       0                   1                   2                   3
1466*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1467*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1468*       |                             Salt  (From the SA)               |
1469*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1470*       |                     Initialization Vector                     |
1471*       |         (This is the sequence number from IPSec header)       |
1472*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1473*       |                              0x1                              |
1474*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1475*
1476*
1477*
1478* AAD:
1479*       AAD padded to 128 bits with 0
1480*       for example, assume AAD is a u32 vector
1481*
1482*       if AAD is 8 bytes:
1483*       AAD[3] = {A0, A1};
1484*       padded AAD in xmm register = {A1 A0 0 0}
1485*
1486*       0                   1                   2                   3
1487*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1488*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1489*       |                               SPI (A1)                        |
1490*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1491*       |                     32-bit Sequence Number (A0)               |
1492*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1493*       |                              0x0                              |
1494*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1495*
1496*                                 AAD Format with 32-bit Sequence Number
1497*
1498*       if AAD is 12 bytes:
1499*       AAD[3] = {A0, A1, A2};
1500*       padded AAD in xmm register = {A2 A1 A0 0}
1501*
1502*       0                   1                   2                   3
1503*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1504*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1505*       |                               SPI (A2)                        |
1506*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1507*       |                 64-bit Extended Sequence Number {A1,A0}       |
1508*       |                                                               |
1509*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1510*       |                              0x0                              |
1511*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1512*
1513*                         AAD Format with 64-bit Extended Sequence Number
1514*
1515* aadLen:
1516*       from the definition of the spec, aadLen can only be 8 or 12 bytes.
1517*       The code supports 16 too but for other sizes, the code will fail.
1518*
1519* TLen:
1520*       from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
1521*       For other sizes, the code will fail.
1522*
1523* poly = x^128 + x^127 + x^126 + x^121 + 1
1524***************************************************************************/
1525ENTRY(aesni_gcm_enc)
1526	push	%r12
1527	push	%r13
1528	push	%r14
1529	mov	%rsp, %r14
1530#
1531# states of %xmm registers %xmm6:%xmm15 not saved
1532# all %xmm registers are clobbered
1533#
1534	sub	$VARIABLE_OFFSET, %rsp
1535	and	$~63, %rsp
1536	mov	%arg6, %r12
1537	movdqu	(%r12), %xmm13
1538        movdqa  SHUF_MASK(%rip), %xmm2
1539	PSHUFB_XMM %xmm2, %xmm13
1540
1541
1542# precompute HashKey<<1 mod poly from the HashKey (required for GHASH)
1543
1544	movdqa	%xmm13, %xmm2
1545	psllq	$1, %xmm13
1546	psrlq	$63, %xmm2
1547	movdqa	%xmm2, %xmm1
1548	pslldq	$8, %xmm2
1549	psrldq	$8, %xmm1
1550	por	%xmm2, %xmm13
1551
1552        # reduce HashKey<<1
1553
1554	pshufd	$0x24, %xmm1, %xmm2
1555	pcmpeqd TWOONE(%rip), %xmm2
1556	pand	POLY(%rip), %xmm2
1557	pxor	%xmm2, %xmm13
1558	movdqa	%xmm13, HashKey(%rsp)
1559	mov	%arg4, %r13            # %xmm13 holds HashKey<<1 (mod poly)
1560	and	$-16, %r13
1561	mov	%r13, %r12
1562
1563        # Encrypt first few blocks
1564
1565	and	$(3<<4), %r12
1566	jz	_initial_num_blocks_is_0_encrypt
1567	cmp	$(2<<4), %r12
1568	jb	_initial_num_blocks_is_1_encrypt
1569	je	_initial_num_blocks_is_2_encrypt
1570_initial_num_blocks_is_3_encrypt:
1571	INITIAL_BLOCKS_ENC	3, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1572%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, enc
1573	sub	$48, %r13
1574	jmp	_initial_blocks_encrypted
1575_initial_num_blocks_is_2_encrypt:
1576	INITIAL_BLOCKS_ENC	2, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1577%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, enc
1578	sub	$32, %r13
1579	jmp	_initial_blocks_encrypted
1580_initial_num_blocks_is_1_encrypt:
1581	INITIAL_BLOCKS_ENC	1, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1582%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, enc
1583	sub	$16, %r13
1584	jmp	_initial_blocks_encrypted
1585_initial_num_blocks_is_0_encrypt:
1586	INITIAL_BLOCKS_ENC	0, %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
1587%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, enc
1588_initial_blocks_encrypted:
1589
1590        # Main loop - Encrypt remaining blocks
1591
1592	cmp	$0, %r13
1593	je	_zero_cipher_left_encrypt
1594	sub	$64, %r13
1595	je	_four_cipher_left_encrypt
1596_encrypt_by_4_encrypt:
1597	GHASH_4_ENCRYPT_4_PARALLEL_ENC	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, \
1598%xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, enc
1599	add	$64, %r11
1600	sub	$64, %r13
1601	jne	_encrypt_by_4_encrypt
1602_four_cipher_left_encrypt:
1603	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
1604%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
1605_zero_cipher_left_encrypt:
1606	mov	%arg4, %r13
1607	and	$15, %r13			# %r13 = arg4 (mod 16)
1608	je	_multiple_of_16_bytes_encrypt
1609
1610         # Handle the last <16 Byte block seperately
1611	paddd ONE(%rip), %xmm0                # INCR CNT to get Yn
1612        movdqa SHUF_MASK(%rip), %xmm10
1613	PSHUFB_XMM %xmm10, %xmm0
1614
1615	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm1        # Encrypt(K, Yn)
1616	sub $16, %r11
1617	add %r13, %r11
1618	movdqu (%arg3,%r11,1), %xmm1     # receive the last <16 byte blocks
1619	lea SHIFT_MASK+16(%rip), %r12
1620	sub %r13, %r12
1621	# adjust the shuffle mask pointer to be able to shift 16-r13 bytes
1622	# (%r13 is the number of bytes in plaintext mod 16)
1623	movdqu	(%r12), %xmm2           # get the appropriate shuffle mask
1624	PSHUFB_XMM	%xmm2, %xmm1            # shift right 16-r13 byte
1625	pxor	%xmm1, %xmm0            # Plaintext XOR Encrypt(K, Yn)
1626	movdqu	ALL_F-SHIFT_MASK(%r12), %xmm1
1627	# get the appropriate mask to mask out top 16-r13 bytes of xmm0
1628	pand	%xmm1, %xmm0            # mask out top 16-r13 bytes of xmm0
1629        movdqa SHUF_MASK(%rip), %xmm10
1630	PSHUFB_XMM %xmm10,%xmm0
1631
1632	pxor	%xmm0, %xmm8
1633	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
1634	# GHASH computation for the last <16 byte block
1635	sub	%r13, %r11
1636	add	$16, %r11
1637	PSHUFB_XMM %xmm10, %xmm1
1638
1639	# shuffle xmm0 back to output as ciphertext
1640
1641        # Output %r13 bytes
1642	MOVQ_R64_XMM %xmm0, %rax
1643	cmp $8, %r13
1644	jle _less_than_8_bytes_left_encrypt
1645	mov %rax, (%arg2 , %r11, 1)
1646	add $8, %r11
1647	psrldq $8, %xmm0
1648	MOVQ_R64_XMM %xmm0, %rax
1649	sub $8, %r13
1650_less_than_8_bytes_left_encrypt:
1651	mov %al,  (%arg2, %r11, 1)
1652	add $1, %r11
1653	shr $8, %rax
1654	sub $1, %r13
1655	jne _less_than_8_bytes_left_encrypt
1656_multiple_of_16_bytes_encrypt:
1657	mov	arg8, %r12    # %r12 = addLen (number of bytes)
1658	shl	$3, %r12
1659	movd	%r12d, %xmm15       # len(A) in %xmm15
1660	shl	$3, %arg4               # len(C) in bits (*128)
1661	MOVQ_R64_XMM	%arg4, %xmm1
1662	pslldq	$8, %xmm15          # %xmm15 = len(A)||0x0000000000000000
1663	pxor	%xmm1, %xmm15       # %xmm15 = len(A)||len(C)
1664	pxor	%xmm15, %xmm8
1665	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
1666	# final GHASH computation
1667        movdqa SHUF_MASK(%rip), %xmm10
1668	PSHUFB_XMM %xmm10, %xmm8         # perform a 16 byte swap
1669
1670	mov	%arg5, %rax		       # %rax  = *Y0
1671	movdqu	(%rax), %xmm0		       # %xmm0 = Y0
1672	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm15         # Encrypt(K, Y0)
1673	pxor	%xmm8, %xmm0
1674_return_T_encrypt:
1675	mov	arg9, %r10                     # %r10 = authTag
1676	mov	arg10, %r11                    # %r11 = auth_tag_len
1677	cmp	$16, %r11
1678	je	_T_16_encrypt
1679	cmp	$12, %r11
1680	je	_T_12_encrypt
1681_T_8_encrypt:
1682	MOVQ_R64_XMM	%xmm0, %rax
1683	mov	%rax, (%r10)
1684	jmp	_return_T_done_encrypt
1685_T_12_encrypt:
1686	MOVQ_R64_XMM	%xmm0, %rax
1687	mov	%rax, (%r10)
1688	psrldq	$8, %xmm0
1689	movd	%xmm0, %eax
1690	mov	%eax, 8(%r10)
1691	jmp	_return_T_done_encrypt
1692_T_16_encrypt:
1693	movdqu	%xmm0, (%r10)
1694_return_T_done_encrypt:
1695	mov	%r14, %rsp
1696	pop	%r14
1697	pop	%r13
1698	pop	%r12
1699	ret
1700
1701#endif
1702
1703
1704_key_expansion_128:
1705_key_expansion_256a:
1706	pshufd $0b11111111, %xmm1, %xmm1
1707	shufps $0b00010000, %xmm0, %xmm4
1708	pxor %xmm4, %xmm0
1709	shufps $0b10001100, %xmm0, %xmm4
1710	pxor %xmm4, %xmm0
1711	pxor %xmm1, %xmm0
1712	movaps %xmm0, (TKEYP)
1713	add $0x10, TKEYP
1714	ret
1715
1716.align 4
1717_key_expansion_192a:
1718	pshufd $0b01010101, %xmm1, %xmm1
1719	shufps $0b00010000, %xmm0, %xmm4
1720	pxor %xmm4, %xmm0
1721	shufps $0b10001100, %xmm0, %xmm4
1722	pxor %xmm4, %xmm0
1723	pxor %xmm1, %xmm0
1724
1725	movaps %xmm2, %xmm5
1726	movaps %xmm2, %xmm6
1727	pslldq $4, %xmm5
1728	pshufd $0b11111111, %xmm0, %xmm3
1729	pxor %xmm3, %xmm2
1730	pxor %xmm5, %xmm2
1731
1732	movaps %xmm0, %xmm1
1733	shufps $0b01000100, %xmm0, %xmm6
1734	movaps %xmm6, (TKEYP)
1735	shufps $0b01001110, %xmm2, %xmm1
1736	movaps %xmm1, 0x10(TKEYP)
1737	add $0x20, TKEYP
1738	ret
1739
1740.align 4
1741_key_expansion_192b:
1742	pshufd $0b01010101, %xmm1, %xmm1
1743	shufps $0b00010000, %xmm0, %xmm4
1744	pxor %xmm4, %xmm0
1745	shufps $0b10001100, %xmm0, %xmm4
1746	pxor %xmm4, %xmm0
1747	pxor %xmm1, %xmm0
1748
1749	movaps %xmm2, %xmm5
1750	pslldq $4, %xmm5
1751	pshufd $0b11111111, %xmm0, %xmm3
1752	pxor %xmm3, %xmm2
1753	pxor %xmm5, %xmm2
1754
1755	movaps %xmm0, (TKEYP)
1756	add $0x10, TKEYP
1757	ret
1758
1759.align 4
1760_key_expansion_256b:
1761	pshufd $0b10101010, %xmm1, %xmm1
1762	shufps $0b00010000, %xmm2, %xmm4
1763	pxor %xmm4, %xmm2
1764	shufps $0b10001100, %xmm2, %xmm4
1765	pxor %xmm4, %xmm2
1766	pxor %xmm1, %xmm2
1767	movaps %xmm2, (TKEYP)
1768	add $0x10, TKEYP
1769	ret
1770
1771/*
1772 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
1773 *                   unsigned int key_len)
1774 */
1775ENTRY(aesni_set_key)
1776#ifndef __x86_64__
1777	pushl KEYP
1778	movl 8(%esp), KEYP		# ctx
1779	movl 12(%esp), UKEYP		# in_key
1780	movl 16(%esp), %edx		# key_len
1781#endif
1782	movups (UKEYP), %xmm0		# user key (first 16 bytes)
1783	movaps %xmm0, (KEYP)
1784	lea 0x10(KEYP), TKEYP		# key addr
1785	movl %edx, 480(KEYP)
1786	pxor %xmm4, %xmm4		# xmm4 is assumed 0 in _key_expansion_x
1787	cmp $24, %dl
1788	jb .Lenc_key128
1789	je .Lenc_key192
1790	movups 0x10(UKEYP), %xmm2	# other user key
1791	movaps %xmm2, (TKEYP)
1792	add $0x10, TKEYP
1793	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1794	call _key_expansion_256a
1795	AESKEYGENASSIST 0x1 %xmm0 %xmm1
1796	call _key_expansion_256b
1797	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1798	call _key_expansion_256a
1799	AESKEYGENASSIST 0x2 %xmm0 %xmm1
1800	call _key_expansion_256b
1801	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1802	call _key_expansion_256a
1803	AESKEYGENASSIST 0x4 %xmm0 %xmm1
1804	call _key_expansion_256b
1805	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1806	call _key_expansion_256a
1807	AESKEYGENASSIST 0x8 %xmm0 %xmm1
1808	call _key_expansion_256b
1809	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1810	call _key_expansion_256a
1811	AESKEYGENASSIST 0x10 %xmm0 %xmm1
1812	call _key_expansion_256b
1813	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1814	call _key_expansion_256a
1815	AESKEYGENASSIST 0x20 %xmm0 %xmm1
1816	call _key_expansion_256b
1817	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1818	call _key_expansion_256a
1819	jmp .Ldec_key
1820.Lenc_key192:
1821	movq 0x10(UKEYP), %xmm2		# other user key
1822	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1823	call _key_expansion_192a
1824	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1825	call _key_expansion_192b
1826	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1827	call _key_expansion_192a
1828	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1829	call _key_expansion_192b
1830	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1831	call _key_expansion_192a
1832	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1833	call _key_expansion_192b
1834	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1835	call _key_expansion_192a
1836	AESKEYGENASSIST 0x80 %xmm2 %xmm1	# round 8
1837	call _key_expansion_192b
1838	jmp .Ldec_key
1839.Lenc_key128:
1840	AESKEYGENASSIST 0x1 %xmm0 %xmm1		# round 1
1841	call _key_expansion_128
1842	AESKEYGENASSIST 0x2 %xmm0 %xmm1		# round 2
1843	call _key_expansion_128
1844	AESKEYGENASSIST 0x4 %xmm0 %xmm1		# round 3
1845	call _key_expansion_128
1846	AESKEYGENASSIST 0x8 %xmm0 %xmm1		# round 4
1847	call _key_expansion_128
1848	AESKEYGENASSIST 0x10 %xmm0 %xmm1	# round 5
1849	call _key_expansion_128
1850	AESKEYGENASSIST 0x20 %xmm0 %xmm1	# round 6
1851	call _key_expansion_128
1852	AESKEYGENASSIST 0x40 %xmm0 %xmm1	# round 7
1853	call _key_expansion_128
1854	AESKEYGENASSIST 0x80 %xmm0 %xmm1	# round 8
1855	call _key_expansion_128
1856	AESKEYGENASSIST 0x1b %xmm0 %xmm1	# round 9
1857	call _key_expansion_128
1858	AESKEYGENASSIST 0x36 %xmm0 %xmm1	# round 10
1859	call _key_expansion_128
1860.Ldec_key:
1861	sub $0x10, TKEYP
1862	movaps (KEYP), %xmm0
1863	movaps (TKEYP), %xmm1
1864	movaps %xmm0, 240(TKEYP)
1865	movaps %xmm1, 240(KEYP)
1866	add $0x10, KEYP
1867	lea 240-16(TKEYP), UKEYP
1868.align 4
1869.Ldec_key_loop:
1870	movaps (KEYP), %xmm0
1871	AESIMC %xmm0 %xmm1
1872	movaps %xmm1, (UKEYP)
1873	add $0x10, KEYP
1874	sub $0x10, UKEYP
1875	cmp TKEYP, KEYP
1876	jb .Ldec_key_loop
1877	xor AREG, AREG
1878#ifndef __x86_64__
1879	popl KEYP
1880#endif
1881	ret
1882
1883/*
1884 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
1885 */
1886ENTRY(aesni_enc)
1887#ifndef __x86_64__
1888	pushl KEYP
1889	pushl KLEN
1890	movl 12(%esp), KEYP
1891	movl 16(%esp), OUTP
1892	movl 20(%esp), INP
1893#endif
1894	movl 480(KEYP), KLEN		# key length
1895	movups (INP), STATE		# input
1896	call _aesni_enc1
1897	movups STATE, (OUTP)		# output
1898#ifndef __x86_64__
1899	popl KLEN
1900	popl KEYP
1901#endif
1902	ret
1903
1904/*
1905 * _aesni_enc1:		internal ABI
1906 * input:
1907 *	KEYP:		key struct pointer
1908 *	KLEN:		round count
1909 *	STATE:		initial state (input)
1910 * output:
1911 *	STATE:		finial state (output)
1912 * changed:
1913 *	KEY
1914 *	TKEYP (T1)
1915 */
1916.align 4
1917_aesni_enc1:
1918	movaps (KEYP), KEY		# key
1919	mov KEYP, TKEYP
1920	pxor KEY, STATE		# round 0
1921	add $0x30, TKEYP
1922	cmp $24, KLEN
1923	jb .Lenc128
1924	lea 0x20(TKEYP), TKEYP
1925	je .Lenc192
1926	add $0x20, TKEYP
1927	movaps -0x60(TKEYP), KEY
1928	AESENC KEY STATE
1929	movaps -0x50(TKEYP), KEY
1930	AESENC KEY STATE
1931.align 4
1932.Lenc192:
1933	movaps -0x40(TKEYP), KEY
1934	AESENC KEY STATE
1935	movaps -0x30(TKEYP), KEY
1936	AESENC KEY STATE
1937.align 4
1938.Lenc128:
1939	movaps -0x20(TKEYP), KEY
1940	AESENC KEY STATE
1941	movaps -0x10(TKEYP), KEY
1942	AESENC KEY STATE
1943	movaps (TKEYP), KEY
1944	AESENC KEY STATE
1945	movaps 0x10(TKEYP), KEY
1946	AESENC KEY STATE
1947	movaps 0x20(TKEYP), KEY
1948	AESENC KEY STATE
1949	movaps 0x30(TKEYP), KEY
1950	AESENC KEY STATE
1951	movaps 0x40(TKEYP), KEY
1952	AESENC KEY STATE
1953	movaps 0x50(TKEYP), KEY
1954	AESENC KEY STATE
1955	movaps 0x60(TKEYP), KEY
1956	AESENC KEY STATE
1957	movaps 0x70(TKEYP), KEY
1958	AESENCLAST KEY STATE
1959	ret
1960
1961/*
1962 * _aesni_enc4:	internal ABI
1963 * input:
1964 *	KEYP:		key struct pointer
1965 *	KLEN:		round count
1966 *	STATE1:		initial state (input)
1967 *	STATE2
1968 *	STATE3
1969 *	STATE4
1970 * output:
1971 *	STATE1:		finial state (output)
1972 *	STATE2
1973 *	STATE3
1974 *	STATE4
1975 * changed:
1976 *	KEY
1977 *	TKEYP (T1)
1978 */
1979.align 4
1980_aesni_enc4:
1981	movaps (KEYP), KEY		# key
1982	mov KEYP, TKEYP
1983	pxor KEY, STATE1		# round 0
1984	pxor KEY, STATE2
1985	pxor KEY, STATE3
1986	pxor KEY, STATE4
1987	add $0x30, TKEYP
1988	cmp $24, KLEN
1989	jb .L4enc128
1990	lea 0x20(TKEYP), TKEYP
1991	je .L4enc192
1992	add $0x20, TKEYP
1993	movaps -0x60(TKEYP), KEY
1994	AESENC KEY STATE1
1995	AESENC KEY STATE2
1996	AESENC KEY STATE3
1997	AESENC KEY STATE4
1998	movaps -0x50(TKEYP), KEY
1999	AESENC KEY STATE1
2000	AESENC KEY STATE2
2001	AESENC KEY STATE3
2002	AESENC KEY STATE4
2003#.align 4
2004.L4enc192:
2005	movaps -0x40(TKEYP), KEY
2006	AESENC KEY STATE1
2007	AESENC KEY STATE2
2008	AESENC KEY STATE3
2009	AESENC KEY STATE4
2010	movaps -0x30(TKEYP), KEY
2011	AESENC KEY STATE1
2012	AESENC KEY STATE2
2013	AESENC KEY STATE3
2014	AESENC KEY STATE4
2015#.align 4
2016.L4enc128:
2017	movaps -0x20(TKEYP), KEY
2018	AESENC KEY STATE1
2019	AESENC KEY STATE2
2020	AESENC KEY STATE3
2021	AESENC KEY STATE4
2022	movaps -0x10(TKEYP), KEY
2023	AESENC KEY STATE1
2024	AESENC KEY STATE2
2025	AESENC KEY STATE3
2026	AESENC KEY STATE4
2027	movaps (TKEYP), KEY
2028	AESENC KEY STATE1
2029	AESENC KEY STATE2
2030	AESENC KEY STATE3
2031	AESENC KEY STATE4
2032	movaps 0x10(TKEYP), KEY
2033	AESENC KEY STATE1
2034	AESENC KEY STATE2
2035	AESENC KEY STATE3
2036	AESENC KEY STATE4
2037	movaps 0x20(TKEYP), KEY
2038	AESENC KEY STATE1
2039	AESENC KEY STATE2
2040	AESENC KEY STATE3
2041	AESENC KEY STATE4
2042	movaps 0x30(TKEYP), KEY
2043	AESENC KEY STATE1
2044	AESENC KEY STATE2
2045	AESENC KEY STATE3
2046	AESENC KEY STATE4
2047	movaps 0x40(TKEYP), KEY
2048	AESENC KEY STATE1
2049	AESENC KEY STATE2
2050	AESENC KEY STATE3
2051	AESENC KEY STATE4
2052	movaps 0x50(TKEYP), KEY
2053	AESENC KEY STATE1
2054	AESENC KEY STATE2
2055	AESENC KEY STATE3
2056	AESENC KEY STATE4
2057	movaps 0x60(TKEYP), KEY
2058	AESENC KEY STATE1
2059	AESENC KEY STATE2
2060	AESENC KEY STATE3
2061	AESENC KEY STATE4
2062	movaps 0x70(TKEYP), KEY
2063	AESENCLAST KEY STATE1		# last round
2064	AESENCLAST KEY STATE2
2065	AESENCLAST KEY STATE3
2066	AESENCLAST KEY STATE4
2067	ret
2068
2069/*
2070 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
2071 */
2072ENTRY(aesni_dec)
2073#ifndef __x86_64__
2074	pushl KEYP
2075	pushl KLEN
2076	movl 12(%esp), KEYP
2077	movl 16(%esp), OUTP
2078	movl 20(%esp), INP
2079#endif
2080	mov 480(KEYP), KLEN		# key length
2081	add $240, KEYP
2082	movups (INP), STATE		# input
2083	call _aesni_dec1
2084	movups STATE, (OUTP)		#output
2085#ifndef __x86_64__
2086	popl KLEN
2087	popl KEYP
2088#endif
2089	ret
2090
2091/*
2092 * _aesni_dec1:		internal ABI
2093 * input:
2094 *	KEYP:		key struct pointer
2095 *	KLEN:		key length
2096 *	STATE:		initial state (input)
2097 * output:
2098 *	STATE:		finial state (output)
2099 * changed:
2100 *	KEY
2101 *	TKEYP (T1)
2102 */
2103.align 4
2104_aesni_dec1:
2105	movaps (KEYP), KEY		# key
2106	mov KEYP, TKEYP
2107	pxor KEY, STATE		# round 0
2108	add $0x30, TKEYP
2109	cmp $24, KLEN
2110	jb .Ldec128
2111	lea 0x20(TKEYP), TKEYP
2112	je .Ldec192
2113	add $0x20, TKEYP
2114	movaps -0x60(TKEYP), KEY
2115	AESDEC KEY STATE
2116	movaps -0x50(TKEYP), KEY
2117	AESDEC KEY STATE
2118.align 4
2119.Ldec192:
2120	movaps -0x40(TKEYP), KEY
2121	AESDEC KEY STATE
2122	movaps -0x30(TKEYP), KEY
2123	AESDEC KEY STATE
2124.align 4
2125.Ldec128:
2126	movaps -0x20(TKEYP), KEY
2127	AESDEC KEY STATE
2128	movaps -0x10(TKEYP), KEY
2129	AESDEC KEY STATE
2130	movaps (TKEYP), KEY
2131	AESDEC KEY STATE
2132	movaps 0x10(TKEYP), KEY
2133	AESDEC KEY STATE
2134	movaps 0x20(TKEYP), KEY
2135	AESDEC KEY STATE
2136	movaps 0x30(TKEYP), KEY
2137	AESDEC KEY STATE
2138	movaps 0x40(TKEYP), KEY
2139	AESDEC KEY STATE
2140	movaps 0x50(TKEYP), KEY
2141	AESDEC KEY STATE
2142	movaps 0x60(TKEYP), KEY
2143	AESDEC KEY STATE
2144	movaps 0x70(TKEYP), KEY
2145	AESDECLAST KEY STATE
2146	ret
2147
2148/*
2149 * _aesni_dec4:	internal ABI
2150 * input:
2151 *	KEYP:		key struct pointer
2152 *	KLEN:		key length
2153 *	STATE1:		initial state (input)
2154 *	STATE2
2155 *	STATE3
2156 *	STATE4
2157 * output:
2158 *	STATE1:		finial state (output)
2159 *	STATE2
2160 *	STATE3
2161 *	STATE4
2162 * changed:
2163 *	KEY
2164 *	TKEYP (T1)
2165 */
2166.align 4
2167_aesni_dec4:
2168	movaps (KEYP), KEY		# key
2169	mov KEYP, TKEYP
2170	pxor KEY, STATE1		# round 0
2171	pxor KEY, STATE2
2172	pxor KEY, STATE3
2173	pxor KEY, STATE4
2174	add $0x30, TKEYP
2175	cmp $24, KLEN
2176	jb .L4dec128
2177	lea 0x20(TKEYP), TKEYP
2178	je .L4dec192
2179	add $0x20, TKEYP
2180	movaps -0x60(TKEYP), KEY
2181	AESDEC KEY STATE1
2182	AESDEC KEY STATE2
2183	AESDEC KEY STATE3
2184	AESDEC KEY STATE4
2185	movaps -0x50(TKEYP), KEY
2186	AESDEC KEY STATE1
2187	AESDEC KEY STATE2
2188	AESDEC KEY STATE3
2189	AESDEC KEY STATE4
2190.align 4
2191.L4dec192:
2192	movaps -0x40(TKEYP), KEY
2193	AESDEC KEY STATE1
2194	AESDEC KEY STATE2
2195	AESDEC KEY STATE3
2196	AESDEC KEY STATE4
2197	movaps -0x30(TKEYP), KEY
2198	AESDEC KEY STATE1
2199	AESDEC KEY STATE2
2200	AESDEC KEY STATE3
2201	AESDEC KEY STATE4
2202.align 4
2203.L4dec128:
2204	movaps -0x20(TKEYP), KEY
2205	AESDEC KEY STATE1
2206	AESDEC KEY STATE2
2207	AESDEC KEY STATE3
2208	AESDEC KEY STATE4
2209	movaps -0x10(TKEYP), KEY
2210	AESDEC KEY STATE1
2211	AESDEC KEY STATE2
2212	AESDEC KEY STATE3
2213	AESDEC KEY STATE4
2214	movaps (TKEYP), KEY
2215	AESDEC KEY STATE1
2216	AESDEC KEY STATE2
2217	AESDEC KEY STATE3
2218	AESDEC KEY STATE4
2219	movaps 0x10(TKEYP), KEY
2220	AESDEC KEY STATE1
2221	AESDEC KEY STATE2
2222	AESDEC KEY STATE3
2223	AESDEC KEY STATE4
2224	movaps 0x20(TKEYP), KEY
2225	AESDEC KEY STATE1
2226	AESDEC KEY STATE2
2227	AESDEC KEY STATE3
2228	AESDEC KEY STATE4
2229	movaps 0x30(TKEYP), KEY
2230	AESDEC KEY STATE1
2231	AESDEC KEY STATE2
2232	AESDEC KEY STATE3
2233	AESDEC KEY STATE4
2234	movaps 0x40(TKEYP), KEY
2235	AESDEC KEY STATE1
2236	AESDEC KEY STATE2
2237	AESDEC KEY STATE3
2238	AESDEC KEY STATE4
2239	movaps 0x50(TKEYP), KEY
2240	AESDEC KEY STATE1
2241	AESDEC KEY STATE2
2242	AESDEC KEY STATE3
2243	AESDEC KEY STATE4
2244	movaps 0x60(TKEYP), KEY
2245	AESDEC KEY STATE1
2246	AESDEC KEY STATE2
2247	AESDEC KEY STATE3
2248	AESDEC KEY STATE4
2249	movaps 0x70(TKEYP), KEY
2250	AESDECLAST KEY STATE1		# last round
2251	AESDECLAST KEY STATE2
2252	AESDECLAST KEY STATE3
2253	AESDECLAST KEY STATE4
2254	ret
2255
2256/*
2257 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2258 *		      size_t len)
2259 */
2260ENTRY(aesni_ecb_enc)
2261#ifndef __x86_64__
2262	pushl LEN
2263	pushl KEYP
2264	pushl KLEN
2265	movl 16(%esp), KEYP
2266	movl 20(%esp), OUTP
2267	movl 24(%esp), INP
2268	movl 28(%esp), LEN
2269#endif
2270	test LEN, LEN		# check length
2271	jz .Lecb_enc_ret
2272	mov 480(KEYP), KLEN
2273	cmp $16, LEN
2274	jb .Lecb_enc_ret
2275	cmp $64, LEN
2276	jb .Lecb_enc_loop1
2277.align 4
2278.Lecb_enc_loop4:
2279	movups (INP), STATE1
2280	movups 0x10(INP), STATE2
2281	movups 0x20(INP), STATE3
2282	movups 0x30(INP), STATE4
2283	call _aesni_enc4
2284	movups STATE1, (OUTP)
2285	movups STATE2, 0x10(OUTP)
2286	movups STATE3, 0x20(OUTP)
2287	movups STATE4, 0x30(OUTP)
2288	sub $64, LEN
2289	add $64, INP
2290	add $64, OUTP
2291	cmp $64, LEN
2292	jge .Lecb_enc_loop4
2293	cmp $16, LEN
2294	jb .Lecb_enc_ret
2295.align 4
2296.Lecb_enc_loop1:
2297	movups (INP), STATE1
2298	call _aesni_enc1
2299	movups STATE1, (OUTP)
2300	sub $16, LEN
2301	add $16, INP
2302	add $16, OUTP
2303	cmp $16, LEN
2304	jge .Lecb_enc_loop1
2305.Lecb_enc_ret:
2306#ifndef __x86_64__
2307	popl KLEN
2308	popl KEYP
2309	popl LEN
2310#endif
2311	ret
2312
2313/*
2314 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2315 *		      size_t len);
2316 */
2317ENTRY(aesni_ecb_dec)
2318#ifndef __x86_64__
2319	pushl LEN
2320	pushl KEYP
2321	pushl KLEN
2322	movl 16(%esp), KEYP
2323	movl 20(%esp), OUTP
2324	movl 24(%esp), INP
2325	movl 28(%esp), LEN
2326#endif
2327	test LEN, LEN
2328	jz .Lecb_dec_ret
2329	mov 480(KEYP), KLEN
2330	add $240, KEYP
2331	cmp $16, LEN
2332	jb .Lecb_dec_ret
2333	cmp $64, LEN
2334	jb .Lecb_dec_loop1
2335.align 4
2336.Lecb_dec_loop4:
2337	movups (INP), STATE1
2338	movups 0x10(INP), STATE2
2339	movups 0x20(INP), STATE3
2340	movups 0x30(INP), STATE4
2341	call _aesni_dec4
2342	movups STATE1, (OUTP)
2343	movups STATE2, 0x10(OUTP)
2344	movups STATE3, 0x20(OUTP)
2345	movups STATE4, 0x30(OUTP)
2346	sub $64, LEN
2347	add $64, INP
2348	add $64, OUTP
2349	cmp $64, LEN
2350	jge .Lecb_dec_loop4
2351	cmp $16, LEN
2352	jb .Lecb_dec_ret
2353.align 4
2354.Lecb_dec_loop1:
2355	movups (INP), STATE1
2356	call _aesni_dec1
2357	movups STATE1, (OUTP)
2358	sub $16, LEN
2359	add $16, INP
2360	add $16, OUTP
2361	cmp $16, LEN
2362	jge .Lecb_dec_loop1
2363.Lecb_dec_ret:
2364#ifndef __x86_64__
2365	popl KLEN
2366	popl KEYP
2367	popl LEN
2368#endif
2369	ret
2370
2371/*
2372 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2373 *		      size_t len, u8 *iv)
2374 */
2375ENTRY(aesni_cbc_enc)
2376#ifndef __x86_64__
2377	pushl IVP
2378	pushl LEN
2379	pushl KEYP
2380	pushl KLEN
2381	movl 20(%esp), KEYP
2382	movl 24(%esp), OUTP
2383	movl 28(%esp), INP
2384	movl 32(%esp), LEN
2385	movl 36(%esp), IVP
2386#endif
2387	cmp $16, LEN
2388	jb .Lcbc_enc_ret
2389	mov 480(KEYP), KLEN
2390	movups (IVP), STATE	# load iv as initial state
2391.align 4
2392.Lcbc_enc_loop:
2393	movups (INP), IN	# load input
2394	pxor IN, STATE
2395	call _aesni_enc1
2396	movups STATE, (OUTP)	# store output
2397	sub $16, LEN
2398	add $16, INP
2399	add $16, OUTP
2400	cmp $16, LEN
2401	jge .Lcbc_enc_loop
2402	movups STATE, (IVP)
2403.Lcbc_enc_ret:
2404#ifndef __x86_64__
2405	popl KLEN
2406	popl KEYP
2407	popl LEN
2408	popl IVP
2409#endif
2410	ret
2411
2412/*
2413 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2414 *		      size_t len, u8 *iv)
2415 */
2416ENTRY(aesni_cbc_dec)
2417#ifndef __x86_64__
2418	pushl IVP
2419	pushl LEN
2420	pushl KEYP
2421	pushl KLEN
2422	movl 20(%esp), KEYP
2423	movl 24(%esp), OUTP
2424	movl 28(%esp), INP
2425	movl 32(%esp), LEN
2426	movl 36(%esp), IVP
2427#endif
2428	cmp $16, LEN
2429	jb .Lcbc_dec_just_ret
2430	mov 480(KEYP), KLEN
2431	add $240, KEYP
2432	movups (IVP), IV
2433	cmp $64, LEN
2434	jb .Lcbc_dec_loop1
2435.align 4
2436.Lcbc_dec_loop4:
2437	movups (INP), IN1
2438	movaps IN1, STATE1
2439	movups 0x10(INP), IN2
2440	movaps IN2, STATE2
2441#ifdef __x86_64__
2442	movups 0x20(INP), IN3
2443	movaps IN3, STATE3
2444	movups 0x30(INP), IN4
2445	movaps IN4, STATE4
2446#else
2447	movups 0x20(INP), IN1
2448	movaps IN1, STATE3
2449	movups 0x30(INP), IN2
2450	movaps IN2, STATE4
2451#endif
2452	call _aesni_dec4
2453	pxor IV, STATE1
2454#ifdef __x86_64__
2455	pxor IN1, STATE2
2456	pxor IN2, STATE3
2457	pxor IN3, STATE4
2458	movaps IN4, IV
2459#else
2460	pxor (INP), STATE2
2461	pxor 0x10(INP), STATE3
2462	pxor IN1, STATE4
2463	movaps IN2, IV
2464#endif
2465	movups STATE1, (OUTP)
2466	movups STATE2, 0x10(OUTP)
2467	movups STATE3, 0x20(OUTP)
2468	movups STATE4, 0x30(OUTP)
2469	sub $64, LEN
2470	add $64, INP
2471	add $64, OUTP
2472	cmp $64, LEN
2473	jge .Lcbc_dec_loop4
2474	cmp $16, LEN
2475	jb .Lcbc_dec_ret
2476.align 4
2477.Lcbc_dec_loop1:
2478	movups (INP), IN
2479	movaps IN, STATE
2480	call _aesni_dec1
2481	pxor IV, STATE
2482	movups STATE, (OUTP)
2483	movaps IN, IV
2484	sub $16, LEN
2485	add $16, INP
2486	add $16, OUTP
2487	cmp $16, LEN
2488	jge .Lcbc_dec_loop1
2489.Lcbc_dec_ret:
2490	movups IV, (IVP)
2491.Lcbc_dec_just_ret:
2492#ifndef __x86_64__
2493	popl KLEN
2494	popl KEYP
2495	popl LEN
2496	popl IVP
2497#endif
2498	ret
2499
2500#ifdef __x86_64__
2501.align 16
2502.Lbswap_mask:
2503	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
2504
2505/*
2506 * _aesni_inc_init:	internal ABI
2507 *	setup registers used by _aesni_inc
2508 * input:
2509 *	IV
2510 * output:
2511 *	CTR:	== IV, in little endian
2512 *	TCTR_LOW: == lower qword of CTR
2513 *	INC:	== 1, in little endian
2514 *	BSWAP_MASK == endian swapping mask
2515 */
2516.align 4
2517_aesni_inc_init:
2518	movaps .Lbswap_mask, BSWAP_MASK
2519	movaps IV, CTR
2520	PSHUFB_XMM BSWAP_MASK CTR
2521	mov $1, TCTR_LOW
2522	MOVQ_R64_XMM TCTR_LOW INC
2523	MOVQ_R64_XMM CTR TCTR_LOW
2524	ret
2525
2526/*
2527 * _aesni_inc:		internal ABI
2528 *	Increase IV by 1, IV is in big endian
2529 * input:
2530 *	IV
2531 *	CTR:	== IV, in little endian
2532 *	TCTR_LOW: == lower qword of CTR
2533 *	INC:	== 1, in little endian
2534 *	BSWAP_MASK == endian swapping mask
2535 * output:
2536 *	IV:	Increase by 1
2537 * changed:
2538 *	CTR:	== output IV, in little endian
2539 *	TCTR_LOW: == lower qword of CTR
2540 */
2541.align 4
2542_aesni_inc:
2543	paddq INC, CTR
2544	add $1, TCTR_LOW
2545	jnc .Linc_low
2546	pslldq $8, INC
2547	paddq INC, CTR
2548	psrldq $8, INC
2549.Linc_low:
2550	movaps CTR, IV
2551	PSHUFB_XMM BSWAP_MASK IV
2552	ret
2553
2554/*
2555 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
2556 *		      size_t len, u8 *iv)
2557 */
2558ENTRY(aesni_ctr_enc)
2559	cmp $16, LEN
2560	jb .Lctr_enc_just_ret
2561	mov 480(KEYP), KLEN
2562	movups (IVP), IV
2563	call _aesni_inc_init
2564	cmp $64, LEN
2565	jb .Lctr_enc_loop1
2566.align 4
2567.Lctr_enc_loop4:
2568	movaps IV, STATE1
2569	call _aesni_inc
2570	movups (INP), IN1
2571	movaps IV, STATE2
2572	call _aesni_inc
2573	movups 0x10(INP), IN2
2574	movaps IV, STATE3
2575	call _aesni_inc
2576	movups 0x20(INP), IN3
2577	movaps IV, STATE4
2578	call _aesni_inc
2579	movups 0x30(INP), IN4
2580	call _aesni_enc4
2581	pxor IN1, STATE1
2582	movups STATE1, (OUTP)
2583	pxor IN2, STATE2
2584	movups STATE2, 0x10(OUTP)
2585	pxor IN3, STATE3
2586	movups STATE3, 0x20(OUTP)
2587	pxor IN4, STATE4
2588	movups STATE4, 0x30(OUTP)
2589	sub $64, LEN
2590	add $64, INP
2591	add $64, OUTP
2592	cmp $64, LEN
2593	jge .Lctr_enc_loop4
2594	cmp $16, LEN
2595	jb .Lctr_enc_ret
2596.align 4
2597.Lctr_enc_loop1:
2598	movaps IV, STATE
2599	call _aesni_inc
2600	movups (INP), IN
2601	call _aesni_enc1
2602	pxor IN, STATE
2603	movups STATE, (OUTP)
2604	sub $16, LEN
2605	add $16, INP
2606	add $16, OUTP
2607	cmp $16, LEN
2608	jge .Lctr_enc_loop1
2609.Lctr_enc_ret:
2610	movups IV, (IVP)
2611.Lctr_enc_just_ret:
2612	ret
2613#endif
2614