1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <asm/coco.h> 11 #include <asm/tdx.h> 12 #include <asm/vmx.h> 13 #include <asm/insn.h> 14 #include <asm/insn-eval.h> 15 #include <asm/pgtable.h> 16 17 /* TDX module Call Leaf IDs */ 18 #define TDX_GET_INFO 1 19 #define TDX_GET_VEINFO 3 20 #define TDX_GET_REPORT 4 21 #define TDX_ACCEPT_PAGE 6 22 #define TDX_WR 8 23 24 /* TDCS fields. To be used by TDG.VM.WR and TDG.VM.RD module calls */ 25 #define TDCS_NOTIFY_ENABLES 0x9100000000000010 26 27 /* TDX hypercall Leaf IDs */ 28 #define TDVMCALL_MAP_GPA 0x10001 29 #define TDVMCALL_REPORT_FATAL_ERROR 0x10003 30 31 /* MMIO direction */ 32 #define EPT_READ 0 33 #define EPT_WRITE 1 34 35 /* Port I/O direction */ 36 #define PORT_READ 0 37 #define PORT_WRITE 1 38 39 /* See Exit Qualification for I/O Instructions in VMX documentation */ 40 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 41 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 42 #define VE_GET_PORT_NUM(e) ((e) >> 16) 43 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 44 45 #define ATTR_DEBUG BIT(0) 46 #define ATTR_SEPT_VE_DISABLE BIT(28) 47 48 /* TDX Module call error codes */ 49 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 50 #define TDCALL_INVALID_OPERAND 0xc0000100 51 52 #define TDREPORT_SUBTYPE_0 0 53 54 /* 55 * Wrapper for standard use of __tdx_hypercall with no output aside from 56 * return code. 57 */ 58 static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15) 59 { 60 struct tdx_hypercall_args args = { 61 .r10 = TDX_HYPERCALL_STANDARD, 62 .r11 = fn, 63 .r12 = r12, 64 .r13 = r13, 65 .r14 = r14, 66 .r15 = r15, 67 }; 68 69 return __tdx_hypercall(&args); 70 } 71 72 /* Called from __tdx_hypercall() for unrecoverable failure */ 73 noinstr void __tdx_hypercall_failed(void) 74 { 75 instrumentation_begin(); 76 panic("TDVMCALL failed. TDX module bug?"); 77 } 78 79 /* 80 * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined 81 * independently from but are currently matched 1:1 with VMX EXIT_REASONs. 82 * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and 83 * guest sides of these calls. 84 */ 85 static __always_inline u64 hcall_func(u64 exit_reason) 86 { 87 return exit_reason; 88 } 89 90 #ifdef CONFIG_KVM_GUEST 91 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 92 unsigned long p3, unsigned long p4) 93 { 94 struct tdx_hypercall_args args = { 95 .r10 = nr, 96 .r11 = p1, 97 .r12 = p2, 98 .r13 = p3, 99 .r14 = p4, 100 }; 101 102 return __tdx_hypercall(&args); 103 } 104 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 105 #endif 106 107 /* 108 * Used for TDX guests to make calls directly to the TD module. This 109 * should only be used for calls that have no legitimate reason to fail 110 * or where the kernel can not survive the call failing. 111 */ 112 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9, 113 struct tdx_module_output *out) 114 { 115 if (__tdx_module_call(fn, rcx, rdx, r8, r9, out)) 116 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 117 } 118 119 /** 120 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 121 * subtype 0) using TDG.MR.REPORT TDCALL. 122 * @reportdata: Address of the input buffer which contains user-defined 123 * REPORTDATA to be included into TDREPORT. 124 * @tdreport: Address of the output buffer to store TDREPORT. 125 * 126 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 127 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 128 * It is used in the TDX guest driver module to get the TDREPORT0. 129 * 130 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 131 * other TDCALL failures. 132 */ 133 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 134 { 135 u64 ret; 136 137 ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport), 138 virt_to_phys(reportdata), TDREPORT_SUBTYPE_0, 139 0, NULL); 140 if (ret) { 141 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 142 return -EINVAL; 143 return -EIO; 144 } 145 146 return 0; 147 } 148 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 149 150 static void __noreturn tdx_panic(const char *msg) 151 { 152 struct tdx_hypercall_args args = { 153 .r10 = TDX_HYPERCALL_STANDARD, 154 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 155 .r12 = 0, /* Error code: 0 is Panic */ 156 }; 157 union { 158 /* Define register order according to the GHCI */ 159 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 160 161 char str[64]; 162 } message; 163 164 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 165 strncpy(message.str, msg, 64); 166 167 args.r8 = message.r8; 168 args.r9 = message.r9; 169 args.r14 = message.r14; 170 args.r15 = message.r15; 171 args.rdi = message.rdi; 172 args.rsi = message.rsi; 173 args.rbx = message.rbx; 174 args.rdx = message.rdx; 175 176 /* 177 * This hypercall should never return and it is not safe 178 * to keep the guest running. Call it forever if it 179 * happens to return. 180 */ 181 while (1) 182 __tdx_hypercall(&args); 183 } 184 185 static void tdx_parse_tdinfo(u64 *cc_mask) 186 { 187 struct tdx_module_output out; 188 unsigned int gpa_width; 189 u64 td_attr; 190 191 /* 192 * TDINFO TDX module call is used to get the TD execution environment 193 * information like GPA width, number of available vcpus, debug mode 194 * information, etc. More details about the ABI can be found in TDX 195 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 196 * [TDG.VP.INFO]. 197 */ 198 tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out); 199 200 /* 201 * The highest bit of a guest physical address is the "sharing" bit. 202 * Set it for shared pages and clear it for private pages. 203 * 204 * The GPA width that comes out of this call is critical. TDX guests 205 * can not meaningfully run without it. 206 */ 207 gpa_width = out.rcx & GENMASK(5, 0); 208 *cc_mask = BIT_ULL(gpa_width - 1); 209 210 /* 211 * The kernel can not handle #VE's when accessing normal kernel 212 * memory. Ensure that no #VE will be delivered for accesses to 213 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 214 */ 215 td_attr = out.rdx; 216 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { 217 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; 218 219 /* Relax SEPT_VE_DISABLE check for debug TD. */ 220 if (td_attr & ATTR_DEBUG) 221 pr_warn("%s\n", msg); 222 else 223 tdx_panic(msg); 224 } 225 } 226 227 /* 228 * The TDX module spec states that #VE may be injected for a limited set of 229 * reasons: 230 * 231 * - Emulation of the architectural #VE injection on EPT violation; 232 * 233 * - As a result of guest TD execution of a disallowed instruction, 234 * a disallowed MSR access, or CPUID virtualization; 235 * 236 * - A notification to the guest TD about anomalous behavior; 237 * 238 * The last one is opt-in and is not used by the kernel. 239 * 240 * The Intel Software Developer's Manual describes cases when instruction 241 * length field can be used in section "Information for VM Exits Due to 242 * Instruction Execution". 243 * 244 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 245 * information if #VE occurred due to instruction execution, but not for EPT 246 * violations. 247 */ 248 static int ve_instr_len(struct ve_info *ve) 249 { 250 switch (ve->exit_reason) { 251 case EXIT_REASON_HLT: 252 case EXIT_REASON_MSR_READ: 253 case EXIT_REASON_MSR_WRITE: 254 case EXIT_REASON_CPUID: 255 case EXIT_REASON_IO_INSTRUCTION: 256 /* It is safe to use ve->instr_len for #VE due instructions */ 257 return ve->instr_len; 258 case EXIT_REASON_EPT_VIOLATION: 259 /* 260 * For EPT violations, ve->insn_len is not defined. For those, 261 * the kernel must decode instructions manually and should not 262 * be using this function. 263 */ 264 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 265 return 0; 266 default: 267 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 268 return ve->instr_len; 269 } 270 } 271 272 static u64 __cpuidle __halt(const bool irq_disabled) 273 { 274 struct tdx_hypercall_args args = { 275 .r10 = TDX_HYPERCALL_STANDARD, 276 .r11 = hcall_func(EXIT_REASON_HLT), 277 .r12 = irq_disabled, 278 }; 279 280 /* 281 * Emulate HLT operation via hypercall. More info about ABI 282 * can be found in TDX Guest-Host-Communication Interface 283 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 284 * 285 * The VMM uses the "IRQ disabled" param to understand IRQ 286 * enabled status (RFLAGS.IF) of the TD guest and to determine 287 * whether or not it should schedule the halted vCPU if an 288 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 289 * can keep the vCPU in virtual HLT, even if an IRQ is 290 * pending, without hanging/breaking the guest. 291 */ 292 return __tdx_hypercall(&args); 293 } 294 295 static int handle_halt(struct ve_info *ve) 296 { 297 const bool irq_disabled = irqs_disabled(); 298 299 if (__halt(irq_disabled)) 300 return -EIO; 301 302 return ve_instr_len(ve); 303 } 304 305 void __cpuidle tdx_safe_halt(void) 306 { 307 const bool irq_disabled = false; 308 309 /* 310 * Use WARN_ONCE() to report the failure. 311 */ 312 if (__halt(irq_disabled)) 313 WARN_ONCE(1, "HLT instruction emulation failed\n"); 314 } 315 316 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 317 { 318 struct tdx_hypercall_args args = { 319 .r10 = TDX_HYPERCALL_STANDARD, 320 .r11 = hcall_func(EXIT_REASON_MSR_READ), 321 .r12 = regs->cx, 322 }; 323 324 /* 325 * Emulate the MSR read via hypercall. More info about ABI 326 * can be found in TDX Guest-Host-Communication Interface 327 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 328 */ 329 if (__tdx_hypercall_ret(&args)) 330 return -EIO; 331 332 regs->ax = lower_32_bits(args.r11); 333 regs->dx = upper_32_bits(args.r11); 334 return ve_instr_len(ve); 335 } 336 337 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 338 { 339 struct tdx_hypercall_args args = { 340 .r10 = TDX_HYPERCALL_STANDARD, 341 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 342 .r12 = regs->cx, 343 .r13 = (u64)regs->dx << 32 | regs->ax, 344 }; 345 346 /* 347 * Emulate the MSR write via hypercall. More info about ABI 348 * can be found in TDX Guest-Host-Communication Interface 349 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 350 */ 351 if (__tdx_hypercall(&args)) 352 return -EIO; 353 354 return ve_instr_len(ve); 355 } 356 357 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 358 { 359 struct tdx_hypercall_args args = { 360 .r10 = TDX_HYPERCALL_STANDARD, 361 .r11 = hcall_func(EXIT_REASON_CPUID), 362 .r12 = regs->ax, 363 .r13 = regs->cx, 364 }; 365 366 /* 367 * Only allow VMM to control range reserved for hypervisor 368 * communication. 369 * 370 * Return all-zeros for any CPUID outside the range. It matches CPU 371 * behaviour for non-supported leaf. 372 */ 373 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 374 regs->ax = regs->bx = regs->cx = regs->dx = 0; 375 return ve_instr_len(ve); 376 } 377 378 /* 379 * Emulate the CPUID instruction via a hypercall. More info about 380 * ABI can be found in TDX Guest-Host-Communication Interface 381 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 382 */ 383 if (__tdx_hypercall_ret(&args)) 384 return -EIO; 385 386 /* 387 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 388 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 389 * So copy the register contents back to pt_regs. 390 */ 391 regs->ax = args.r12; 392 regs->bx = args.r13; 393 regs->cx = args.r14; 394 regs->dx = args.r15; 395 396 return ve_instr_len(ve); 397 } 398 399 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 400 { 401 struct tdx_hypercall_args args = { 402 .r10 = TDX_HYPERCALL_STANDARD, 403 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 404 .r12 = size, 405 .r13 = EPT_READ, 406 .r14 = addr, 407 .r15 = *val, 408 }; 409 410 if (__tdx_hypercall_ret(&args)) 411 return false; 412 *val = args.r11; 413 return true; 414 } 415 416 static bool mmio_write(int size, unsigned long addr, unsigned long val) 417 { 418 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 419 EPT_WRITE, addr, val); 420 } 421 422 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 423 { 424 unsigned long *reg, val, vaddr; 425 char buffer[MAX_INSN_SIZE]; 426 enum insn_mmio_type mmio; 427 struct insn insn = {}; 428 int size, extend_size; 429 u8 extend_val = 0; 430 431 /* Only in-kernel MMIO is supported */ 432 if (WARN_ON_ONCE(user_mode(regs))) 433 return -EFAULT; 434 435 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 436 return -EFAULT; 437 438 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 439 return -EINVAL; 440 441 mmio = insn_decode_mmio(&insn, &size); 442 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 443 return -EINVAL; 444 445 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 446 reg = insn_get_modrm_reg_ptr(&insn, regs); 447 if (!reg) 448 return -EINVAL; 449 } 450 451 /* 452 * Reject EPT violation #VEs that split pages. 453 * 454 * MMIO accesses are supposed to be naturally aligned and therefore 455 * never cross page boundaries. Seeing split page accesses indicates 456 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 457 * 458 * load_unaligned_zeropad() will recover using exception fixups. 459 */ 460 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 461 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 462 return -EFAULT; 463 464 /* Handle writes first */ 465 switch (mmio) { 466 case INSN_MMIO_WRITE: 467 memcpy(&val, reg, size); 468 if (!mmio_write(size, ve->gpa, val)) 469 return -EIO; 470 return insn.length; 471 case INSN_MMIO_WRITE_IMM: 472 val = insn.immediate.value; 473 if (!mmio_write(size, ve->gpa, val)) 474 return -EIO; 475 return insn.length; 476 case INSN_MMIO_READ: 477 case INSN_MMIO_READ_ZERO_EXTEND: 478 case INSN_MMIO_READ_SIGN_EXTEND: 479 /* Reads are handled below */ 480 break; 481 case INSN_MMIO_MOVS: 482 case INSN_MMIO_DECODE_FAILED: 483 /* 484 * MMIO was accessed with an instruction that could not be 485 * decoded or handled properly. It was likely not using io.h 486 * helpers or accessed MMIO accidentally. 487 */ 488 return -EINVAL; 489 default: 490 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 491 return -EINVAL; 492 } 493 494 /* Handle reads */ 495 if (!mmio_read(size, ve->gpa, &val)) 496 return -EIO; 497 498 switch (mmio) { 499 case INSN_MMIO_READ: 500 /* Zero-extend for 32-bit operation */ 501 extend_size = size == 4 ? sizeof(*reg) : 0; 502 break; 503 case INSN_MMIO_READ_ZERO_EXTEND: 504 /* Zero extend based on operand size */ 505 extend_size = insn.opnd_bytes; 506 break; 507 case INSN_MMIO_READ_SIGN_EXTEND: 508 /* Sign extend based on operand size */ 509 extend_size = insn.opnd_bytes; 510 if (size == 1 && val & BIT(7)) 511 extend_val = 0xFF; 512 else if (size > 1 && val & BIT(15)) 513 extend_val = 0xFF; 514 break; 515 default: 516 /* All other cases has to be covered with the first switch() */ 517 WARN_ON_ONCE(1); 518 return -EINVAL; 519 } 520 521 if (extend_size) 522 memset(reg, extend_val, extend_size); 523 memcpy(reg, &val, size); 524 return insn.length; 525 } 526 527 static bool handle_in(struct pt_regs *regs, int size, int port) 528 { 529 struct tdx_hypercall_args args = { 530 .r10 = TDX_HYPERCALL_STANDARD, 531 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 532 .r12 = size, 533 .r13 = PORT_READ, 534 .r14 = port, 535 }; 536 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 537 bool success; 538 539 /* 540 * Emulate the I/O read via hypercall. More info about ABI can be found 541 * in TDX Guest-Host-Communication Interface (GHCI) section titled 542 * "TDG.VP.VMCALL<Instruction.IO>". 543 */ 544 success = !__tdx_hypercall_ret(&args); 545 546 /* Update part of the register affected by the emulated instruction */ 547 regs->ax &= ~mask; 548 if (success) 549 regs->ax |= args.r11 & mask; 550 551 return success; 552 } 553 554 static bool handle_out(struct pt_regs *regs, int size, int port) 555 { 556 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 557 558 /* 559 * Emulate the I/O write via hypercall. More info about ABI can be found 560 * in TDX Guest-Host-Communication Interface (GHCI) section titled 561 * "TDG.VP.VMCALL<Instruction.IO>". 562 */ 563 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 564 PORT_WRITE, port, regs->ax & mask); 565 } 566 567 /* 568 * Emulate I/O using hypercall. 569 * 570 * Assumes the IO instruction was using ax, which is enforced 571 * by the standard io.h macros. 572 * 573 * Return True on success or False on failure. 574 */ 575 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 576 { 577 u32 exit_qual = ve->exit_qual; 578 int size, port; 579 bool in, ret; 580 581 if (VE_IS_IO_STRING(exit_qual)) 582 return -EIO; 583 584 in = VE_IS_IO_IN(exit_qual); 585 size = VE_GET_IO_SIZE(exit_qual); 586 port = VE_GET_PORT_NUM(exit_qual); 587 588 589 if (in) 590 ret = handle_in(regs, size, port); 591 else 592 ret = handle_out(regs, size, port); 593 if (!ret) 594 return -EIO; 595 596 return ve_instr_len(ve); 597 } 598 599 /* 600 * Early #VE exception handler. Only handles a subset of port I/O. 601 * Intended only for earlyprintk. If failed, return false. 602 */ 603 __init bool tdx_early_handle_ve(struct pt_regs *regs) 604 { 605 struct ve_info ve; 606 int insn_len; 607 608 tdx_get_ve_info(&ve); 609 610 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 611 return false; 612 613 insn_len = handle_io(regs, &ve); 614 if (insn_len < 0) 615 return false; 616 617 regs->ip += insn_len; 618 return true; 619 } 620 621 void tdx_get_ve_info(struct ve_info *ve) 622 { 623 struct tdx_module_output out; 624 625 /* 626 * Called during #VE handling to retrieve the #VE info from the 627 * TDX module. 628 * 629 * This has to be called early in #VE handling. A "nested" #VE which 630 * occurs before this will raise a #DF and is not recoverable. 631 * 632 * The call retrieves the #VE info from the TDX module, which also 633 * clears the "#VE valid" flag. This must be done before anything else 634 * because any #VE that occurs while the valid flag is set will lead to 635 * #DF. 636 * 637 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 638 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 639 */ 640 tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out); 641 642 /* Transfer the output parameters */ 643 ve->exit_reason = out.rcx; 644 ve->exit_qual = out.rdx; 645 ve->gla = out.r8; 646 ve->gpa = out.r9; 647 ve->instr_len = lower_32_bits(out.r10); 648 ve->instr_info = upper_32_bits(out.r10); 649 } 650 651 /* 652 * Handle the user initiated #VE. 653 * 654 * On success, returns the number of bytes RIP should be incremented (>=0) 655 * or -errno on error. 656 */ 657 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 658 { 659 switch (ve->exit_reason) { 660 case EXIT_REASON_CPUID: 661 return handle_cpuid(regs, ve); 662 default: 663 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 664 return -EIO; 665 } 666 } 667 668 static inline bool is_private_gpa(u64 gpa) 669 { 670 return gpa == cc_mkenc(gpa); 671 } 672 673 /* 674 * Handle the kernel #VE. 675 * 676 * On success, returns the number of bytes RIP should be incremented (>=0) 677 * or -errno on error. 678 */ 679 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 680 { 681 switch (ve->exit_reason) { 682 case EXIT_REASON_HLT: 683 return handle_halt(ve); 684 case EXIT_REASON_MSR_READ: 685 return read_msr(regs, ve); 686 case EXIT_REASON_MSR_WRITE: 687 return write_msr(regs, ve); 688 case EXIT_REASON_CPUID: 689 return handle_cpuid(regs, ve); 690 case EXIT_REASON_EPT_VIOLATION: 691 if (is_private_gpa(ve->gpa)) 692 panic("Unexpected EPT-violation on private memory."); 693 return handle_mmio(regs, ve); 694 case EXIT_REASON_IO_INSTRUCTION: 695 return handle_io(regs, ve); 696 default: 697 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 698 return -EIO; 699 } 700 } 701 702 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 703 { 704 int insn_len; 705 706 if (user_mode(regs)) 707 insn_len = virt_exception_user(regs, ve); 708 else 709 insn_len = virt_exception_kernel(regs, ve); 710 if (insn_len < 0) 711 return false; 712 713 /* After successful #VE handling, move the IP */ 714 regs->ip += insn_len; 715 716 return true; 717 } 718 719 static bool tdx_tlb_flush_required(bool private) 720 { 721 /* 722 * TDX guest is responsible for flushing TLB on private->shared 723 * transition. VMM is responsible for flushing on shared->private. 724 * 725 * The VMM _can't_ flush private addresses as it can't generate PAs 726 * with the guest's HKID. Shared memory isn't subject to integrity 727 * checking, i.e. the VMM doesn't need to flush for its own protection. 728 * 729 * There's no need to flush when converting from shared to private, 730 * as flushing is the VMM's responsibility in this case, e.g. it must 731 * flush to avoid integrity failures in the face of a buggy or 732 * malicious guest. 733 */ 734 return !private; 735 } 736 737 static bool tdx_cache_flush_required(void) 738 { 739 /* 740 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 741 * TDX doesn't have such capability. 742 * 743 * Flush cache unconditionally. 744 */ 745 return true; 746 } 747 748 static bool try_accept_one(phys_addr_t *start, unsigned long len, 749 enum pg_level pg_level) 750 { 751 unsigned long accept_size = page_level_size(pg_level); 752 u64 tdcall_rcx; 753 u8 page_size; 754 755 if (!IS_ALIGNED(*start, accept_size)) 756 return false; 757 758 if (len < accept_size) 759 return false; 760 761 /* 762 * Pass the page physical address to the TDX module to accept the 763 * pending, private page. 764 * 765 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G. 766 */ 767 switch (pg_level) { 768 case PG_LEVEL_4K: 769 page_size = 0; 770 break; 771 case PG_LEVEL_2M: 772 page_size = 1; 773 break; 774 case PG_LEVEL_1G: 775 page_size = 2; 776 break; 777 default: 778 return false; 779 } 780 781 tdcall_rcx = *start | page_size; 782 if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL)) 783 return false; 784 785 *start += accept_size; 786 return true; 787 } 788 789 /* 790 * Inform the VMM of the guest's intent for this physical page: shared with 791 * the VMM or private to the guest. The VMM is expected to change its mapping 792 * of the page in response. 793 */ 794 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 795 { 796 phys_addr_t start = __pa(vaddr); 797 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 798 799 if (!enc) { 800 /* Set the shared (decrypted) bits: */ 801 start |= cc_mkdec(0); 802 end |= cc_mkdec(0); 803 } 804 805 /* 806 * Notify the VMM about page mapping conversion. More info about ABI 807 * can be found in TDX Guest-Host-Communication Interface (GHCI), 808 * section "TDG.VP.VMCALL<MapGPA>" 809 */ 810 if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0)) 811 return false; 812 813 /* private->shared conversion requires only MapGPA call */ 814 if (!enc) 815 return true; 816 817 /* 818 * For shared->private conversion, accept the page using 819 * TDX_ACCEPT_PAGE TDX module call. 820 */ 821 while (start < end) { 822 unsigned long len = end - start; 823 824 /* 825 * Try larger accepts first. It gives chance to VMM to keep 826 * 1G/2M SEPT entries where possible and speeds up process by 827 * cutting number of hypercalls (if successful). 828 */ 829 830 if (try_accept_one(&start, len, PG_LEVEL_1G)) 831 continue; 832 833 if (try_accept_one(&start, len, PG_LEVEL_2M)) 834 continue; 835 836 if (!try_accept_one(&start, len, PG_LEVEL_4K)) 837 return false; 838 } 839 840 return true; 841 } 842 843 void __init tdx_early_init(void) 844 { 845 u64 cc_mask; 846 u32 eax, sig[3]; 847 848 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 849 850 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 851 return; 852 853 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 854 855 cc_set_vendor(CC_VENDOR_INTEL); 856 tdx_parse_tdinfo(&cc_mask); 857 cc_set_mask(cc_mask); 858 859 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 860 tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL); 861 862 /* 863 * All bits above GPA width are reserved and kernel treats shared bit 864 * as flag, not as part of physical address. 865 * 866 * Adjust physical mask to only cover valid GPA bits. 867 */ 868 physical_mask &= cc_mask - 1; 869 870 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 871 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 872 x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed; 873 874 pr_info("Guest detected\n"); 875 } 876