1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Implement AES algorithm in Intel AES-NI instructions. 4 * 5 * The white paper of AES-NI instructions can be downloaded from: 6 * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf 7 * 8 * Copyright (C) 2008, Intel Corp. 9 * Author: Huang Ying <ying.huang@intel.com> 10 * Vinodh Gopal <vinodh.gopal@intel.com> 11 * Kahraman Akdemir 12 * 13 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD 14 * interface for 64-bit kernels. 15 * Authors: Erdinc Ozturk (erdinc.ozturk@intel.com) 16 * Aidan O'Mahony (aidan.o.mahony@intel.com) 17 * Adrian Hoban <adrian.hoban@intel.com> 18 * James Guilford (james.guilford@intel.com) 19 * Gabriele Paoloni <gabriele.paoloni@intel.com> 20 * Tadeusz Struk (tadeusz.struk@intel.com) 21 * Wajdi Feghali (wajdi.k.feghali@intel.com) 22 * Copyright (c) 2010, Intel Corporation. 23 * 24 * Ported x86_64 version to x86: 25 * Author: Mathias Krause <minipli@googlemail.com> 26 */ 27 28#include <linux/linkage.h> 29#include <asm/inst.h> 30#include <asm/frame.h> 31#include <asm/nospec-branch.h> 32 33/* 34 * The following macros are used to move an (un)aligned 16 byte value to/from 35 * an XMM register. This can done for either FP or integer values, for FP use 36 * movaps (move aligned packed single) or integer use movdqa (move double quad 37 * aligned). It doesn't make a performance difference which instruction is used 38 * since Nehalem (original Core i7) was released. However, the movaps is a byte 39 * shorter, so that is the one we'll use for now. (same for unaligned). 40 */ 41#define MOVADQ movaps 42#define MOVUDQ movups 43 44#ifdef __x86_64__ 45 46# constants in mergeable sections, linker can reorder and merge 47.section .rodata.cst16.gf128mul_x_ble_mask, "aM", @progbits, 16 48.align 16 49.Lgf128mul_x_ble_mask: 50 .octa 0x00000000000000010000000000000087 51.section .rodata.cst16.POLY, "aM", @progbits, 16 52.align 16 53POLY: .octa 0xC2000000000000000000000000000001 54.section .rodata.cst16.TWOONE, "aM", @progbits, 16 55.align 16 56TWOONE: .octa 0x00000001000000000000000000000001 57 58.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 59.align 16 60SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F 61.section .rodata.cst16.MASK1, "aM", @progbits, 16 62.align 16 63MASK1: .octa 0x0000000000000000ffffffffffffffff 64.section .rodata.cst16.MASK2, "aM", @progbits, 16 65.align 16 66MASK2: .octa 0xffffffffffffffff0000000000000000 67.section .rodata.cst16.ONE, "aM", @progbits, 16 68.align 16 69ONE: .octa 0x00000000000000000000000000000001 70.section .rodata.cst16.F_MIN_MASK, "aM", @progbits, 16 71.align 16 72F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0 73.section .rodata.cst16.dec, "aM", @progbits, 16 74.align 16 75dec: .octa 0x1 76.section .rodata.cst16.enc, "aM", @progbits, 16 77.align 16 78enc: .octa 0x2 79 80# order of these constants should not change. 81# more specifically, ALL_F should follow SHIFT_MASK, 82# and zero should follow ALL_F 83.section .rodata, "a", @progbits 84.align 16 85SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100 86ALL_F: .octa 0xffffffffffffffffffffffffffffffff 87 .octa 0x00000000000000000000000000000000 88 89.text 90 91 92#define STACK_OFFSET 8*3 93 94#define AadHash 16*0 95#define AadLen 16*1 96#define InLen (16*1)+8 97#define PBlockEncKey 16*2 98#define OrigIV 16*3 99#define CurCount 16*4 100#define PBlockLen 16*5 101#define HashKey 16*6 // store HashKey <<1 mod poly here 102#define HashKey_2 16*7 // store HashKey^2 <<1 mod poly here 103#define HashKey_3 16*8 // store HashKey^3 <<1 mod poly here 104#define HashKey_4 16*9 // store HashKey^4 <<1 mod poly here 105#define HashKey_k 16*10 // store XOR of High 64 bits and Low 64 106 // bits of HashKey <<1 mod poly here 107 //(for Karatsuba purposes) 108#define HashKey_2_k 16*11 // store XOR of High 64 bits and Low 64 109 // bits of HashKey^2 <<1 mod poly here 110 // (for Karatsuba purposes) 111#define HashKey_3_k 16*12 // store XOR of High 64 bits and Low 64 112 // bits of HashKey^3 <<1 mod poly here 113 // (for Karatsuba purposes) 114#define HashKey_4_k 16*13 // store XOR of High 64 bits and Low 64 115 // bits of HashKey^4 <<1 mod poly here 116 // (for Karatsuba purposes) 117 118#define arg1 rdi 119#define arg2 rsi 120#define arg3 rdx 121#define arg4 rcx 122#define arg5 r8 123#define arg6 r9 124#define arg7 STACK_OFFSET+8(%rsp) 125#define arg8 STACK_OFFSET+16(%rsp) 126#define arg9 STACK_OFFSET+24(%rsp) 127#define arg10 STACK_OFFSET+32(%rsp) 128#define arg11 STACK_OFFSET+40(%rsp) 129#define keysize 2*15*16(%arg1) 130#endif 131 132 133#define STATE1 %xmm0 134#define STATE2 %xmm4 135#define STATE3 %xmm5 136#define STATE4 %xmm6 137#define STATE STATE1 138#define IN1 %xmm1 139#define IN2 %xmm7 140#define IN3 %xmm8 141#define IN4 %xmm9 142#define IN IN1 143#define KEY %xmm2 144#define IV %xmm3 145 146#define BSWAP_MASK %xmm10 147#define CTR %xmm11 148#define INC %xmm12 149 150#define GF128MUL_MASK %xmm10 151 152#ifdef __x86_64__ 153#define AREG %rax 154#define KEYP %rdi 155#define OUTP %rsi 156#define UKEYP OUTP 157#define INP %rdx 158#define LEN %rcx 159#define IVP %r8 160#define KLEN %r9d 161#define T1 %r10 162#define TKEYP T1 163#define T2 %r11 164#define TCTR_LOW T2 165#else 166#define AREG %eax 167#define KEYP %edi 168#define OUTP AREG 169#define UKEYP OUTP 170#define INP %edx 171#define LEN %esi 172#define IVP %ebp 173#define KLEN %ebx 174#define T1 %ecx 175#define TKEYP T1 176#endif 177 178.macro FUNC_SAVE 179 push %r12 180 push %r13 181 push %r14 182# 183# states of %xmm registers %xmm6:%xmm15 not saved 184# all %xmm registers are clobbered 185# 186.endm 187 188 189.macro FUNC_RESTORE 190 pop %r14 191 pop %r13 192 pop %r12 193.endm 194 195# Precompute hashkeys. 196# Input: Hash subkey. 197# Output: HashKeys stored in gcm_context_data. Only needs to be called 198# once per key. 199# clobbers r12, and tmp xmm registers. 200.macro PRECOMPUTE SUBKEY TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 TMP7 201 mov \SUBKEY, %r12 202 movdqu (%r12), \TMP3 203 movdqa SHUF_MASK(%rip), \TMP2 204 PSHUFB_XMM \TMP2, \TMP3 205 206 # precompute HashKey<<1 mod poly from the HashKey (required for GHASH) 207 208 movdqa \TMP3, \TMP2 209 psllq $1, \TMP3 210 psrlq $63, \TMP2 211 movdqa \TMP2, \TMP1 212 pslldq $8, \TMP2 213 psrldq $8, \TMP1 214 por \TMP2, \TMP3 215 216 # reduce HashKey<<1 217 218 pshufd $0x24, \TMP1, \TMP2 219 pcmpeqd TWOONE(%rip), \TMP2 220 pand POLY(%rip), \TMP2 221 pxor \TMP2, \TMP3 222 movdqu \TMP3, HashKey(%arg2) 223 224 movdqa \TMP3, \TMP5 225 pshufd $78, \TMP3, \TMP1 226 pxor \TMP3, \TMP1 227 movdqu \TMP1, HashKey_k(%arg2) 228 229 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7 230# TMP5 = HashKey^2<<1 (mod poly) 231 movdqu \TMP5, HashKey_2(%arg2) 232# HashKey_2 = HashKey^2<<1 (mod poly) 233 pshufd $78, \TMP5, \TMP1 234 pxor \TMP5, \TMP1 235 movdqu \TMP1, HashKey_2_k(%arg2) 236 237 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7 238# TMP5 = HashKey^3<<1 (mod poly) 239 movdqu \TMP5, HashKey_3(%arg2) 240 pshufd $78, \TMP5, \TMP1 241 pxor \TMP5, \TMP1 242 movdqu \TMP1, HashKey_3_k(%arg2) 243 244 GHASH_MUL \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7 245# TMP5 = HashKey^3<<1 (mod poly) 246 movdqu \TMP5, HashKey_4(%arg2) 247 pshufd $78, \TMP5, \TMP1 248 pxor \TMP5, \TMP1 249 movdqu \TMP1, HashKey_4_k(%arg2) 250.endm 251 252# GCM_INIT initializes a gcm_context struct to prepare for encoding/decoding. 253# Clobbers rax, r10-r13 and xmm0-xmm6, %xmm13 254.macro GCM_INIT Iv SUBKEY AAD AADLEN 255 mov \AADLEN, %r11 256 mov %r11, AadLen(%arg2) # ctx_data.aad_length = aad_length 257 xor %r11d, %r11d 258 mov %r11, InLen(%arg2) # ctx_data.in_length = 0 259 mov %r11, PBlockLen(%arg2) # ctx_data.partial_block_length = 0 260 mov %r11, PBlockEncKey(%arg2) # ctx_data.partial_block_enc_key = 0 261 mov \Iv, %rax 262 movdqu (%rax), %xmm0 263 movdqu %xmm0, OrigIV(%arg2) # ctx_data.orig_IV = iv 264 265 movdqa SHUF_MASK(%rip), %xmm2 266 PSHUFB_XMM %xmm2, %xmm0 267 movdqu %xmm0, CurCount(%arg2) # ctx_data.current_counter = iv 268 269 PRECOMPUTE \SUBKEY, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 270 movdqu HashKey(%arg2), %xmm13 271 272 CALC_AAD_HASH %xmm13, \AAD, \AADLEN, %xmm0, %xmm1, %xmm2, %xmm3, \ 273 %xmm4, %xmm5, %xmm6 274.endm 275 276# GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context 277# struct has been initialized by GCM_INIT. 278# Requires the input data be at least 1 byte long because of READ_PARTIAL_BLOCK 279# Clobbers rax, r10-r13, and xmm0-xmm15 280.macro GCM_ENC_DEC operation 281 movdqu AadHash(%arg2), %xmm8 282 movdqu HashKey(%arg2), %xmm13 283 add %arg5, InLen(%arg2) 284 285 xor %r11d, %r11d # initialise the data pointer offset as zero 286 PARTIAL_BLOCK %arg3 %arg4 %arg5 %r11 %xmm8 \operation 287 288 sub %r11, %arg5 # sub partial block data used 289 mov %arg5, %r13 # save the number of bytes 290 291 and $-16, %r13 # %r13 = %r13 - (%r13 mod 16) 292 mov %r13, %r12 293 # Encrypt/Decrypt first few blocks 294 295 and $(3<<4), %r12 296 jz _initial_num_blocks_is_0_\@ 297 cmp $(2<<4), %r12 298 jb _initial_num_blocks_is_1_\@ 299 je _initial_num_blocks_is_2_\@ 300_initial_num_blocks_is_3_\@: 301 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \ 302%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, \operation 303 sub $48, %r13 304 jmp _initial_blocks_\@ 305_initial_num_blocks_is_2_\@: 306 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \ 307%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, \operation 308 sub $32, %r13 309 jmp _initial_blocks_\@ 310_initial_num_blocks_is_1_\@: 311 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \ 312%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, \operation 313 sub $16, %r13 314 jmp _initial_blocks_\@ 315_initial_num_blocks_is_0_\@: 316 INITIAL_BLOCKS_ENC_DEC %xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \ 317%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, \operation 318_initial_blocks_\@: 319 320 # Main loop - Encrypt/Decrypt remaining blocks 321 322 cmp $0, %r13 323 je _zero_cipher_left_\@ 324 sub $64, %r13 325 je _four_cipher_left_\@ 326_crypt_by_4_\@: 327 GHASH_4_ENCRYPT_4_PARALLEL_\operation %xmm9, %xmm10, %xmm11, %xmm12, \ 328 %xmm13, %xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, \ 329 %xmm7, %xmm8, enc 330 add $64, %r11 331 sub $64, %r13 332 jne _crypt_by_4_\@ 333_four_cipher_left_\@: 334 GHASH_LAST_4 %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \ 335%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8 336_zero_cipher_left_\@: 337 movdqu %xmm8, AadHash(%arg2) 338 movdqu %xmm0, CurCount(%arg2) 339 340 mov %arg5, %r13 341 and $15, %r13 # %r13 = arg5 (mod 16) 342 je _multiple_of_16_bytes_\@ 343 344 mov %r13, PBlockLen(%arg2) 345 346 # Handle the last <16 Byte block separately 347 paddd ONE(%rip), %xmm0 # INCR CNT to get Yn 348 movdqu %xmm0, CurCount(%arg2) 349 movdqa SHUF_MASK(%rip), %xmm10 350 PSHUFB_XMM %xmm10, %xmm0 351 352 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # Encrypt(K, Yn) 353 movdqu %xmm0, PBlockEncKey(%arg2) 354 355 cmp $16, %arg5 356 jge _large_enough_update_\@ 357 358 lea (%arg4,%r11,1), %r10 359 mov %r13, %r12 360 READ_PARTIAL_BLOCK %r10 %r12 %xmm2 %xmm1 361 jmp _data_read_\@ 362 363_large_enough_update_\@: 364 sub $16, %r11 365 add %r13, %r11 366 367 # receive the last <16 Byte block 368 movdqu (%arg4, %r11, 1), %xmm1 369 370 sub %r13, %r11 371 add $16, %r11 372 373 lea SHIFT_MASK+16(%rip), %r12 374 # adjust the shuffle mask pointer to be able to shift 16-r13 bytes 375 # (r13 is the number of bytes in plaintext mod 16) 376 sub %r13, %r12 377 # get the appropriate shuffle mask 378 movdqu (%r12), %xmm2 379 # shift right 16-r13 bytes 380 PSHUFB_XMM %xmm2, %xmm1 381 382_data_read_\@: 383 lea ALL_F+16(%rip), %r12 384 sub %r13, %r12 385 386.ifc \operation, dec 387 movdqa %xmm1, %xmm2 388.endif 389 pxor %xmm1, %xmm0 # XOR Encrypt(K, Yn) 390 movdqu (%r12), %xmm1 391 # get the appropriate mask to mask out top 16-r13 bytes of xmm0 392 pand %xmm1, %xmm0 # mask out top 16-r13 bytes of xmm0 393.ifc \operation, dec 394 pand %xmm1, %xmm2 395 movdqa SHUF_MASK(%rip), %xmm10 396 PSHUFB_XMM %xmm10 ,%xmm2 397 398 pxor %xmm2, %xmm8 399.else 400 movdqa SHUF_MASK(%rip), %xmm10 401 PSHUFB_XMM %xmm10,%xmm0 402 403 pxor %xmm0, %xmm8 404.endif 405 406 movdqu %xmm8, AadHash(%arg2) 407.ifc \operation, enc 408 # GHASH computation for the last <16 byte block 409 movdqa SHUF_MASK(%rip), %xmm10 410 # shuffle xmm0 back to output as ciphertext 411 PSHUFB_XMM %xmm10, %xmm0 412.endif 413 414 # Output %r13 bytes 415 MOVQ_R64_XMM %xmm0, %rax 416 cmp $8, %r13 417 jle _less_than_8_bytes_left_\@ 418 mov %rax, (%arg3 , %r11, 1) 419 add $8, %r11 420 psrldq $8, %xmm0 421 MOVQ_R64_XMM %xmm0, %rax 422 sub $8, %r13 423_less_than_8_bytes_left_\@: 424 mov %al, (%arg3, %r11, 1) 425 add $1, %r11 426 shr $8, %rax 427 sub $1, %r13 428 jne _less_than_8_bytes_left_\@ 429_multiple_of_16_bytes_\@: 430.endm 431 432# GCM_COMPLETE Finishes update of tag of last partial block 433# Output: Authorization Tag (AUTH_TAG) 434# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15 435.macro GCM_COMPLETE AUTHTAG AUTHTAGLEN 436 movdqu AadHash(%arg2), %xmm8 437 movdqu HashKey(%arg2), %xmm13 438 439 mov PBlockLen(%arg2), %r12 440 441 cmp $0, %r12 442 je _partial_done\@ 443 444 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6 445 446_partial_done\@: 447 mov AadLen(%arg2), %r12 # %r13 = aadLen (number of bytes) 448 shl $3, %r12 # convert into number of bits 449 movd %r12d, %xmm15 # len(A) in %xmm15 450 mov InLen(%arg2), %r12 451 shl $3, %r12 # len(C) in bits (*128) 452 MOVQ_R64_XMM %r12, %xmm1 453 454 pslldq $8, %xmm15 # %xmm15 = len(A)||0x0000000000000000 455 pxor %xmm1, %xmm15 # %xmm15 = len(A)||len(C) 456 pxor %xmm15, %xmm8 457 GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6 458 # final GHASH computation 459 movdqa SHUF_MASK(%rip), %xmm10 460 PSHUFB_XMM %xmm10, %xmm8 461 462 movdqu OrigIV(%arg2), %xmm0 # %xmm0 = Y0 463 ENCRYPT_SINGLE_BLOCK %xmm0, %xmm1 # E(K, Y0) 464 pxor %xmm8, %xmm0 465_return_T_\@: 466 mov \AUTHTAG, %r10 # %r10 = authTag 467 mov \AUTHTAGLEN, %r11 # %r11 = auth_tag_len 468 cmp $16, %r11 469 je _T_16_\@ 470 cmp $8, %r11 471 jl _T_4_\@ 472_T_8_\@: 473 MOVQ_R64_XMM %xmm0, %rax 474 mov %rax, (%r10) 475 add $8, %r10 476 sub $8, %r11 477 psrldq $8, %xmm0 478 cmp $0, %r11 479 je _return_T_done_\@ 480_T_4_\@: 481 movd %xmm0, %eax 482 mov %eax, (%r10) 483 add $4, %r10 484 sub $4, %r11 485 psrldq $4, %xmm0 486 cmp $0, %r11 487 je _return_T_done_\@ 488_T_123_\@: 489 movd %xmm0, %eax 490 cmp $2, %r11 491 jl _T_1_\@ 492 mov %ax, (%r10) 493 cmp $2, %r11 494 je _return_T_done_\@ 495 add $2, %r10 496 sar $16, %eax 497_T_1_\@: 498 mov %al, (%r10) 499 jmp _return_T_done_\@ 500_T_16_\@: 501 movdqu %xmm0, (%r10) 502_return_T_done_\@: 503.endm 504 505#ifdef __x86_64__ 506/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0) 507* 508* 509* Input: A and B (128-bits each, bit-reflected) 510* Output: C = A*B*x mod poly, (i.e. >>1 ) 511* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input 512* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly. 513* 514*/ 515.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5 516 movdqa \GH, \TMP1 517 pshufd $78, \GH, \TMP2 518 pshufd $78, \HK, \TMP3 519 pxor \GH, \TMP2 # TMP2 = a1+a0 520 pxor \HK, \TMP3 # TMP3 = b1+b0 521 PCLMULQDQ 0x11, \HK, \TMP1 # TMP1 = a1*b1 522 PCLMULQDQ 0x00, \HK, \GH # GH = a0*b0 523 PCLMULQDQ 0x00, \TMP3, \TMP2 # TMP2 = (a0+a1)*(b1+b0) 524 pxor \GH, \TMP2 525 pxor \TMP1, \TMP2 # TMP2 = (a0*b0)+(a1*b0) 526 movdqa \TMP2, \TMP3 527 pslldq $8, \TMP3 # left shift TMP3 2 DWs 528 psrldq $8, \TMP2 # right shift TMP2 2 DWs 529 pxor \TMP3, \GH 530 pxor \TMP2, \TMP1 # TMP2:GH holds the result of GH*HK 531 532 # first phase of the reduction 533 534 movdqa \GH, \TMP2 535 movdqa \GH, \TMP3 536 movdqa \GH, \TMP4 # copy GH into TMP2,TMP3 and TMP4 537 # in in order to perform 538 # independent shifts 539 pslld $31, \TMP2 # packed right shift <<31 540 pslld $30, \TMP3 # packed right shift <<30 541 pslld $25, \TMP4 # packed right shift <<25 542 pxor \TMP3, \TMP2 # xor the shifted versions 543 pxor \TMP4, \TMP2 544 movdqa \TMP2, \TMP5 545 psrldq $4, \TMP5 # right shift TMP5 1 DW 546 pslldq $12, \TMP2 # left shift TMP2 3 DWs 547 pxor \TMP2, \GH 548 549 # second phase of the reduction 550 551 movdqa \GH,\TMP2 # copy GH into TMP2,TMP3 and TMP4 552 # in in order to perform 553 # independent shifts 554 movdqa \GH,\TMP3 555 movdqa \GH,\TMP4 556 psrld $1,\TMP2 # packed left shift >>1 557 psrld $2,\TMP3 # packed left shift >>2 558 psrld $7,\TMP4 # packed left shift >>7 559 pxor \TMP3,\TMP2 # xor the shifted versions 560 pxor \TMP4,\TMP2 561 pxor \TMP5, \TMP2 562 pxor \TMP2, \GH 563 pxor \TMP1, \GH # result is in TMP1 564.endm 565 566# Reads DLEN bytes starting at DPTR and stores in XMMDst 567# where 0 < DLEN < 16 568# Clobbers %rax, DLEN and XMM1 569.macro READ_PARTIAL_BLOCK DPTR DLEN XMM1 XMMDst 570 cmp $8, \DLEN 571 jl _read_lt8_\@ 572 mov (\DPTR), %rax 573 MOVQ_R64_XMM %rax, \XMMDst 574 sub $8, \DLEN 575 jz _done_read_partial_block_\@ 576 xor %eax, %eax 577_read_next_byte_\@: 578 shl $8, %rax 579 mov 7(\DPTR, \DLEN, 1), %al 580 dec \DLEN 581 jnz _read_next_byte_\@ 582 MOVQ_R64_XMM %rax, \XMM1 583 pslldq $8, \XMM1 584 por \XMM1, \XMMDst 585 jmp _done_read_partial_block_\@ 586_read_lt8_\@: 587 xor %eax, %eax 588_read_next_byte_lt8_\@: 589 shl $8, %rax 590 mov -1(\DPTR, \DLEN, 1), %al 591 dec \DLEN 592 jnz _read_next_byte_lt8_\@ 593 MOVQ_R64_XMM %rax, \XMMDst 594_done_read_partial_block_\@: 595.endm 596 597# CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted. 598# clobbers r10-11, xmm14 599.macro CALC_AAD_HASH HASHKEY AAD AADLEN TMP1 TMP2 TMP3 TMP4 TMP5 \ 600 TMP6 TMP7 601 MOVADQ SHUF_MASK(%rip), %xmm14 602 mov \AAD, %r10 # %r10 = AAD 603 mov \AADLEN, %r11 # %r11 = aadLen 604 pxor \TMP7, \TMP7 605 pxor \TMP6, \TMP6 606 607 cmp $16, %r11 608 jl _get_AAD_rest\@ 609_get_AAD_blocks\@: 610 movdqu (%r10), \TMP7 611 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data 612 pxor \TMP7, \TMP6 613 GHASH_MUL \TMP6, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5 614 add $16, %r10 615 sub $16, %r11 616 cmp $16, %r11 617 jge _get_AAD_blocks\@ 618 619 movdqu \TMP6, \TMP7 620 621 /* read the last <16B of AAD */ 622_get_AAD_rest\@: 623 cmp $0, %r11 624 je _get_AAD_done\@ 625 626 READ_PARTIAL_BLOCK %r10, %r11, \TMP1, \TMP7 627 PSHUFB_XMM %xmm14, \TMP7 # byte-reflect the AAD data 628 pxor \TMP6, \TMP7 629 GHASH_MUL \TMP7, \HASHKEY, \TMP1, \TMP2, \TMP3, \TMP4, \TMP5 630 movdqu \TMP7, \TMP6 631 632_get_AAD_done\@: 633 movdqu \TMP6, AadHash(%arg2) 634.endm 635 636# PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks 637# between update calls. 638# Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK 639# Outputs encrypted bytes, and updates hash and partial info in gcm_data_context 640# Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13 641.macro PARTIAL_BLOCK CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \ 642 AAD_HASH operation 643 mov PBlockLen(%arg2), %r13 644 cmp $0, %r13 645 je _partial_block_done_\@ # Leave Macro if no partial blocks 646 # Read in input data without over reading 647 cmp $16, \PLAIN_CYPH_LEN 648 jl _fewer_than_16_bytes_\@ 649 movups (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm 650 jmp _data_read_\@ 651 652_fewer_than_16_bytes_\@: 653 lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10 654 mov \PLAIN_CYPH_LEN, %r12 655 READ_PARTIAL_BLOCK %r10 %r12 %xmm0 %xmm1 656 657 mov PBlockLen(%arg2), %r13 658 659_data_read_\@: # Finished reading in data 660 661 movdqu PBlockEncKey(%arg2), %xmm9 662 movdqu HashKey(%arg2), %xmm13 663 664 lea SHIFT_MASK(%rip), %r12 665 666 # adjust the shuffle mask pointer to be able to shift r13 bytes 667 # r16-r13 is the number of bytes in plaintext mod 16) 668 add %r13, %r12 669 movdqu (%r12), %xmm2 # get the appropriate shuffle mask 670 PSHUFB_XMM %xmm2, %xmm9 # shift right r13 bytes 671 672.ifc \operation, dec 673 movdqa %xmm1, %xmm3 674 pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn) 675 676 mov \PLAIN_CYPH_LEN, %r10 677 add %r13, %r10 678 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling 679 sub $16, %r10 680 # Determine if if partial block is not being filled and 681 # shift mask accordingly 682 jge _no_extra_mask_1_\@ 683 sub %r10, %r12 684_no_extra_mask_1_\@: 685 686 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1 687 # get the appropriate mask to mask out bottom r13 bytes of xmm9 688 pand %xmm1, %xmm9 # mask out bottom r13 bytes of xmm9 689 690 pand %xmm1, %xmm3 691 movdqa SHUF_MASK(%rip), %xmm10 692 PSHUFB_XMM %xmm10, %xmm3 693 PSHUFB_XMM %xmm2, %xmm3 694 pxor %xmm3, \AAD_HASH 695 696 cmp $0, %r10 697 jl _partial_incomplete_1_\@ 698 699 # GHASH computation for the last <16 Byte block 700 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 701 xor %eax, %eax 702 703 mov %rax, PBlockLen(%arg2) 704 jmp _dec_done_\@ 705_partial_incomplete_1_\@: 706 add \PLAIN_CYPH_LEN, PBlockLen(%arg2) 707_dec_done_\@: 708 movdqu \AAD_HASH, AadHash(%arg2) 709.else 710 pxor %xmm1, %xmm9 # Plaintext XOR E(K, Yn) 711 712 mov \PLAIN_CYPH_LEN, %r10 713 add %r13, %r10 714 # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling 715 sub $16, %r10 716 # Determine if if partial block is not being filled and 717 # shift mask accordingly 718 jge _no_extra_mask_2_\@ 719 sub %r10, %r12 720_no_extra_mask_2_\@: 721 722 movdqu ALL_F-SHIFT_MASK(%r12), %xmm1 723 # get the appropriate mask to mask out bottom r13 bytes of xmm9 724 pand %xmm1, %xmm9 725 726 movdqa SHUF_MASK(%rip), %xmm1 727 PSHUFB_XMM %xmm1, %xmm9 728 PSHUFB_XMM %xmm2, %xmm9 729 pxor %xmm9, \AAD_HASH 730 731 cmp $0, %r10 732 jl _partial_incomplete_2_\@ 733 734 # GHASH computation for the last <16 Byte block 735 GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 736 xor %eax, %eax 737 738 mov %rax, PBlockLen(%arg2) 739 jmp _encode_done_\@ 740_partial_incomplete_2_\@: 741 add \PLAIN_CYPH_LEN, PBlockLen(%arg2) 742_encode_done_\@: 743 movdqu \AAD_HASH, AadHash(%arg2) 744 745 movdqa SHUF_MASK(%rip), %xmm10 746 # shuffle xmm9 back to output as ciphertext 747 PSHUFB_XMM %xmm10, %xmm9 748 PSHUFB_XMM %xmm2, %xmm9 749.endif 750 # output encrypted Bytes 751 cmp $0, %r10 752 jl _partial_fill_\@ 753 mov %r13, %r12 754 mov $16, %r13 755 # Set r13 to be the number of bytes to write out 756 sub %r12, %r13 757 jmp _count_set_\@ 758_partial_fill_\@: 759 mov \PLAIN_CYPH_LEN, %r13 760_count_set_\@: 761 movdqa %xmm9, %xmm0 762 MOVQ_R64_XMM %xmm0, %rax 763 cmp $8, %r13 764 jle _less_than_8_bytes_left_\@ 765 766 mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) 767 add $8, \DATA_OFFSET 768 psrldq $8, %xmm0 769 MOVQ_R64_XMM %xmm0, %rax 770 sub $8, %r13 771_less_than_8_bytes_left_\@: 772 movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1) 773 add $1, \DATA_OFFSET 774 shr $8, %rax 775 sub $1, %r13 776 jne _less_than_8_bytes_left_\@ 777_partial_block_done_\@: 778.endm # PARTIAL_BLOCK 779 780/* 781* if a = number of total plaintext bytes 782* b = floor(a/16) 783* num_initial_blocks = b mod 4 784* encrypt the initial num_initial_blocks blocks and apply ghash on 785* the ciphertext 786* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers 787* are clobbered 788* arg1, %arg2, %arg3 are used as a pointer only, not modified 789*/ 790 791 792.macro INITIAL_BLOCKS_ENC_DEC TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \ 793 XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation 794 MOVADQ SHUF_MASK(%rip), %xmm14 795 796 movdqu AadHash(%arg2), %xmm\i # XMM0 = Y0 797 798 # start AES for num_initial_blocks blocks 799 800 movdqu CurCount(%arg2), \XMM0 # XMM0 = Y0 801 802.if (\i == 5) || (\i == 6) || (\i == 7) 803 804 MOVADQ ONE(%RIP),\TMP1 805 MOVADQ 0(%arg1),\TMP2 806.irpc index, \i_seq 807 paddd \TMP1, \XMM0 # INCR Y0 808.ifc \operation, dec 809 movdqa \XMM0, %xmm\index 810.else 811 MOVADQ \XMM0, %xmm\index 812.endif 813 PSHUFB_XMM %xmm14, %xmm\index # perform a 16 byte swap 814 pxor \TMP2, %xmm\index 815.endr 816 lea 0x10(%arg1),%r10 817 mov keysize,%eax 818 shr $2,%eax # 128->4, 192->6, 256->8 819 add $5,%eax # 128->9, 192->11, 256->13 820 821aes_loop_initial_\@: 822 MOVADQ (%r10),\TMP1 823.irpc index, \i_seq 824 AESENC \TMP1, %xmm\index 825.endr 826 add $16,%r10 827 sub $1,%eax 828 jnz aes_loop_initial_\@ 829 830 MOVADQ (%r10), \TMP1 831.irpc index, \i_seq 832 AESENCLAST \TMP1, %xmm\index # Last Round 833.endr 834.irpc index, \i_seq 835 movdqu (%arg4 , %r11, 1), \TMP1 836 pxor \TMP1, %xmm\index 837 movdqu %xmm\index, (%arg3 , %r11, 1) 838 # write back plaintext/ciphertext for num_initial_blocks 839 add $16, %r11 840 841.ifc \operation, dec 842 movdqa \TMP1, %xmm\index 843.endif 844 PSHUFB_XMM %xmm14, %xmm\index 845 846 # prepare plaintext/ciphertext for GHASH computation 847.endr 848.endif 849 850 # apply GHASH on num_initial_blocks blocks 851 852.if \i == 5 853 pxor %xmm5, %xmm6 854 GHASH_MUL %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 855 pxor %xmm6, %xmm7 856 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 857 pxor %xmm7, %xmm8 858 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 859.elseif \i == 6 860 pxor %xmm6, %xmm7 861 GHASH_MUL %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 862 pxor %xmm7, %xmm8 863 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 864.elseif \i == 7 865 pxor %xmm7, %xmm8 866 GHASH_MUL %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1 867.endif 868 cmp $64, %r13 869 jl _initial_blocks_done\@ 870 # no need for precomputed values 871/* 872* 873* Precomputations for HashKey parallel with encryption of first 4 blocks. 874* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i 875*/ 876 MOVADQ ONE(%RIP),\TMP1 877 paddd \TMP1, \XMM0 # INCR Y0 878 MOVADQ \XMM0, \XMM1 879 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap 880 881 paddd \TMP1, \XMM0 # INCR Y0 882 MOVADQ \XMM0, \XMM2 883 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap 884 885 paddd \TMP1, \XMM0 # INCR Y0 886 MOVADQ \XMM0, \XMM3 887 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap 888 889 paddd \TMP1, \XMM0 # INCR Y0 890 MOVADQ \XMM0, \XMM4 891 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap 892 893 MOVADQ 0(%arg1),\TMP1 894 pxor \TMP1, \XMM1 895 pxor \TMP1, \XMM2 896 pxor \TMP1, \XMM3 897 pxor \TMP1, \XMM4 898.irpc index, 1234 # do 4 rounds 899 movaps 0x10*\index(%arg1), \TMP1 900 AESENC \TMP1, \XMM1 901 AESENC \TMP1, \XMM2 902 AESENC \TMP1, \XMM3 903 AESENC \TMP1, \XMM4 904.endr 905.irpc index, 56789 # do next 5 rounds 906 movaps 0x10*\index(%arg1), \TMP1 907 AESENC \TMP1, \XMM1 908 AESENC \TMP1, \XMM2 909 AESENC \TMP1, \XMM3 910 AESENC \TMP1, \XMM4 911.endr 912 lea 0xa0(%arg1),%r10 913 mov keysize,%eax 914 shr $2,%eax # 128->4, 192->6, 256->8 915 sub $4,%eax # 128->0, 192->2, 256->4 916 jz aes_loop_pre_done\@ 917 918aes_loop_pre_\@: 919 MOVADQ (%r10),\TMP2 920.irpc index, 1234 921 AESENC \TMP2, %xmm\index 922.endr 923 add $16,%r10 924 sub $1,%eax 925 jnz aes_loop_pre_\@ 926 927aes_loop_pre_done\@: 928 MOVADQ (%r10), \TMP2 929 AESENCLAST \TMP2, \XMM1 930 AESENCLAST \TMP2, \XMM2 931 AESENCLAST \TMP2, \XMM3 932 AESENCLAST \TMP2, \XMM4 933 movdqu 16*0(%arg4 , %r11 , 1), \TMP1 934 pxor \TMP1, \XMM1 935.ifc \operation, dec 936 movdqu \XMM1, 16*0(%arg3 , %r11 , 1) 937 movdqa \TMP1, \XMM1 938.endif 939 movdqu 16*1(%arg4 , %r11 , 1), \TMP1 940 pxor \TMP1, \XMM2 941.ifc \operation, dec 942 movdqu \XMM2, 16*1(%arg3 , %r11 , 1) 943 movdqa \TMP1, \XMM2 944.endif 945 movdqu 16*2(%arg4 , %r11 , 1), \TMP1 946 pxor \TMP1, \XMM3 947.ifc \operation, dec 948 movdqu \XMM3, 16*2(%arg3 , %r11 , 1) 949 movdqa \TMP1, \XMM3 950.endif 951 movdqu 16*3(%arg4 , %r11 , 1), \TMP1 952 pxor \TMP1, \XMM4 953.ifc \operation, dec 954 movdqu \XMM4, 16*3(%arg3 , %r11 , 1) 955 movdqa \TMP1, \XMM4 956.else 957 movdqu \XMM1, 16*0(%arg3 , %r11 , 1) 958 movdqu \XMM2, 16*1(%arg3 , %r11 , 1) 959 movdqu \XMM3, 16*2(%arg3 , %r11 , 1) 960 movdqu \XMM4, 16*3(%arg3 , %r11 , 1) 961.endif 962 963 add $64, %r11 964 PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap 965 pxor \XMMDst, \XMM1 966# combine GHASHed value with the corresponding ciphertext 967 PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap 968 PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap 969 PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap 970 971_initial_blocks_done\@: 972 973.endm 974 975/* 976* encrypt 4 blocks at a time 977* ghash the 4 previously encrypted ciphertext blocks 978* arg1, %arg3, %arg4 are used as pointers only, not modified 979* %r11 is the data offset value 980*/ 981.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \ 982TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation 983 984 movdqa \XMM1, \XMM5 985 movdqa \XMM2, \XMM6 986 movdqa \XMM3, \XMM7 987 movdqa \XMM4, \XMM8 988 989 movdqa SHUF_MASK(%rip), %xmm15 990 # multiply TMP5 * HashKey using karatsuba 991 992 movdqa \XMM5, \TMP4 993 pshufd $78, \XMM5, \TMP6 994 pxor \XMM5, \TMP6 995 paddd ONE(%rip), \XMM0 # INCR CNT 996 movdqu HashKey_4(%arg2), \TMP5 997 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1 998 movdqa \XMM0, \XMM1 999 paddd ONE(%rip), \XMM0 # INCR CNT 1000 movdqa \XMM0, \XMM2 1001 paddd ONE(%rip), \XMM0 # INCR CNT 1002 movdqa \XMM0, \XMM3 1003 paddd ONE(%rip), \XMM0 # INCR CNT 1004 movdqa \XMM0, \XMM4 1005 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap 1006 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0 1007 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap 1008 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap 1009 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap 1010 1011 pxor (%arg1), \XMM1 1012 pxor (%arg1), \XMM2 1013 pxor (%arg1), \XMM3 1014 pxor (%arg1), \XMM4 1015 movdqu HashKey_4_k(%arg2), \TMP5 1016 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0) 1017 movaps 0x10(%arg1), \TMP1 1018 AESENC \TMP1, \XMM1 # Round 1 1019 AESENC \TMP1, \XMM2 1020 AESENC \TMP1, \XMM3 1021 AESENC \TMP1, \XMM4 1022 movaps 0x20(%arg1), \TMP1 1023 AESENC \TMP1, \XMM1 # Round 2 1024 AESENC \TMP1, \XMM2 1025 AESENC \TMP1, \XMM3 1026 AESENC \TMP1, \XMM4 1027 movdqa \XMM6, \TMP1 1028 pshufd $78, \XMM6, \TMP2 1029 pxor \XMM6, \TMP2 1030 movdqu HashKey_3(%arg2), \TMP5 1031 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1 1032 movaps 0x30(%arg1), \TMP3 1033 AESENC \TMP3, \XMM1 # Round 3 1034 AESENC \TMP3, \XMM2 1035 AESENC \TMP3, \XMM3 1036 AESENC \TMP3, \XMM4 1037 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0 1038 movaps 0x40(%arg1), \TMP3 1039 AESENC \TMP3, \XMM1 # Round 4 1040 AESENC \TMP3, \XMM2 1041 AESENC \TMP3, \XMM3 1042 AESENC \TMP3, \XMM4 1043 movdqu HashKey_3_k(%arg2), \TMP5 1044 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1045 movaps 0x50(%arg1), \TMP3 1046 AESENC \TMP3, \XMM1 # Round 5 1047 AESENC \TMP3, \XMM2 1048 AESENC \TMP3, \XMM3 1049 AESENC \TMP3, \XMM4 1050 pxor \TMP1, \TMP4 1051# accumulate the results in TMP4:XMM5, TMP6 holds the middle part 1052 pxor \XMM6, \XMM5 1053 pxor \TMP2, \TMP6 1054 movdqa \XMM7, \TMP1 1055 pshufd $78, \XMM7, \TMP2 1056 pxor \XMM7, \TMP2 1057 movdqu HashKey_2(%arg2), \TMP5 1058 1059 # Multiply TMP5 * HashKey using karatsuba 1060 1061 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1062 movaps 0x60(%arg1), \TMP3 1063 AESENC \TMP3, \XMM1 # Round 6 1064 AESENC \TMP3, \XMM2 1065 AESENC \TMP3, \XMM3 1066 AESENC \TMP3, \XMM4 1067 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0 1068 movaps 0x70(%arg1), \TMP3 1069 AESENC \TMP3, \XMM1 # Round 7 1070 AESENC \TMP3, \XMM2 1071 AESENC \TMP3, \XMM3 1072 AESENC \TMP3, \XMM4 1073 movdqu HashKey_2_k(%arg2), \TMP5 1074 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1075 movaps 0x80(%arg1), \TMP3 1076 AESENC \TMP3, \XMM1 # Round 8 1077 AESENC \TMP3, \XMM2 1078 AESENC \TMP3, \XMM3 1079 AESENC \TMP3, \XMM4 1080 pxor \TMP1, \TMP4 1081# accumulate the results in TMP4:XMM5, TMP6 holds the middle part 1082 pxor \XMM7, \XMM5 1083 pxor \TMP2, \TMP6 1084 1085 # Multiply XMM8 * HashKey 1086 # XMM8 and TMP5 hold the values for the two operands 1087 1088 movdqa \XMM8, \TMP1 1089 pshufd $78, \XMM8, \TMP2 1090 pxor \XMM8, \TMP2 1091 movdqu HashKey(%arg2), \TMP5 1092 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1093 movaps 0x90(%arg1), \TMP3 1094 AESENC \TMP3, \XMM1 # Round 9 1095 AESENC \TMP3, \XMM2 1096 AESENC \TMP3, \XMM3 1097 AESENC \TMP3, \XMM4 1098 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0 1099 lea 0xa0(%arg1),%r10 1100 mov keysize,%eax 1101 shr $2,%eax # 128->4, 192->6, 256->8 1102 sub $4,%eax # 128->0, 192->2, 256->4 1103 jz aes_loop_par_enc_done\@ 1104 1105aes_loop_par_enc\@: 1106 MOVADQ (%r10),\TMP3 1107.irpc index, 1234 1108 AESENC \TMP3, %xmm\index 1109.endr 1110 add $16,%r10 1111 sub $1,%eax 1112 jnz aes_loop_par_enc\@ 1113 1114aes_loop_par_enc_done\@: 1115 MOVADQ (%r10), \TMP3 1116 AESENCLAST \TMP3, \XMM1 # Round 10 1117 AESENCLAST \TMP3, \XMM2 1118 AESENCLAST \TMP3, \XMM3 1119 AESENCLAST \TMP3, \XMM4 1120 movdqu HashKey_k(%arg2), \TMP5 1121 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1122 movdqu (%arg4,%r11,1), \TMP3 1123 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK 1124 movdqu 16(%arg4,%r11,1), \TMP3 1125 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK 1126 movdqu 32(%arg4,%r11,1), \TMP3 1127 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK 1128 movdqu 48(%arg4,%r11,1), \TMP3 1129 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK 1130 movdqu \XMM1, (%arg3,%r11,1) # Write to the ciphertext buffer 1131 movdqu \XMM2, 16(%arg3,%r11,1) # Write to the ciphertext buffer 1132 movdqu \XMM3, 32(%arg3,%r11,1) # Write to the ciphertext buffer 1133 movdqu \XMM4, 48(%arg3,%r11,1) # Write to the ciphertext buffer 1134 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap 1135 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap 1136 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap 1137 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap 1138 1139 pxor \TMP4, \TMP1 1140 pxor \XMM8, \XMM5 1141 pxor \TMP6, \TMP2 1142 pxor \TMP1, \TMP2 1143 pxor \XMM5, \TMP2 1144 movdqa \TMP2, \TMP3 1145 pslldq $8, \TMP3 # left shift TMP3 2 DWs 1146 psrldq $8, \TMP2 # right shift TMP2 2 DWs 1147 pxor \TMP3, \XMM5 1148 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5 1149 1150 # first phase of reduction 1151 1152 movdqa \XMM5, \TMP2 1153 movdqa \XMM5, \TMP3 1154 movdqa \XMM5, \TMP4 1155# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently 1156 pslld $31, \TMP2 # packed right shift << 31 1157 pslld $30, \TMP3 # packed right shift << 30 1158 pslld $25, \TMP4 # packed right shift << 25 1159 pxor \TMP3, \TMP2 # xor the shifted versions 1160 pxor \TMP4, \TMP2 1161 movdqa \TMP2, \TMP5 1162 psrldq $4, \TMP5 # right shift T5 1 DW 1163 pslldq $12, \TMP2 # left shift T2 3 DWs 1164 pxor \TMP2, \XMM5 1165 1166 # second phase of reduction 1167 1168 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4 1169 movdqa \XMM5,\TMP3 1170 movdqa \XMM5,\TMP4 1171 psrld $1, \TMP2 # packed left shift >>1 1172 psrld $2, \TMP3 # packed left shift >>2 1173 psrld $7, \TMP4 # packed left shift >>7 1174 pxor \TMP3,\TMP2 # xor the shifted versions 1175 pxor \TMP4,\TMP2 1176 pxor \TMP5, \TMP2 1177 pxor \TMP2, \XMM5 1178 pxor \TMP1, \XMM5 # result is in TMP1 1179 1180 pxor \XMM5, \XMM1 1181.endm 1182 1183/* 1184* decrypt 4 blocks at a time 1185* ghash the 4 previously decrypted ciphertext blocks 1186* arg1, %arg3, %arg4 are used as pointers only, not modified 1187* %r11 is the data offset value 1188*/ 1189.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \ 1190TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation 1191 1192 movdqa \XMM1, \XMM5 1193 movdqa \XMM2, \XMM6 1194 movdqa \XMM3, \XMM7 1195 movdqa \XMM4, \XMM8 1196 1197 movdqa SHUF_MASK(%rip), %xmm15 1198 # multiply TMP5 * HashKey using karatsuba 1199 1200 movdqa \XMM5, \TMP4 1201 pshufd $78, \XMM5, \TMP6 1202 pxor \XMM5, \TMP6 1203 paddd ONE(%rip), \XMM0 # INCR CNT 1204 movdqu HashKey_4(%arg2), \TMP5 1205 PCLMULQDQ 0x11, \TMP5, \TMP4 # TMP4 = a1*b1 1206 movdqa \XMM0, \XMM1 1207 paddd ONE(%rip), \XMM0 # INCR CNT 1208 movdqa \XMM0, \XMM2 1209 paddd ONE(%rip), \XMM0 # INCR CNT 1210 movdqa \XMM0, \XMM3 1211 paddd ONE(%rip), \XMM0 # INCR CNT 1212 movdqa \XMM0, \XMM4 1213 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap 1214 PCLMULQDQ 0x00, \TMP5, \XMM5 # XMM5 = a0*b0 1215 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap 1216 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap 1217 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap 1218 1219 pxor (%arg1), \XMM1 1220 pxor (%arg1), \XMM2 1221 pxor (%arg1), \XMM3 1222 pxor (%arg1), \XMM4 1223 movdqu HashKey_4_k(%arg2), \TMP5 1224 PCLMULQDQ 0x00, \TMP5, \TMP6 # TMP6 = (a1+a0)*(b1+b0) 1225 movaps 0x10(%arg1), \TMP1 1226 AESENC \TMP1, \XMM1 # Round 1 1227 AESENC \TMP1, \XMM2 1228 AESENC \TMP1, \XMM3 1229 AESENC \TMP1, \XMM4 1230 movaps 0x20(%arg1), \TMP1 1231 AESENC \TMP1, \XMM1 # Round 2 1232 AESENC \TMP1, \XMM2 1233 AESENC \TMP1, \XMM3 1234 AESENC \TMP1, \XMM4 1235 movdqa \XMM6, \TMP1 1236 pshufd $78, \XMM6, \TMP2 1237 pxor \XMM6, \TMP2 1238 movdqu HashKey_3(%arg2), \TMP5 1239 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1 * b1 1240 movaps 0x30(%arg1), \TMP3 1241 AESENC \TMP3, \XMM1 # Round 3 1242 AESENC \TMP3, \XMM2 1243 AESENC \TMP3, \XMM3 1244 AESENC \TMP3, \XMM4 1245 PCLMULQDQ 0x00, \TMP5, \XMM6 # XMM6 = a0*b0 1246 movaps 0x40(%arg1), \TMP3 1247 AESENC \TMP3, \XMM1 # Round 4 1248 AESENC \TMP3, \XMM2 1249 AESENC \TMP3, \XMM3 1250 AESENC \TMP3, \XMM4 1251 movdqu HashKey_3_k(%arg2), \TMP5 1252 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1253 movaps 0x50(%arg1), \TMP3 1254 AESENC \TMP3, \XMM1 # Round 5 1255 AESENC \TMP3, \XMM2 1256 AESENC \TMP3, \XMM3 1257 AESENC \TMP3, \XMM4 1258 pxor \TMP1, \TMP4 1259# accumulate the results in TMP4:XMM5, TMP6 holds the middle part 1260 pxor \XMM6, \XMM5 1261 pxor \TMP2, \TMP6 1262 movdqa \XMM7, \TMP1 1263 pshufd $78, \XMM7, \TMP2 1264 pxor \XMM7, \TMP2 1265 movdqu HashKey_2(%arg2), \TMP5 1266 1267 # Multiply TMP5 * HashKey using karatsuba 1268 1269 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1270 movaps 0x60(%arg1), \TMP3 1271 AESENC \TMP3, \XMM1 # Round 6 1272 AESENC \TMP3, \XMM2 1273 AESENC \TMP3, \XMM3 1274 AESENC \TMP3, \XMM4 1275 PCLMULQDQ 0x00, \TMP5, \XMM7 # XMM7 = a0*b0 1276 movaps 0x70(%arg1), \TMP3 1277 AESENC \TMP3, \XMM1 # Round 7 1278 AESENC \TMP3, \XMM2 1279 AESENC \TMP3, \XMM3 1280 AESENC \TMP3, \XMM4 1281 movdqu HashKey_2_k(%arg2), \TMP5 1282 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1283 movaps 0x80(%arg1), \TMP3 1284 AESENC \TMP3, \XMM1 # Round 8 1285 AESENC \TMP3, \XMM2 1286 AESENC \TMP3, \XMM3 1287 AESENC \TMP3, \XMM4 1288 pxor \TMP1, \TMP4 1289# accumulate the results in TMP4:XMM5, TMP6 holds the middle part 1290 pxor \XMM7, \XMM5 1291 pxor \TMP2, \TMP6 1292 1293 # Multiply XMM8 * HashKey 1294 # XMM8 and TMP5 hold the values for the two operands 1295 1296 movdqa \XMM8, \TMP1 1297 pshufd $78, \XMM8, \TMP2 1298 pxor \XMM8, \TMP2 1299 movdqu HashKey(%arg2), \TMP5 1300 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1301 movaps 0x90(%arg1), \TMP3 1302 AESENC \TMP3, \XMM1 # Round 9 1303 AESENC \TMP3, \XMM2 1304 AESENC \TMP3, \XMM3 1305 AESENC \TMP3, \XMM4 1306 PCLMULQDQ 0x00, \TMP5, \XMM8 # XMM8 = a0*b0 1307 lea 0xa0(%arg1),%r10 1308 mov keysize,%eax 1309 shr $2,%eax # 128->4, 192->6, 256->8 1310 sub $4,%eax # 128->0, 192->2, 256->4 1311 jz aes_loop_par_dec_done\@ 1312 1313aes_loop_par_dec\@: 1314 MOVADQ (%r10),\TMP3 1315.irpc index, 1234 1316 AESENC \TMP3, %xmm\index 1317.endr 1318 add $16,%r10 1319 sub $1,%eax 1320 jnz aes_loop_par_dec\@ 1321 1322aes_loop_par_dec_done\@: 1323 MOVADQ (%r10), \TMP3 1324 AESENCLAST \TMP3, \XMM1 # last round 1325 AESENCLAST \TMP3, \XMM2 1326 AESENCLAST \TMP3, \XMM3 1327 AESENCLAST \TMP3, \XMM4 1328 movdqu HashKey_k(%arg2), \TMP5 1329 PCLMULQDQ 0x00, \TMP5, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1330 movdqu (%arg4,%r11,1), \TMP3 1331 pxor \TMP3, \XMM1 # Ciphertext/Plaintext XOR EK 1332 movdqu \XMM1, (%arg3,%r11,1) # Write to plaintext buffer 1333 movdqa \TMP3, \XMM1 1334 movdqu 16(%arg4,%r11,1), \TMP3 1335 pxor \TMP3, \XMM2 # Ciphertext/Plaintext XOR EK 1336 movdqu \XMM2, 16(%arg3,%r11,1) # Write to plaintext buffer 1337 movdqa \TMP3, \XMM2 1338 movdqu 32(%arg4,%r11,1), \TMP3 1339 pxor \TMP3, \XMM3 # Ciphertext/Plaintext XOR EK 1340 movdqu \XMM3, 32(%arg3,%r11,1) # Write to plaintext buffer 1341 movdqa \TMP3, \XMM3 1342 movdqu 48(%arg4,%r11,1), \TMP3 1343 pxor \TMP3, \XMM4 # Ciphertext/Plaintext XOR EK 1344 movdqu \XMM4, 48(%arg3,%r11,1) # Write to plaintext buffer 1345 movdqa \TMP3, \XMM4 1346 PSHUFB_XMM %xmm15, \XMM1 # perform a 16 byte swap 1347 PSHUFB_XMM %xmm15, \XMM2 # perform a 16 byte swap 1348 PSHUFB_XMM %xmm15, \XMM3 # perform a 16 byte swap 1349 PSHUFB_XMM %xmm15, \XMM4 # perform a 16 byte swap 1350 1351 pxor \TMP4, \TMP1 1352 pxor \XMM8, \XMM5 1353 pxor \TMP6, \TMP2 1354 pxor \TMP1, \TMP2 1355 pxor \XMM5, \TMP2 1356 movdqa \TMP2, \TMP3 1357 pslldq $8, \TMP3 # left shift TMP3 2 DWs 1358 psrldq $8, \TMP2 # right shift TMP2 2 DWs 1359 pxor \TMP3, \XMM5 1360 pxor \TMP2, \TMP1 # accumulate the results in TMP1:XMM5 1361 1362 # first phase of reduction 1363 1364 movdqa \XMM5, \TMP2 1365 movdqa \XMM5, \TMP3 1366 movdqa \XMM5, \TMP4 1367# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently 1368 pslld $31, \TMP2 # packed right shift << 31 1369 pslld $30, \TMP3 # packed right shift << 30 1370 pslld $25, \TMP4 # packed right shift << 25 1371 pxor \TMP3, \TMP2 # xor the shifted versions 1372 pxor \TMP4, \TMP2 1373 movdqa \TMP2, \TMP5 1374 psrldq $4, \TMP5 # right shift T5 1 DW 1375 pslldq $12, \TMP2 # left shift T2 3 DWs 1376 pxor \TMP2, \XMM5 1377 1378 # second phase of reduction 1379 1380 movdqa \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4 1381 movdqa \XMM5,\TMP3 1382 movdqa \XMM5,\TMP4 1383 psrld $1, \TMP2 # packed left shift >>1 1384 psrld $2, \TMP3 # packed left shift >>2 1385 psrld $7, \TMP4 # packed left shift >>7 1386 pxor \TMP3,\TMP2 # xor the shifted versions 1387 pxor \TMP4,\TMP2 1388 pxor \TMP5, \TMP2 1389 pxor \TMP2, \XMM5 1390 pxor \TMP1, \XMM5 # result is in TMP1 1391 1392 pxor \XMM5, \XMM1 1393.endm 1394 1395/* GHASH the last 4 ciphertext blocks. */ 1396.macro GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \ 1397TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst 1398 1399 # Multiply TMP6 * HashKey (using Karatsuba) 1400 1401 movdqa \XMM1, \TMP6 1402 pshufd $78, \XMM1, \TMP2 1403 pxor \XMM1, \TMP2 1404 movdqu HashKey_4(%arg2), \TMP5 1405 PCLMULQDQ 0x11, \TMP5, \TMP6 # TMP6 = a1*b1 1406 PCLMULQDQ 0x00, \TMP5, \XMM1 # XMM1 = a0*b0 1407 movdqu HashKey_4_k(%arg2), \TMP4 1408 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1409 movdqa \XMM1, \XMMDst 1410 movdqa \TMP2, \XMM1 # result in TMP6, XMMDst, XMM1 1411 1412 # Multiply TMP1 * HashKey (using Karatsuba) 1413 1414 movdqa \XMM2, \TMP1 1415 pshufd $78, \XMM2, \TMP2 1416 pxor \XMM2, \TMP2 1417 movdqu HashKey_3(%arg2), \TMP5 1418 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1419 PCLMULQDQ 0x00, \TMP5, \XMM2 # XMM2 = a0*b0 1420 movdqu HashKey_3_k(%arg2), \TMP4 1421 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1422 pxor \TMP1, \TMP6 1423 pxor \XMM2, \XMMDst 1424 pxor \TMP2, \XMM1 1425# results accumulated in TMP6, XMMDst, XMM1 1426 1427 # Multiply TMP1 * HashKey (using Karatsuba) 1428 1429 movdqa \XMM3, \TMP1 1430 pshufd $78, \XMM3, \TMP2 1431 pxor \XMM3, \TMP2 1432 movdqu HashKey_2(%arg2), \TMP5 1433 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1434 PCLMULQDQ 0x00, \TMP5, \XMM3 # XMM3 = a0*b0 1435 movdqu HashKey_2_k(%arg2), \TMP4 1436 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1437 pxor \TMP1, \TMP6 1438 pxor \XMM3, \XMMDst 1439 pxor \TMP2, \XMM1 # results accumulated in TMP6, XMMDst, XMM1 1440 1441 # Multiply TMP1 * HashKey (using Karatsuba) 1442 movdqa \XMM4, \TMP1 1443 pshufd $78, \XMM4, \TMP2 1444 pxor \XMM4, \TMP2 1445 movdqu HashKey(%arg2), \TMP5 1446 PCLMULQDQ 0x11, \TMP5, \TMP1 # TMP1 = a1*b1 1447 PCLMULQDQ 0x00, \TMP5, \XMM4 # XMM4 = a0*b0 1448 movdqu HashKey_k(%arg2), \TMP4 1449 PCLMULQDQ 0x00, \TMP4, \TMP2 # TMP2 = (a1+a0)*(b1+b0) 1450 pxor \TMP1, \TMP6 1451 pxor \XMM4, \XMMDst 1452 pxor \XMM1, \TMP2 1453 pxor \TMP6, \TMP2 1454 pxor \XMMDst, \TMP2 1455 # middle section of the temp results combined as in karatsuba algorithm 1456 movdqa \TMP2, \TMP4 1457 pslldq $8, \TMP4 # left shift TMP4 2 DWs 1458 psrldq $8, \TMP2 # right shift TMP2 2 DWs 1459 pxor \TMP4, \XMMDst 1460 pxor \TMP2, \TMP6 1461# TMP6:XMMDst holds the result of the accumulated carry-less multiplications 1462 # first phase of the reduction 1463 movdqa \XMMDst, \TMP2 1464 movdqa \XMMDst, \TMP3 1465 movdqa \XMMDst, \TMP4 1466# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently 1467 pslld $31, \TMP2 # packed right shifting << 31 1468 pslld $30, \TMP3 # packed right shifting << 30 1469 pslld $25, \TMP4 # packed right shifting << 25 1470 pxor \TMP3, \TMP2 # xor the shifted versions 1471 pxor \TMP4, \TMP2 1472 movdqa \TMP2, \TMP7 1473 psrldq $4, \TMP7 # right shift TMP7 1 DW 1474 pslldq $12, \TMP2 # left shift TMP2 3 DWs 1475 pxor \TMP2, \XMMDst 1476 1477 # second phase of the reduction 1478 movdqa \XMMDst, \TMP2 1479 # make 3 copies of XMMDst for doing 3 shift operations 1480 movdqa \XMMDst, \TMP3 1481 movdqa \XMMDst, \TMP4 1482 psrld $1, \TMP2 # packed left shift >> 1 1483 psrld $2, \TMP3 # packed left shift >> 2 1484 psrld $7, \TMP4 # packed left shift >> 7 1485 pxor \TMP3, \TMP2 # xor the shifted versions 1486 pxor \TMP4, \TMP2 1487 pxor \TMP7, \TMP2 1488 pxor \TMP2, \XMMDst 1489 pxor \TMP6, \XMMDst # reduced result is in XMMDst 1490.endm 1491 1492 1493/* Encryption of a single block 1494* uses eax & r10 1495*/ 1496 1497.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1 1498 1499 pxor (%arg1), \XMM0 1500 mov keysize,%eax 1501 shr $2,%eax # 128->4, 192->6, 256->8 1502 add $5,%eax # 128->9, 192->11, 256->13 1503 lea 16(%arg1), %r10 # get first expanded key address 1504 1505_esb_loop_\@: 1506 MOVADQ (%r10),\TMP1 1507 AESENC \TMP1,\XMM0 1508 add $16,%r10 1509 sub $1,%eax 1510 jnz _esb_loop_\@ 1511 1512 MOVADQ (%r10),\TMP1 1513 AESENCLAST \TMP1,\XMM0 1514.endm 1515/***************************************************************************** 1516* void aesni_gcm_dec(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1517* struct gcm_context_data *data 1518* // Context data 1519* u8 *out, // Plaintext output. Encrypt in-place is allowed. 1520* const u8 *in, // Ciphertext input 1521* u64 plaintext_len, // Length of data in bytes for decryption. 1522* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association) 1523* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) 1524* // concatenated with 0x00000001. 16-byte aligned pointer. 1525* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary. 1526* const u8 *aad, // Additional Authentication Data (AAD) 1527* u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes 1528* u8 *auth_tag, // Authenticated Tag output. The driver will compare this to the 1529* // given authentication tag and only return the plaintext if they match. 1530* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 1531* // (most likely), 12 or 8. 1532* 1533* Assumptions: 1534* 1535* keys: 1536* keys are pre-expanded and aligned to 16 bytes. we are using the first 1537* set of 11 keys in the data structure void *aes_ctx 1538* 1539* iv: 1540* 0 1 2 3 1541* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1542* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1543* | Salt (From the SA) | 1544* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1545* | Initialization Vector | 1546* | (This is the sequence number from IPSec header) | 1547* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1548* | 0x1 | 1549* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1550* 1551* 1552* 1553* AAD: 1554* AAD padded to 128 bits with 0 1555* for example, assume AAD is a u32 vector 1556* 1557* if AAD is 8 bytes: 1558* AAD[3] = {A0, A1}; 1559* padded AAD in xmm register = {A1 A0 0 0} 1560* 1561* 0 1 2 3 1562* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1563* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1564* | SPI (A1) | 1565* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1566* | 32-bit Sequence Number (A0) | 1567* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1568* | 0x0 | 1569* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1570* 1571* AAD Format with 32-bit Sequence Number 1572* 1573* if AAD is 12 bytes: 1574* AAD[3] = {A0, A1, A2}; 1575* padded AAD in xmm register = {A2 A1 A0 0} 1576* 1577* 0 1 2 3 1578* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1579* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1580* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1581* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1582* | SPI (A2) | 1583* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1584* | 64-bit Extended Sequence Number {A1,A0} | 1585* | | 1586* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1587* | 0x0 | 1588* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1589* 1590* AAD Format with 64-bit Extended Sequence Number 1591* 1592* poly = x^128 + x^127 + x^126 + x^121 + 1 1593* 1594*****************************************************************************/ 1595ENTRY(aesni_gcm_dec) 1596 FUNC_SAVE 1597 1598 GCM_INIT %arg6, arg7, arg8, arg9 1599 GCM_ENC_DEC dec 1600 GCM_COMPLETE arg10, arg11 1601 FUNC_RESTORE 1602 ret 1603ENDPROC(aesni_gcm_dec) 1604 1605 1606/***************************************************************************** 1607* void aesni_gcm_enc(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1608* struct gcm_context_data *data 1609* // Context data 1610* u8 *out, // Ciphertext output. Encrypt in-place is allowed. 1611* const u8 *in, // Plaintext input 1612* u64 plaintext_len, // Length of data in bytes for encryption. 1613* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association) 1614* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) 1615* // concatenated with 0x00000001. 16-byte aligned pointer. 1616* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary. 1617* const u8 *aad, // Additional Authentication Data (AAD) 1618* u64 aad_len, // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes 1619* u8 *auth_tag, // Authenticated Tag output. 1620* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely), 1621* // 12 or 8. 1622* 1623* Assumptions: 1624* 1625* keys: 1626* keys are pre-expanded and aligned to 16 bytes. we are using the 1627* first set of 11 keys in the data structure void *aes_ctx 1628* 1629* 1630* iv: 1631* 0 1 2 3 1632* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1633* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1634* | Salt (From the SA) | 1635* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1636* | Initialization Vector | 1637* | (This is the sequence number from IPSec header) | 1638* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1639* | 0x1 | 1640* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1641* 1642* 1643* 1644* AAD: 1645* AAD padded to 128 bits with 0 1646* for example, assume AAD is a u32 vector 1647* 1648* if AAD is 8 bytes: 1649* AAD[3] = {A0, A1}; 1650* padded AAD in xmm register = {A1 A0 0 0} 1651* 1652* 0 1 2 3 1653* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1654* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1655* | SPI (A1) | 1656* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1657* | 32-bit Sequence Number (A0) | 1658* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1659* | 0x0 | 1660* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1661* 1662* AAD Format with 32-bit Sequence Number 1663* 1664* if AAD is 12 bytes: 1665* AAD[3] = {A0, A1, A2}; 1666* padded AAD in xmm register = {A2 A1 A0 0} 1667* 1668* 0 1 2 3 1669* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1670* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1671* | SPI (A2) | 1672* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1673* | 64-bit Extended Sequence Number {A1,A0} | 1674* | | 1675* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1676* | 0x0 | 1677* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1678* 1679* AAD Format with 64-bit Extended Sequence Number 1680* 1681* poly = x^128 + x^127 + x^126 + x^121 + 1 1682***************************************************************************/ 1683ENTRY(aesni_gcm_enc) 1684 FUNC_SAVE 1685 1686 GCM_INIT %arg6, arg7, arg8, arg9 1687 GCM_ENC_DEC enc 1688 1689 GCM_COMPLETE arg10, arg11 1690 FUNC_RESTORE 1691 ret 1692ENDPROC(aesni_gcm_enc) 1693 1694/***************************************************************************** 1695* void aesni_gcm_init(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1696* struct gcm_context_data *data, 1697* // context data 1698* u8 *iv, // Pre-counter block j0: 4 byte salt (from Security Association) 1699* // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload) 1700* // concatenated with 0x00000001. 16-byte aligned pointer. 1701* u8 *hash_subkey, // H, the Hash sub key input. Data starts on a 16-byte boundary. 1702* const u8 *aad, // Additional Authentication Data (AAD) 1703* u64 aad_len) // Length of AAD in bytes. 1704*/ 1705ENTRY(aesni_gcm_init) 1706 FUNC_SAVE 1707 GCM_INIT %arg3, %arg4,%arg5, %arg6 1708 FUNC_RESTORE 1709 ret 1710ENDPROC(aesni_gcm_init) 1711 1712/***************************************************************************** 1713* void aesni_gcm_enc_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1714* struct gcm_context_data *data, 1715* // context data 1716* u8 *out, // Ciphertext output. Encrypt in-place is allowed. 1717* const u8 *in, // Plaintext input 1718* u64 plaintext_len, // Length of data in bytes for encryption. 1719*/ 1720ENTRY(aesni_gcm_enc_update) 1721 FUNC_SAVE 1722 GCM_ENC_DEC enc 1723 FUNC_RESTORE 1724 ret 1725ENDPROC(aesni_gcm_enc_update) 1726 1727/***************************************************************************** 1728* void aesni_gcm_dec_update(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1729* struct gcm_context_data *data, 1730* // context data 1731* u8 *out, // Ciphertext output. Encrypt in-place is allowed. 1732* const u8 *in, // Plaintext input 1733* u64 plaintext_len, // Length of data in bytes for encryption. 1734*/ 1735ENTRY(aesni_gcm_dec_update) 1736 FUNC_SAVE 1737 GCM_ENC_DEC dec 1738 FUNC_RESTORE 1739 ret 1740ENDPROC(aesni_gcm_dec_update) 1741 1742/***************************************************************************** 1743* void aesni_gcm_finalize(void *aes_ctx, // AES Key schedule. Starts on a 16 byte boundary. 1744* struct gcm_context_data *data, 1745* // context data 1746* u8 *auth_tag, // Authenticated Tag output. 1747* u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16 (most likely), 1748* // 12 or 8. 1749*/ 1750ENTRY(aesni_gcm_finalize) 1751 FUNC_SAVE 1752 GCM_COMPLETE %arg3 %arg4 1753 FUNC_RESTORE 1754 ret 1755ENDPROC(aesni_gcm_finalize) 1756 1757#endif 1758 1759 1760.align 4 1761_key_expansion_128: 1762_key_expansion_256a: 1763 pshufd $0b11111111, %xmm1, %xmm1 1764 shufps $0b00010000, %xmm0, %xmm4 1765 pxor %xmm4, %xmm0 1766 shufps $0b10001100, %xmm0, %xmm4 1767 pxor %xmm4, %xmm0 1768 pxor %xmm1, %xmm0 1769 movaps %xmm0, (TKEYP) 1770 add $0x10, TKEYP 1771 ret 1772ENDPROC(_key_expansion_128) 1773ENDPROC(_key_expansion_256a) 1774 1775.align 4 1776_key_expansion_192a: 1777 pshufd $0b01010101, %xmm1, %xmm1 1778 shufps $0b00010000, %xmm0, %xmm4 1779 pxor %xmm4, %xmm0 1780 shufps $0b10001100, %xmm0, %xmm4 1781 pxor %xmm4, %xmm0 1782 pxor %xmm1, %xmm0 1783 1784 movaps %xmm2, %xmm5 1785 movaps %xmm2, %xmm6 1786 pslldq $4, %xmm5 1787 pshufd $0b11111111, %xmm0, %xmm3 1788 pxor %xmm3, %xmm2 1789 pxor %xmm5, %xmm2 1790 1791 movaps %xmm0, %xmm1 1792 shufps $0b01000100, %xmm0, %xmm6 1793 movaps %xmm6, (TKEYP) 1794 shufps $0b01001110, %xmm2, %xmm1 1795 movaps %xmm1, 0x10(TKEYP) 1796 add $0x20, TKEYP 1797 ret 1798ENDPROC(_key_expansion_192a) 1799 1800.align 4 1801_key_expansion_192b: 1802 pshufd $0b01010101, %xmm1, %xmm1 1803 shufps $0b00010000, %xmm0, %xmm4 1804 pxor %xmm4, %xmm0 1805 shufps $0b10001100, %xmm0, %xmm4 1806 pxor %xmm4, %xmm0 1807 pxor %xmm1, %xmm0 1808 1809 movaps %xmm2, %xmm5 1810 pslldq $4, %xmm5 1811 pshufd $0b11111111, %xmm0, %xmm3 1812 pxor %xmm3, %xmm2 1813 pxor %xmm5, %xmm2 1814 1815 movaps %xmm0, (TKEYP) 1816 add $0x10, TKEYP 1817 ret 1818ENDPROC(_key_expansion_192b) 1819 1820.align 4 1821_key_expansion_256b: 1822 pshufd $0b10101010, %xmm1, %xmm1 1823 shufps $0b00010000, %xmm2, %xmm4 1824 pxor %xmm4, %xmm2 1825 shufps $0b10001100, %xmm2, %xmm4 1826 pxor %xmm4, %xmm2 1827 pxor %xmm1, %xmm2 1828 movaps %xmm2, (TKEYP) 1829 add $0x10, TKEYP 1830 ret 1831ENDPROC(_key_expansion_256b) 1832 1833/* 1834 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, 1835 * unsigned int key_len) 1836 */ 1837ENTRY(aesni_set_key) 1838 FRAME_BEGIN 1839#ifndef __x86_64__ 1840 pushl KEYP 1841 movl (FRAME_OFFSET+8)(%esp), KEYP # ctx 1842 movl (FRAME_OFFSET+12)(%esp), UKEYP # in_key 1843 movl (FRAME_OFFSET+16)(%esp), %edx # key_len 1844#endif 1845 movups (UKEYP), %xmm0 # user key (first 16 bytes) 1846 movaps %xmm0, (KEYP) 1847 lea 0x10(KEYP), TKEYP # key addr 1848 movl %edx, 480(KEYP) 1849 pxor %xmm4, %xmm4 # xmm4 is assumed 0 in _key_expansion_x 1850 cmp $24, %dl 1851 jb .Lenc_key128 1852 je .Lenc_key192 1853 movups 0x10(UKEYP), %xmm2 # other user key 1854 movaps %xmm2, (TKEYP) 1855 add $0x10, TKEYP 1856 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1 1857 call _key_expansion_256a 1858 AESKEYGENASSIST 0x1 %xmm0 %xmm1 1859 call _key_expansion_256b 1860 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2 1861 call _key_expansion_256a 1862 AESKEYGENASSIST 0x2 %xmm0 %xmm1 1863 call _key_expansion_256b 1864 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3 1865 call _key_expansion_256a 1866 AESKEYGENASSIST 0x4 %xmm0 %xmm1 1867 call _key_expansion_256b 1868 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4 1869 call _key_expansion_256a 1870 AESKEYGENASSIST 0x8 %xmm0 %xmm1 1871 call _key_expansion_256b 1872 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5 1873 call _key_expansion_256a 1874 AESKEYGENASSIST 0x10 %xmm0 %xmm1 1875 call _key_expansion_256b 1876 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6 1877 call _key_expansion_256a 1878 AESKEYGENASSIST 0x20 %xmm0 %xmm1 1879 call _key_expansion_256b 1880 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7 1881 call _key_expansion_256a 1882 jmp .Ldec_key 1883.Lenc_key192: 1884 movq 0x10(UKEYP), %xmm2 # other user key 1885 AESKEYGENASSIST 0x1 %xmm2 %xmm1 # round 1 1886 call _key_expansion_192a 1887 AESKEYGENASSIST 0x2 %xmm2 %xmm1 # round 2 1888 call _key_expansion_192b 1889 AESKEYGENASSIST 0x4 %xmm2 %xmm1 # round 3 1890 call _key_expansion_192a 1891 AESKEYGENASSIST 0x8 %xmm2 %xmm1 # round 4 1892 call _key_expansion_192b 1893 AESKEYGENASSIST 0x10 %xmm2 %xmm1 # round 5 1894 call _key_expansion_192a 1895 AESKEYGENASSIST 0x20 %xmm2 %xmm1 # round 6 1896 call _key_expansion_192b 1897 AESKEYGENASSIST 0x40 %xmm2 %xmm1 # round 7 1898 call _key_expansion_192a 1899 AESKEYGENASSIST 0x80 %xmm2 %xmm1 # round 8 1900 call _key_expansion_192b 1901 jmp .Ldec_key 1902.Lenc_key128: 1903 AESKEYGENASSIST 0x1 %xmm0 %xmm1 # round 1 1904 call _key_expansion_128 1905 AESKEYGENASSIST 0x2 %xmm0 %xmm1 # round 2 1906 call _key_expansion_128 1907 AESKEYGENASSIST 0x4 %xmm0 %xmm1 # round 3 1908 call _key_expansion_128 1909 AESKEYGENASSIST 0x8 %xmm0 %xmm1 # round 4 1910 call _key_expansion_128 1911 AESKEYGENASSIST 0x10 %xmm0 %xmm1 # round 5 1912 call _key_expansion_128 1913 AESKEYGENASSIST 0x20 %xmm0 %xmm1 # round 6 1914 call _key_expansion_128 1915 AESKEYGENASSIST 0x40 %xmm0 %xmm1 # round 7 1916 call _key_expansion_128 1917 AESKEYGENASSIST 0x80 %xmm0 %xmm1 # round 8 1918 call _key_expansion_128 1919 AESKEYGENASSIST 0x1b %xmm0 %xmm1 # round 9 1920 call _key_expansion_128 1921 AESKEYGENASSIST 0x36 %xmm0 %xmm1 # round 10 1922 call _key_expansion_128 1923.Ldec_key: 1924 sub $0x10, TKEYP 1925 movaps (KEYP), %xmm0 1926 movaps (TKEYP), %xmm1 1927 movaps %xmm0, 240(TKEYP) 1928 movaps %xmm1, 240(KEYP) 1929 add $0x10, KEYP 1930 lea 240-16(TKEYP), UKEYP 1931.align 4 1932.Ldec_key_loop: 1933 movaps (KEYP), %xmm0 1934 AESIMC %xmm0 %xmm1 1935 movaps %xmm1, (UKEYP) 1936 add $0x10, KEYP 1937 sub $0x10, UKEYP 1938 cmp TKEYP, KEYP 1939 jb .Ldec_key_loop 1940 xor AREG, AREG 1941#ifndef __x86_64__ 1942 popl KEYP 1943#endif 1944 FRAME_END 1945 ret 1946ENDPROC(aesni_set_key) 1947 1948/* 1949 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src) 1950 */ 1951ENTRY(aesni_enc) 1952 FRAME_BEGIN 1953#ifndef __x86_64__ 1954 pushl KEYP 1955 pushl KLEN 1956 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx 1957 movl (FRAME_OFFSET+16)(%esp), OUTP # dst 1958 movl (FRAME_OFFSET+20)(%esp), INP # src 1959#endif 1960 movl 480(KEYP), KLEN # key length 1961 movups (INP), STATE # input 1962 call _aesni_enc1 1963 movups STATE, (OUTP) # output 1964#ifndef __x86_64__ 1965 popl KLEN 1966 popl KEYP 1967#endif 1968 FRAME_END 1969 ret 1970ENDPROC(aesni_enc) 1971 1972/* 1973 * _aesni_enc1: internal ABI 1974 * input: 1975 * KEYP: key struct pointer 1976 * KLEN: round count 1977 * STATE: initial state (input) 1978 * output: 1979 * STATE: finial state (output) 1980 * changed: 1981 * KEY 1982 * TKEYP (T1) 1983 */ 1984.align 4 1985_aesni_enc1: 1986 movaps (KEYP), KEY # key 1987 mov KEYP, TKEYP 1988 pxor KEY, STATE # round 0 1989 add $0x30, TKEYP 1990 cmp $24, KLEN 1991 jb .Lenc128 1992 lea 0x20(TKEYP), TKEYP 1993 je .Lenc192 1994 add $0x20, TKEYP 1995 movaps -0x60(TKEYP), KEY 1996 AESENC KEY STATE 1997 movaps -0x50(TKEYP), KEY 1998 AESENC KEY STATE 1999.align 4 2000.Lenc192: 2001 movaps -0x40(TKEYP), KEY 2002 AESENC KEY STATE 2003 movaps -0x30(TKEYP), KEY 2004 AESENC KEY STATE 2005.align 4 2006.Lenc128: 2007 movaps -0x20(TKEYP), KEY 2008 AESENC KEY STATE 2009 movaps -0x10(TKEYP), KEY 2010 AESENC KEY STATE 2011 movaps (TKEYP), KEY 2012 AESENC KEY STATE 2013 movaps 0x10(TKEYP), KEY 2014 AESENC KEY STATE 2015 movaps 0x20(TKEYP), KEY 2016 AESENC KEY STATE 2017 movaps 0x30(TKEYP), KEY 2018 AESENC KEY STATE 2019 movaps 0x40(TKEYP), KEY 2020 AESENC KEY STATE 2021 movaps 0x50(TKEYP), KEY 2022 AESENC KEY STATE 2023 movaps 0x60(TKEYP), KEY 2024 AESENC KEY STATE 2025 movaps 0x70(TKEYP), KEY 2026 AESENCLAST KEY STATE 2027 ret 2028ENDPROC(_aesni_enc1) 2029 2030/* 2031 * _aesni_enc4: internal ABI 2032 * input: 2033 * KEYP: key struct pointer 2034 * KLEN: round count 2035 * STATE1: initial state (input) 2036 * STATE2 2037 * STATE3 2038 * STATE4 2039 * output: 2040 * STATE1: finial state (output) 2041 * STATE2 2042 * STATE3 2043 * STATE4 2044 * changed: 2045 * KEY 2046 * TKEYP (T1) 2047 */ 2048.align 4 2049_aesni_enc4: 2050 movaps (KEYP), KEY # key 2051 mov KEYP, TKEYP 2052 pxor KEY, STATE1 # round 0 2053 pxor KEY, STATE2 2054 pxor KEY, STATE3 2055 pxor KEY, STATE4 2056 add $0x30, TKEYP 2057 cmp $24, KLEN 2058 jb .L4enc128 2059 lea 0x20(TKEYP), TKEYP 2060 je .L4enc192 2061 add $0x20, TKEYP 2062 movaps -0x60(TKEYP), KEY 2063 AESENC KEY STATE1 2064 AESENC KEY STATE2 2065 AESENC KEY STATE3 2066 AESENC KEY STATE4 2067 movaps -0x50(TKEYP), KEY 2068 AESENC KEY STATE1 2069 AESENC KEY STATE2 2070 AESENC KEY STATE3 2071 AESENC KEY STATE4 2072#.align 4 2073.L4enc192: 2074 movaps -0x40(TKEYP), KEY 2075 AESENC KEY STATE1 2076 AESENC KEY STATE2 2077 AESENC KEY STATE3 2078 AESENC KEY STATE4 2079 movaps -0x30(TKEYP), KEY 2080 AESENC KEY STATE1 2081 AESENC KEY STATE2 2082 AESENC KEY STATE3 2083 AESENC KEY STATE4 2084#.align 4 2085.L4enc128: 2086 movaps -0x20(TKEYP), KEY 2087 AESENC KEY STATE1 2088 AESENC KEY STATE2 2089 AESENC KEY STATE3 2090 AESENC KEY STATE4 2091 movaps -0x10(TKEYP), KEY 2092 AESENC KEY STATE1 2093 AESENC KEY STATE2 2094 AESENC KEY STATE3 2095 AESENC KEY STATE4 2096 movaps (TKEYP), KEY 2097 AESENC KEY STATE1 2098 AESENC KEY STATE2 2099 AESENC KEY STATE3 2100 AESENC KEY STATE4 2101 movaps 0x10(TKEYP), KEY 2102 AESENC KEY STATE1 2103 AESENC KEY STATE2 2104 AESENC KEY STATE3 2105 AESENC KEY STATE4 2106 movaps 0x20(TKEYP), KEY 2107 AESENC KEY STATE1 2108 AESENC KEY STATE2 2109 AESENC KEY STATE3 2110 AESENC KEY STATE4 2111 movaps 0x30(TKEYP), KEY 2112 AESENC KEY STATE1 2113 AESENC KEY STATE2 2114 AESENC KEY STATE3 2115 AESENC KEY STATE4 2116 movaps 0x40(TKEYP), KEY 2117 AESENC KEY STATE1 2118 AESENC KEY STATE2 2119 AESENC KEY STATE3 2120 AESENC KEY STATE4 2121 movaps 0x50(TKEYP), KEY 2122 AESENC KEY STATE1 2123 AESENC KEY STATE2 2124 AESENC KEY STATE3 2125 AESENC KEY STATE4 2126 movaps 0x60(TKEYP), KEY 2127 AESENC KEY STATE1 2128 AESENC KEY STATE2 2129 AESENC KEY STATE3 2130 AESENC KEY STATE4 2131 movaps 0x70(TKEYP), KEY 2132 AESENCLAST KEY STATE1 # last round 2133 AESENCLAST KEY STATE2 2134 AESENCLAST KEY STATE3 2135 AESENCLAST KEY STATE4 2136 ret 2137ENDPROC(_aesni_enc4) 2138 2139/* 2140 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src) 2141 */ 2142ENTRY(aesni_dec) 2143 FRAME_BEGIN 2144#ifndef __x86_64__ 2145 pushl KEYP 2146 pushl KLEN 2147 movl (FRAME_OFFSET+12)(%esp), KEYP # ctx 2148 movl (FRAME_OFFSET+16)(%esp), OUTP # dst 2149 movl (FRAME_OFFSET+20)(%esp), INP # src 2150#endif 2151 mov 480(KEYP), KLEN # key length 2152 add $240, KEYP 2153 movups (INP), STATE # input 2154 call _aesni_dec1 2155 movups STATE, (OUTP) #output 2156#ifndef __x86_64__ 2157 popl KLEN 2158 popl KEYP 2159#endif 2160 FRAME_END 2161 ret 2162ENDPROC(aesni_dec) 2163 2164/* 2165 * _aesni_dec1: internal ABI 2166 * input: 2167 * KEYP: key struct pointer 2168 * KLEN: key length 2169 * STATE: initial state (input) 2170 * output: 2171 * STATE: finial state (output) 2172 * changed: 2173 * KEY 2174 * TKEYP (T1) 2175 */ 2176.align 4 2177_aesni_dec1: 2178 movaps (KEYP), KEY # key 2179 mov KEYP, TKEYP 2180 pxor KEY, STATE # round 0 2181 add $0x30, TKEYP 2182 cmp $24, KLEN 2183 jb .Ldec128 2184 lea 0x20(TKEYP), TKEYP 2185 je .Ldec192 2186 add $0x20, TKEYP 2187 movaps -0x60(TKEYP), KEY 2188 AESDEC KEY STATE 2189 movaps -0x50(TKEYP), KEY 2190 AESDEC KEY STATE 2191.align 4 2192.Ldec192: 2193 movaps -0x40(TKEYP), KEY 2194 AESDEC KEY STATE 2195 movaps -0x30(TKEYP), KEY 2196 AESDEC KEY STATE 2197.align 4 2198.Ldec128: 2199 movaps -0x20(TKEYP), KEY 2200 AESDEC KEY STATE 2201 movaps -0x10(TKEYP), KEY 2202 AESDEC KEY STATE 2203 movaps (TKEYP), KEY 2204 AESDEC KEY STATE 2205 movaps 0x10(TKEYP), KEY 2206 AESDEC KEY STATE 2207 movaps 0x20(TKEYP), KEY 2208 AESDEC KEY STATE 2209 movaps 0x30(TKEYP), KEY 2210 AESDEC KEY STATE 2211 movaps 0x40(TKEYP), KEY 2212 AESDEC KEY STATE 2213 movaps 0x50(TKEYP), KEY 2214 AESDEC KEY STATE 2215 movaps 0x60(TKEYP), KEY 2216 AESDEC KEY STATE 2217 movaps 0x70(TKEYP), KEY 2218 AESDECLAST KEY STATE 2219 ret 2220ENDPROC(_aesni_dec1) 2221 2222/* 2223 * _aesni_dec4: internal ABI 2224 * input: 2225 * KEYP: key struct pointer 2226 * KLEN: key length 2227 * STATE1: initial state (input) 2228 * STATE2 2229 * STATE3 2230 * STATE4 2231 * output: 2232 * STATE1: finial state (output) 2233 * STATE2 2234 * STATE3 2235 * STATE4 2236 * changed: 2237 * KEY 2238 * TKEYP (T1) 2239 */ 2240.align 4 2241_aesni_dec4: 2242 movaps (KEYP), KEY # key 2243 mov KEYP, TKEYP 2244 pxor KEY, STATE1 # round 0 2245 pxor KEY, STATE2 2246 pxor KEY, STATE3 2247 pxor KEY, STATE4 2248 add $0x30, TKEYP 2249 cmp $24, KLEN 2250 jb .L4dec128 2251 lea 0x20(TKEYP), TKEYP 2252 je .L4dec192 2253 add $0x20, TKEYP 2254 movaps -0x60(TKEYP), KEY 2255 AESDEC KEY STATE1 2256 AESDEC KEY STATE2 2257 AESDEC KEY STATE3 2258 AESDEC KEY STATE4 2259 movaps -0x50(TKEYP), KEY 2260 AESDEC KEY STATE1 2261 AESDEC KEY STATE2 2262 AESDEC KEY STATE3 2263 AESDEC KEY STATE4 2264.align 4 2265.L4dec192: 2266 movaps -0x40(TKEYP), KEY 2267 AESDEC KEY STATE1 2268 AESDEC KEY STATE2 2269 AESDEC KEY STATE3 2270 AESDEC KEY STATE4 2271 movaps -0x30(TKEYP), KEY 2272 AESDEC KEY STATE1 2273 AESDEC KEY STATE2 2274 AESDEC KEY STATE3 2275 AESDEC KEY STATE4 2276.align 4 2277.L4dec128: 2278 movaps -0x20(TKEYP), KEY 2279 AESDEC KEY STATE1 2280 AESDEC KEY STATE2 2281 AESDEC KEY STATE3 2282 AESDEC KEY STATE4 2283 movaps -0x10(TKEYP), KEY 2284 AESDEC KEY STATE1 2285 AESDEC KEY STATE2 2286 AESDEC KEY STATE3 2287 AESDEC KEY STATE4 2288 movaps (TKEYP), KEY 2289 AESDEC KEY STATE1 2290 AESDEC KEY STATE2 2291 AESDEC KEY STATE3 2292 AESDEC KEY STATE4 2293 movaps 0x10(TKEYP), KEY 2294 AESDEC KEY STATE1 2295 AESDEC KEY STATE2 2296 AESDEC KEY STATE3 2297 AESDEC KEY STATE4 2298 movaps 0x20(TKEYP), KEY 2299 AESDEC KEY STATE1 2300 AESDEC KEY STATE2 2301 AESDEC KEY STATE3 2302 AESDEC KEY STATE4 2303 movaps 0x30(TKEYP), KEY 2304 AESDEC KEY STATE1 2305 AESDEC KEY STATE2 2306 AESDEC KEY STATE3 2307 AESDEC KEY STATE4 2308 movaps 0x40(TKEYP), KEY 2309 AESDEC KEY STATE1 2310 AESDEC KEY STATE2 2311 AESDEC KEY STATE3 2312 AESDEC KEY STATE4 2313 movaps 0x50(TKEYP), KEY 2314 AESDEC KEY STATE1 2315 AESDEC KEY STATE2 2316 AESDEC KEY STATE3 2317 AESDEC KEY STATE4 2318 movaps 0x60(TKEYP), KEY 2319 AESDEC KEY STATE1 2320 AESDEC KEY STATE2 2321 AESDEC KEY STATE3 2322 AESDEC KEY STATE4 2323 movaps 0x70(TKEYP), KEY 2324 AESDECLAST KEY STATE1 # last round 2325 AESDECLAST KEY STATE2 2326 AESDECLAST KEY STATE3 2327 AESDECLAST KEY STATE4 2328 ret 2329ENDPROC(_aesni_dec4) 2330 2331/* 2332 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2333 * size_t len) 2334 */ 2335ENTRY(aesni_ecb_enc) 2336 FRAME_BEGIN 2337#ifndef __x86_64__ 2338 pushl LEN 2339 pushl KEYP 2340 pushl KLEN 2341 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx 2342 movl (FRAME_OFFSET+20)(%esp), OUTP # dst 2343 movl (FRAME_OFFSET+24)(%esp), INP # src 2344 movl (FRAME_OFFSET+28)(%esp), LEN # len 2345#endif 2346 test LEN, LEN # check length 2347 jz .Lecb_enc_ret 2348 mov 480(KEYP), KLEN 2349 cmp $16, LEN 2350 jb .Lecb_enc_ret 2351 cmp $64, LEN 2352 jb .Lecb_enc_loop1 2353.align 4 2354.Lecb_enc_loop4: 2355 movups (INP), STATE1 2356 movups 0x10(INP), STATE2 2357 movups 0x20(INP), STATE3 2358 movups 0x30(INP), STATE4 2359 call _aesni_enc4 2360 movups STATE1, (OUTP) 2361 movups STATE2, 0x10(OUTP) 2362 movups STATE3, 0x20(OUTP) 2363 movups STATE4, 0x30(OUTP) 2364 sub $64, LEN 2365 add $64, INP 2366 add $64, OUTP 2367 cmp $64, LEN 2368 jge .Lecb_enc_loop4 2369 cmp $16, LEN 2370 jb .Lecb_enc_ret 2371.align 4 2372.Lecb_enc_loop1: 2373 movups (INP), STATE1 2374 call _aesni_enc1 2375 movups STATE1, (OUTP) 2376 sub $16, LEN 2377 add $16, INP 2378 add $16, OUTP 2379 cmp $16, LEN 2380 jge .Lecb_enc_loop1 2381.Lecb_enc_ret: 2382#ifndef __x86_64__ 2383 popl KLEN 2384 popl KEYP 2385 popl LEN 2386#endif 2387 FRAME_END 2388 ret 2389ENDPROC(aesni_ecb_enc) 2390 2391/* 2392 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2393 * size_t len); 2394 */ 2395ENTRY(aesni_ecb_dec) 2396 FRAME_BEGIN 2397#ifndef __x86_64__ 2398 pushl LEN 2399 pushl KEYP 2400 pushl KLEN 2401 movl (FRAME_OFFSET+16)(%esp), KEYP # ctx 2402 movl (FRAME_OFFSET+20)(%esp), OUTP # dst 2403 movl (FRAME_OFFSET+24)(%esp), INP # src 2404 movl (FRAME_OFFSET+28)(%esp), LEN # len 2405#endif 2406 test LEN, LEN 2407 jz .Lecb_dec_ret 2408 mov 480(KEYP), KLEN 2409 add $240, KEYP 2410 cmp $16, LEN 2411 jb .Lecb_dec_ret 2412 cmp $64, LEN 2413 jb .Lecb_dec_loop1 2414.align 4 2415.Lecb_dec_loop4: 2416 movups (INP), STATE1 2417 movups 0x10(INP), STATE2 2418 movups 0x20(INP), STATE3 2419 movups 0x30(INP), STATE4 2420 call _aesni_dec4 2421 movups STATE1, (OUTP) 2422 movups STATE2, 0x10(OUTP) 2423 movups STATE3, 0x20(OUTP) 2424 movups STATE4, 0x30(OUTP) 2425 sub $64, LEN 2426 add $64, INP 2427 add $64, OUTP 2428 cmp $64, LEN 2429 jge .Lecb_dec_loop4 2430 cmp $16, LEN 2431 jb .Lecb_dec_ret 2432.align 4 2433.Lecb_dec_loop1: 2434 movups (INP), STATE1 2435 call _aesni_dec1 2436 movups STATE1, (OUTP) 2437 sub $16, LEN 2438 add $16, INP 2439 add $16, OUTP 2440 cmp $16, LEN 2441 jge .Lecb_dec_loop1 2442.Lecb_dec_ret: 2443#ifndef __x86_64__ 2444 popl KLEN 2445 popl KEYP 2446 popl LEN 2447#endif 2448 FRAME_END 2449 ret 2450ENDPROC(aesni_ecb_dec) 2451 2452/* 2453 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2454 * size_t len, u8 *iv) 2455 */ 2456ENTRY(aesni_cbc_enc) 2457 FRAME_BEGIN 2458#ifndef __x86_64__ 2459 pushl IVP 2460 pushl LEN 2461 pushl KEYP 2462 pushl KLEN 2463 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx 2464 movl (FRAME_OFFSET+24)(%esp), OUTP # dst 2465 movl (FRAME_OFFSET+28)(%esp), INP # src 2466 movl (FRAME_OFFSET+32)(%esp), LEN # len 2467 movl (FRAME_OFFSET+36)(%esp), IVP # iv 2468#endif 2469 cmp $16, LEN 2470 jb .Lcbc_enc_ret 2471 mov 480(KEYP), KLEN 2472 movups (IVP), STATE # load iv as initial state 2473.align 4 2474.Lcbc_enc_loop: 2475 movups (INP), IN # load input 2476 pxor IN, STATE 2477 call _aesni_enc1 2478 movups STATE, (OUTP) # store output 2479 sub $16, LEN 2480 add $16, INP 2481 add $16, OUTP 2482 cmp $16, LEN 2483 jge .Lcbc_enc_loop 2484 movups STATE, (IVP) 2485.Lcbc_enc_ret: 2486#ifndef __x86_64__ 2487 popl KLEN 2488 popl KEYP 2489 popl LEN 2490 popl IVP 2491#endif 2492 FRAME_END 2493 ret 2494ENDPROC(aesni_cbc_enc) 2495 2496/* 2497 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2498 * size_t len, u8 *iv) 2499 */ 2500ENTRY(aesni_cbc_dec) 2501 FRAME_BEGIN 2502#ifndef __x86_64__ 2503 pushl IVP 2504 pushl LEN 2505 pushl KEYP 2506 pushl KLEN 2507 movl (FRAME_OFFSET+20)(%esp), KEYP # ctx 2508 movl (FRAME_OFFSET+24)(%esp), OUTP # dst 2509 movl (FRAME_OFFSET+28)(%esp), INP # src 2510 movl (FRAME_OFFSET+32)(%esp), LEN # len 2511 movl (FRAME_OFFSET+36)(%esp), IVP # iv 2512#endif 2513 cmp $16, LEN 2514 jb .Lcbc_dec_just_ret 2515 mov 480(KEYP), KLEN 2516 add $240, KEYP 2517 movups (IVP), IV 2518 cmp $64, LEN 2519 jb .Lcbc_dec_loop1 2520.align 4 2521.Lcbc_dec_loop4: 2522 movups (INP), IN1 2523 movaps IN1, STATE1 2524 movups 0x10(INP), IN2 2525 movaps IN2, STATE2 2526#ifdef __x86_64__ 2527 movups 0x20(INP), IN3 2528 movaps IN3, STATE3 2529 movups 0x30(INP), IN4 2530 movaps IN4, STATE4 2531#else 2532 movups 0x20(INP), IN1 2533 movaps IN1, STATE3 2534 movups 0x30(INP), IN2 2535 movaps IN2, STATE4 2536#endif 2537 call _aesni_dec4 2538 pxor IV, STATE1 2539#ifdef __x86_64__ 2540 pxor IN1, STATE2 2541 pxor IN2, STATE3 2542 pxor IN3, STATE4 2543 movaps IN4, IV 2544#else 2545 pxor IN1, STATE4 2546 movaps IN2, IV 2547 movups (INP), IN1 2548 pxor IN1, STATE2 2549 movups 0x10(INP), IN2 2550 pxor IN2, STATE3 2551#endif 2552 movups STATE1, (OUTP) 2553 movups STATE2, 0x10(OUTP) 2554 movups STATE3, 0x20(OUTP) 2555 movups STATE4, 0x30(OUTP) 2556 sub $64, LEN 2557 add $64, INP 2558 add $64, OUTP 2559 cmp $64, LEN 2560 jge .Lcbc_dec_loop4 2561 cmp $16, LEN 2562 jb .Lcbc_dec_ret 2563.align 4 2564.Lcbc_dec_loop1: 2565 movups (INP), IN 2566 movaps IN, STATE 2567 call _aesni_dec1 2568 pxor IV, STATE 2569 movups STATE, (OUTP) 2570 movaps IN, IV 2571 sub $16, LEN 2572 add $16, INP 2573 add $16, OUTP 2574 cmp $16, LEN 2575 jge .Lcbc_dec_loop1 2576.Lcbc_dec_ret: 2577 movups IV, (IVP) 2578.Lcbc_dec_just_ret: 2579#ifndef __x86_64__ 2580 popl KLEN 2581 popl KEYP 2582 popl LEN 2583 popl IVP 2584#endif 2585 FRAME_END 2586 ret 2587ENDPROC(aesni_cbc_dec) 2588 2589#ifdef __x86_64__ 2590.pushsection .rodata 2591.align 16 2592.Lbswap_mask: 2593 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 2594.popsection 2595 2596/* 2597 * _aesni_inc_init: internal ABI 2598 * setup registers used by _aesni_inc 2599 * input: 2600 * IV 2601 * output: 2602 * CTR: == IV, in little endian 2603 * TCTR_LOW: == lower qword of CTR 2604 * INC: == 1, in little endian 2605 * BSWAP_MASK == endian swapping mask 2606 */ 2607.align 4 2608_aesni_inc_init: 2609 movaps .Lbswap_mask, BSWAP_MASK 2610 movaps IV, CTR 2611 PSHUFB_XMM BSWAP_MASK CTR 2612 mov $1, TCTR_LOW 2613 MOVQ_R64_XMM TCTR_LOW INC 2614 MOVQ_R64_XMM CTR TCTR_LOW 2615 ret 2616ENDPROC(_aesni_inc_init) 2617 2618/* 2619 * _aesni_inc: internal ABI 2620 * Increase IV by 1, IV is in big endian 2621 * input: 2622 * IV 2623 * CTR: == IV, in little endian 2624 * TCTR_LOW: == lower qword of CTR 2625 * INC: == 1, in little endian 2626 * BSWAP_MASK == endian swapping mask 2627 * output: 2628 * IV: Increase by 1 2629 * changed: 2630 * CTR: == output IV, in little endian 2631 * TCTR_LOW: == lower qword of CTR 2632 */ 2633.align 4 2634_aesni_inc: 2635 paddq INC, CTR 2636 add $1, TCTR_LOW 2637 jnc .Linc_low 2638 pslldq $8, INC 2639 paddq INC, CTR 2640 psrldq $8, INC 2641.Linc_low: 2642 movaps CTR, IV 2643 PSHUFB_XMM BSWAP_MASK IV 2644 ret 2645ENDPROC(_aesni_inc) 2646 2647/* 2648 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2649 * size_t len, u8 *iv) 2650 */ 2651ENTRY(aesni_ctr_enc) 2652 FRAME_BEGIN 2653 cmp $16, LEN 2654 jb .Lctr_enc_just_ret 2655 mov 480(KEYP), KLEN 2656 movups (IVP), IV 2657 call _aesni_inc_init 2658 cmp $64, LEN 2659 jb .Lctr_enc_loop1 2660.align 4 2661.Lctr_enc_loop4: 2662 movaps IV, STATE1 2663 call _aesni_inc 2664 movups (INP), IN1 2665 movaps IV, STATE2 2666 call _aesni_inc 2667 movups 0x10(INP), IN2 2668 movaps IV, STATE3 2669 call _aesni_inc 2670 movups 0x20(INP), IN3 2671 movaps IV, STATE4 2672 call _aesni_inc 2673 movups 0x30(INP), IN4 2674 call _aesni_enc4 2675 pxor IN1, STATE1 2676 movups STATE1, (OUTP) 2677 pxor IN2, STATE2 2678 movups STATE2, 0x10(OUTP) 2679 pxor IN3, STATE3 2680 movups STATE3, 0x20(OUTP) 2681 pxor IN4, STATE4 2682 movups STATE4, 0x30(OUTP) 2683 sub $64, LEN 2684 add $64, INP 2685 add $64, OUTP 2686 cmp $64, LEN 2687 jge .Lctr_enc_loop4 2688 cmp $16, LEN 2689 jb .Lctr_enc_ret 2690.align 4 2691.Lctr_enc_loop1: 2692 movaps IV, STATE 2693 call _aesni_inc 2694 movups (INP), IN 2695 call _aesni_enc1 2696 pxor IN, STATE 2697 movups STATE, (OUTP) 2698 sub $16, LEN 2699 add $16, INP 2700 add $16, OUTP 2701 cmp $16, LEN 2702 jge .Lctr_enc_loop1 2703.Lctr_enc_ret: 2704 movups IV, (IVP) 2705.Lctr_enc_just_ret: 2706 FRAME_END 2707 ret 2708ENDPROC(aesni_ctr_enc) 2709 2710/* 2711 * _aesni_gf128mul_x_ble: internal ABI 2712 * Multiply in GF(2^128) for XTS IVs 2713 * input: 2714 * IV: current IV 2715 * GF128MUL_MASK == mask with 0x87 and 0x01 2716 * output: 2717 * IV: next IV 2718 * changed: 2719 * CTR: == temporary value 2720 */ 2721#define _aesni_gf128mul_x_ble() \ 2722 pshufd $0x13, IV, CTR; \ 2723 paddq IV, IV; \ 2724 psrad $31, CTR; \ 2725 pand GF128MUL_MASK, CTR; \ 2726 pxor CTR, IV; 2727 2728/* 2729 * void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src, 2730 * bool enc, u8 *iv) 2731 */ 2732ENTRY(aesni_xts_crypt8) 2733 FRAME_BEGIN 2734 cmpb $0, %cl 2735 movl $0, %ecx 2736 movl $240, %r10d 2737 leaq _aesni_enc4, %r11 2738 leaq _aesni_dec4, %rax 2739 cmovel %r10d, %ecx 2740 cmoveq %rax, %r11 2741 2742 movdqa .Lgf128mul_x_ble_mask, GF128MUL_MASK 2743 movups (IVP), IV 2744 2745 mov 480(KEYP), KLEN 2746 addq %rcx, KEYP 2747 2748 movdqa IV, STATE1 2749 movdqu 0x00(INP), INC 2750 pxor INC, STATE1 2751 movdqu IV, 0x00(OUTP) 2752 2753 _aesni_gf128mul_x_ble() 2754 movdqa IV, STATE2 2755 movdqu 0x10(INP), INC 2756 pxor INC, STATE2 2757 movdqu IV, 0x10(OUTP) 2758 2759 _aesni_gf128mul_x_ble() 2760 movdqa IV, STATE3 2761 movdqu 0x20(INP), INC 2762 pxor INC, STATE3 2763 movdqu IV, 0x20(OUTP) 2764 2765 _aesni_gf128mul_x_ble() 2766 movdqa IV, STATE4 2767 movdqu 0x30(INP), INC 2768 pxor INC, STATE4 2769 movdqu IV, 0x30(OUTP) 2770 2771 CALL_NOSPEC %r11 2772 2773 movdqu 0x00(OUTP), INC 2774 pxor INC, STATE1 2775 movdqu STATE1, 0x00(OUTP) 2776 2777 _aesni_gf128mul_x_ble() 2778 movdqa IV, STATE1 2779 movdqu 0x40(INP), INC 2780 pxor INC, STATE1 2781 movdqu IV, 0x40(OUTP) 2782 2783 movdqu 0x10(OUTP), INC 2784 pxor INC, STATE2 2785 movdqu STATE2, 0x10(OUTP) 2786 2787 _aesni_gf128mul_x_ble() 2788 movdqa IV, STATE2 2789 movdqu 0x50(INP), INC 2790 pxor INC, STATE2 2791 movdqu IV, 0x50(OUTP) 2792 2793 movdqu 0x20(OUTP), INC 2794 pxor INC, STATE3 2795 movdqu STATE3, 0x20(OUTP) 2796 2797 _aesni_gf128mul_x_ble() 2798 movdqa IV, STATE3 2799 movdqu 0x60(INP), INC 2800 pxor INC, STATE3 2801 movdqu IV, 0x60(OUTP) 2802 2803 movdqu 0x30(OUTP), INC 2804 pxor INC, STATE4 2805 movdqu STATE4, 0x30(OUTP) 2806 2807 _aesni_gf128mul_x_ble() 2808 movdqa IV, STATE4 2809 movdqu 0x70(INP), INC 2810 pxor INC, STATE4 2811 movdqu IV, 0x70(OUTP) 2812 2813 _aesni_gf128mul_x_ble() 2814 movups IV, (IVP) 2815 2816 CALL_NOSPEC %r11 2817 2818 movdqu 0x40(OUTP), INC 2819 pxor INC, STATE1 2820 movdqu STATE1, 0x40(OUTP) 2821 2822 movdqu 0x50(OUTP), INC 2823 pxor INC, STATE2 2824 movdqu STATE2, 0x50(OUTP) 2825 2826 movdqu 0x60(OUTP), INC 2827 pxor INC, STATE3 2828 movdqu STATE3, 0x60(OUTP) 2829 2830 movdqu 0x70(OUTP), INC 2831 pxor INC, STATE4 2832 movdqu STATE4, 0x70(OUTP) 2833 2834 FRAME_END 2835 ret 2836ENDPROC(aesni_xts_crypt8) 2837 2838#endif 2839