xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision ad804659)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <asm/coco.h>
9 #include <asm/tdx.h>
10 #include <asm/vmx.h>
11 #include <asm/insn.h>
12 #include <asm/insn-eval.h>
13 #include <asm/pgtable.h>
14 
15 /* TDX module Call Leaf IDs */
16 #define TDX_GET_INFO			1
17 #define TDX_GET_VEINFO			3
18 #define TDX_ACCEPT_PAGE			6
19 
20 /* TDX hypercall Leaf IDs */
21 #define TDVMCALL_MAP_GPA		0x10001
22 
23 /* MMIO direction */
24 #define EPT_READ	0
25 #define EPT_WRITE	1
26 
27 /* Port I/O direction */
28 #define PORT_READ	0
29 #define PORT_WRITE	1
30 
31 /* See Exit Qualification for I/O Instructions in VMX documentation */
32 #define VE_IS_IO_IN(e)		((e) & BIT(3))
33 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
34 #define VE_GET_PORT_NUM(e)	((e) >> 16)
35 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
36 
37 /*
38  * Wrapper for standard use of __tdx_hypercall with no output aside from
39  * return code.
40  */
41 static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
42 {
43 	struct tdx_hypercall_args args = {
44 		.r10 = TDX_HYPERCALL_STANDARD,
45 		.r11 = fn,
46 		.r12 = r12,
47 		.r13 = r13,
48 		.r14 = r14,
49 		.r15 = r15,
50 	};
51 
52 	return __tdx_hypercall(&args, 0);
53 }
54 
55 /* Called from __tdx_hypercall() for unrecoverable failure */
56 void __tdx_hypercall_failed(void)
57 {
58 	panic("TDVMCALL failed. TDX module bug?");
59 }
60 
61 /*
62  * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
63  * independently from but are currently matched 1:1 with VMX EXIT_REASONs.
64  * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
65  * guest sides of these calls.
66  */
67 static u64 hcall_func(u64 exit_reason)
68 {
69 	return exit_reason;
70 }
71 
72 #ifdef CONFIG_KVM_GUEST
73 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
74 		       unsigned long p3, unsigned long p4)
75 {
76 	struct tdx_hypercall_args args = {
77 		.r10 = nr,
78 		.r11 = p1,
79 		.r12 = p2,
80 		.r13 = p3,
81 		.r14 = p4,
82 	};
83 
84 	return __tdx_hypercall(&args, 0);
85 }
86 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
87 #endif
88 
89 /*
90  * Used for TDX guests to make calls directly to the TD module.  This
91  * should only be used for calls that have no legitimate reason to fail
92  * or where the kernel can not survive the call failing.
93  */
94 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
95 				   struct tdx_module_output *out)
96 {
97 	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
98 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
99 }
100 
101 static u64 get_cc_mask(void)
102 {
103 	struct tdx_module_output out;
104 	unsigned int gpa_width;
105 
106 	/*
107 	 * TDINFO TDX module call is used to get the TD execution environment
108 	 * information like GPA width, number of available vcpus, debug mode
109 	 * information, etc. More details about the ABI can be found in TDX
110 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
111 	 * [TDG.VP.INFO].
112 	 *
113 	 * The GPA width that comes out of this call is critical. TDX guests
114 	 * can not meaningfully run without it.
115 	 */
116 	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
117 
118 	gpa_width = out.rcx & GENMASK(5, 0);
119 
120 	/*
121 	 * The highest bit of a guest physical address is the "sharing" bit.
122 	 * Set it for shared pages and clear it for private pages.
123 	 */
124 	return BIT_ULL(gpa_width - 1);
125 }
126 
127 /*
128  * The TDX module spec states that #VE may be injected for a limited set of
129  * reasons:
130  *
131  *  - Emulation of the architectural #VE injection on EPT violation;
132  *
133  *  - As a result of guest TD execution of a disallowed instruction,
134  *    a disallowed MSR access, or CPUID virtualization;
135  *
136  *  - A notification to the guest TD about anomalous behavior;
137  *
138  * The last one is opt-in and is not used by the kernel.
139  *
140  * The Intel Software Developer's Manual describes cases when instruction
141  * length field can be used in section "Information for VM Exits Due to
142  * Instruction Execution".
143  *
144  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
145  * information if #VE occurred due to instruction execution, but not for EPT
146  * violations.
147  */
148 static int ve_instr_len(struct ve_info *ve)
149 {
150 	switch (ve->exit_reason) {
151 	case EXIT_REASON_HLT:
152 	case EXIT_REASON_MSR_READ:
153 	case EXIT_REASON_MSR_WRITE:
154 	case EXIT_REASON_CPUID:
155 	case EXIT_REASON_IO_INSTRUCTION:
156 		/* It is safe to use ve->instr_len for #VE due instructions */
157 		return ve->instr_len;
158 	case EXIT_REASON_EPT_VIOLATION:
159 		/*
160 		 * For EPT violations, ve->insn_len is not defined. For those,
161 		 * the kernel must decode instructions manually and should not
162 		 * be using this function.
163 		 */
164 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
165 		return 0;
166 	default:
167 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
168 		return ve->instr_len;
169 	}
170 }
171 
172 static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti)
173 {
174 	struct tdx_hypercall_args args = {
175 		.r10 = TDX_HYPERCALL_STANDARD,
176 		.r11 = hcall_func(EXIT_REASON_HLT),
177 		.r12 = irq_disabled,
178 	};
179 
180 	/*
181 	 * Emulate HLT operation via hypercall. More info about ABI
182 	 * can be found in TDX Guest-Host-Communication Interface
183 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
184 	 *
185 	 * The VMM uses the "IRQ disabled" param to understand IRQ
186 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
187 	 * whether or not it should schedule the halted vCPU if an
188 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
189 	 * can keep the vCPU in virtual HLT, even if an IRQ is
190 	 * pending, without hanging/breaking the guest.
191 	 */
192 	return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0);
193 }
194 
195 static int handle_halt(struct ve_info *ve)
196 {
197 	/*
198 	 * Since non safe halt is mainly used in CPU offlining
199 	 * and the guest will always stay in the halt state, don't
200 	 * call the STI instruction (set do_sti as false).
201 	 */
202 	const bool irq_disabled = irqs_disabled();
203 	const bool do_sti = false;
204 
205 	if (__halt(irq_disabled, do_sti))
206 		return -EIO;
207 
208 	return ve_instr_len(ve);
209 }
210 
211 void __cpuidle tdx_safe_halt(void)
212 {
213 	 /*
214 	  * For do_sti=true case, __tdx_hypercall() function enables
215 	  * interrupts using the STI instruction before the TDCALL. So
216 	  * set irq_disabled as false.
217 	  */
218 	const bool irq_disabled = false;
219 	const bool do_sti = true;
220 
221 	/*
222 	 * Use WARN_ONCE() to report the failure.
223 	 */
224 	if (__halt(irq_disabled, do_sti))
225 		WARN_ONCE(1, "HLT instruction emulation failed\n");
226 }
227 
228 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
229 {
230 	struct tdx_hypercall_args args = {
231 		.r10 = TDX_HYPERCALL_STANDARD,
232 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
233 		.r12 = regs->cx,
234 	};
235 
236 	/*
237 	 * Emulate the MSR read via hypercall. More info about ABI
238 	 * can be found in TDX Guest-Host-Communication Interface
239 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
240 	 */
241 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
242 		return -EIO;
243 
244 	regs->ax = lower_32_bits(args.r11);
245 	regs->dx = upper_32_bits(args.r11);
246 	return ve_instr_len(ve);
247 }
248 
249 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
250 {
251 	struct tdx_hypercall_args args = {
252 		.r10 = TDX_HYPERCALL_STANDARD,
253 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
254 		.r12 = regs->cx,
255 		.r13 = (u64)regs->dx << 32 | regs->ax,
256 	};
257 
258 	/*
259 	 * Emulate the MSR write via hypercall. More info about ABI
260 	 * can be found in TDX Guest-Host-Communication Interface
261 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
262 	 */
263 	if (__tdx_hypercall(&args, 0))
264 		return -EIO;
265 
266 	return ve_instr_len(ve);
267 }
268 
269 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
270 {
271 	struct tdx_hypercall_args args = {
272 		.r10 = TDX_HYPERCALL_STANDARD,
273 		.r11 = hcall_func(EXIT_REASON_CPUID),
274 		.r12 = regs->ax,
275 		.r13 = regs->cx,
276 	};
277 
278 	/*
279 	 * Only allow VMM to control range reserved for hypervisor
280 	 * communication.
281 	 *
282 	 * Return all-zeros for any CPUID outside the range. It matches CPU
283 	 * behaviour for non-supported leaf.
284 	 */
285 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
286 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
287 		return ve_instr_len(ve);
288 	}
289 
290 	/*
291 	 * Emulate the CPUID instruction via a hypercall. More info about
292 	 * ABI can be found in TDX Guest-Host-Communication Interface
293 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
294 	 */
295 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
296 		return -EIO;
297 
298 	/*
299 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
300 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
301 	 * So copy the register contents back to pt_regs.
302 	 */
303 	regs->ax = args.r12;
304 	regs->bx = args.r13;
305 	regs->cx = args.r14;
306 	regs->dx = args.r15;
307 
308 	return ve_instr_len(ve);
309 }
310 
311 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
312 {
313 	struct tdx_hypercall_args args = {
314 		.r10 = TDX_HYPERCALL_STANDARD,
315 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
316 		.r12 = size,
317 		.r13 = EPT_READ,
318 		.r14 = addr,
319 		.r15 = *val,
320 	};
321 
322 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
323 		return false;
324 	*val = args.r11;
325 	return true;
326 }
327 
328 static bool mmio_write(int size, unsigned long addr, unsigned long val)
329 {
330 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
331 			       EPT_WRITE, addr, val);
332 }
333 
334 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
335 {
336 	unsigned long *reg, val, vaddr;
337 	char buffer[MAX_INSN_SIZE];
338 	struct insn insn = {};
339 	enum mmio_type mmio;
340 	int size, extend_size;
341 	u8 extend_val = 0;
342 
343 	/* Only in-kernel MMIO is supported */
344 	if (WARN_ON_ONCE(user_mode(regs)))
345 		return -EFAULT;
346 
347 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
348 		return -EFAULT;
349 
350 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
351 		return -EINVAL;
352 
353 	mmio = insn_decode_mmio(&insn, &size);
354 	if (WARN_ON_ONCE(mmio == MMIO_DECODE_FAILED))
355 		return -EINVAL;
356 
357 	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
358 		reg = insn_get_modrm_reg_ptr(&insn, regs);
359 		if (!reg)
360 			return -EINVAL;
361 	}
362 
363 	/*
364 	 * Reject EPT violation #VEs that split pages.
365 	 *
366 	 * MMIO accesses are supposed to be naturally aligned and therefore
367 	 * never cross page boundaries. Seeing split page accesses indicates
368 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
369 	 *
370 	 * load_unaligned_zeropad() will recover using exception fixups.
371 	 */
372 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
373 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
374 		return -EFAULT;
375 
376 	/* Handle writes first */
377 	switch (mmio) {
378 	case MMIO_WRITE:
379 		memcpy(&val, reg, size);
380 		if (!mmio_write(size, ve->gpa, val))
381 			return -EIO;
382 		return insn.length;
383 	case MMIO_WRITE_IMM:
384 		val = insn.immediate.value;
385 		if (!mmio_write(size, ve->gpa, val))
386 			return -EIO;
387 		return insn.length;
388 	case MMIO_READ:
389 	case MMIO_READ_ZERO_EXTEND:
390 	case MMIO_READ_SIGN_EXTEND:
391 		/* Reads are handled below */
392 		break;
393 	case MMIO_MOVS:
394 	case MMIO_DECODE_FAILED:
395 		/*
396 		 * MMIO was accessed with an instruction that could not be
397 		 * decoded or handled properly. It was likely not using io.h
398 		 * helpers or accessed MMIO accidentally.
399 		 */
400 		return -EINVAL;
401 	default:
402 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
403 		return -EINVAL;
404 	}
405 
406 	/* Handle reads */
407 	if (!mmio_read(size, ve->gpa, &val))
408 		return -EIO;
409 
410 	switch (mmio) {
411 	case MMIO_READ:
412 		/* Zero-extend for 32-bit operation */
413 		extend_size = size == 4 ? sizeof(*reg) : 0;
414 		break;
415 	case MMIO_READ_ZERO_EXTEND:
416 		/* Zero extend based on operand size */
417 		extend_size = insn.opnd_bytes;
418 		break;
419 	case MMIO_READ_SIGN_EXTEND:
420 		/* Sign extend based on operand size */
421 		extend_size = insn.opnd_bytes;
422 		if (size == 1 && val & BIT(7))
423 			extend_val = 0xFF;
424 		else if (size > 1 && val & BIT(15))
425 			extend_val = 0xFF;
426 		break;
427 	default:
428 		/* All other cases has to be covered with the first switch() */
429 		WARN_ON_ONCE(1);
430 		return -EINVAL;
431 	}
432 
433 	if (extend_size)
434 		memset(reg, extend_val, extend_size);
435 	memcpy(reg, &val, size);
436 	return insn.length;
437 }
438 
439 static bool handle_in(struct pt_regs *regs, int size, int port)
440 {
441 	struct tdx_hypercall_args args = {
442 		.r10 = TDX_HYPERCALL_STANDARD,
443 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
444 		.r12 = size,
445 		.r13 = PORT_READ,
446 		.r14 = port,
447 	};
448 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
449 	bool success;
450 
451 	/*
452 	 * Emulate the I/O read via hypercall. More info about ABI can be found
453 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
454 	 * "TDG.VP.VMCALL<Instruction.IO>".
455 	 */
456 	success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT);
457 
458 	/* Update part of the register affected by the emulated instruction */
459 	regs->ax &= ~mask;
460 	if (success)
461 		regs->ax |= args.r11 & mask;
462 
463 	return success;
464 }
465 
466 static bool handle_out(struct pt_regs *regs, int size, int port)
467 {
468 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
469 
470 	/*
471 	 * Emulate the I/O write via hypercall. More info about ABI can be found
472 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
473 	 * "TDG.VP.VMCALL<Instruction.IO>".
474 	 */
475 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
476 			       PORT_WRITE, port, regs->ax & mask);
477 }
478 
479 /*
480  * Emulate I/O using hypercall.
481  *
482  * Assumes the IO instruction was using ax, which is enforced
483  * by the standard io.h macros.
484  *
485  * Return True on success or False on failure.
486  */
487 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
488 {
489 	u32 exit_qual = ve->exit_qual;
490 	int size, port;
491 	bool in, ret;
492 
493 	if (VE_IS_IO_STRING(exit_qual))
494 		return -EIO;
495 
496 	in   = VE_IS_IO_IN(exit_qual);
497 	size = VE_GET_IO_SIZE(exit_qual);
498 	port = VE_GET_PORT_NUM(exit_qual);
499 
500 
501 	if (in)
502 		ret = handle_in(regs, size, port);
503 	else
504 		ret = handle_out(regs, size, port);
505 	if (!ret)
506 		return -EIO;
507 
508 	return ve_instr_len(ve);
509 }
510 
511 /*
512  * Early #VE exception handler. Only handles a subset of port I/O.
513  * Intended only for earlyprintk. If failed, return false.
514  */
515 __init bool tdx_early_handle_ve(struct pt_regs *regs)
516 {
517 	struct ve_info ve;
518 	int insn_len;
519 
520 	tdx_get_ve_info(&ve);
521 
522 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
523 		return false;
524 
525 	insn_len = handle_io(regs, &ve);
526 	if (insn_len < 0)
527 		return false;
528 
529 	regs->ip += insn_len;
530 	return true;
531 }
532 
533 void tdx_get_ve_info(struct ve_info *ve)
534 {
535 	struct tdx_module_output out;
536 
537 	/*
538 	 * Called during #VE handling to retrieve the #VE info from the
539 	 * TDX module.
540 	 *
541 	 * This has to be called early in #VE handling.  A "nested" #VE which
542 	 * occurs before this will raise a #DF and is not recoverable.
543 	 *
544 	 * The call retrieves the #VE info from the TDX module, which also
545 	 * clears the "#VE valid" flag. This must be done before anything else
546 	 * because any #VE that occurs while the valid flag is set will lead to
547 	 * #DF.
548 	 *
549 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
550 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
551 	 */
552 	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
553 
554 	/* Transfer the output parameters */
555 	ve->exit_reason = out.rcx;
556 	ve->exit_qual   = out.rdx;
557 	ve->gla         = out.r8;
558 	ve->gpa         = out.r9;
559 	ve->instr_len   = lower_32_bits(out.r10);
560 	ve->instr_info  = upper_32_bits(out.r10);
561 }
562 
563 /*
564  * Handle the user initiated #VE.
565  *
566  * On success, returns the number of bytes RIP should be incremented (>=0)
567  * or -errno on error.
568  */
569 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
570 {
571 	switch (ve->exit_reason) {
572 	case EXIT_REASON_CPUID:
573 		return handle_cpuid(regs, ve);
574 	default:
575 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
576 		return -EIO;
577 	}
578 }
579 
580 /*
581  * Handle the kernel #VE.
582  *
583  * On success, returns the number of bytes RIP should be incremented (>=0)
584  * or -errno on error.
585  */
586 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
587 {
588 	switch (ve->exit_reason) {
589 	case EXIT_REASON_HLT:
590 		return handle_halt(ve);
591 	case EXIT_REASON_MSR_READ:
592 		return read_msr(regs, ve);
593 	case EXIT_REASON_MSR_WRITE:
594 		return write_msr(regs, ve);
595 	case EXIT_REASON_CPUID:
596 		return handle_cpuid(regs, ve);
597 	case EXIT_REASON_EPT_VIOLATION:
598 		return handle_mmio(regs, ve);
599 	case EXIT_REASON_IO_INSTRUCTION:
600 		return handle_io(regs, ve);
601 	default:
602 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
603 		return -EIO;
604 	}
605 }
606 
607 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
608 {
609 	int insn_len;
610 
611 	if (user_mode(regs))
612 		insn_len = virt_exception_user(regs, ve);
613 	else
614 		insn_len = virt_exception_kernel(regs, ve);
615 	if (insn_len < 0)
616 		return false;
617 
618 	/* After successful #VE handling, move the IP */
619 	regs->ip += insn_len;
620 
621 	return true;
622 }
623 
624 static bool tdx_tlb_flush_required(bool private)
625 {
626 	/*
627 	 * TDX guest is responsible for flushing TLB on private->shared
628 	 * transition. VMM is responsible for flushing on shared->private.
629 	 *
630 	 * The VMM _can't_ flush private addresses as it can't generate PAs
631 	 * with the guest's HKID.  Shared memory isn't subject to integrity
632 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
633 	 *
634 	 * There's no need to flush when converting from shared to private,
635 	 * as flushing is the VMM's responsibility in this case, e.g. it must
636 	 * flush to avoid integrity failures in the face of a buggy or
637 	 * malicious guest.
638 	 */
639 	return !private;
640 }
641 
642 static bool tdx_cache_flush_required(void)
643 {
644 	/*
645 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
646 	 * TDX doesn't have such capability.
647 	 *
648 	 * Flush cache unconditionally.
649 	 */
650 	return true;
651 }
652 
653 static bool try_accept_one(phys_addr_t *start, unsigned long len,
654 			  enum pg_level pg_level)
655 {
656 	unsigned long accept_size = page_level_size(pg_level);
657 	u64 tdcall_rcx;
658 	u8 page_size;
659 
660 	if (!IS_ALIGNED(*start, accept_size))
661 		return false;
662 
663 	if (len < accept_size)
664 		return false;
665 
666 	/*
667 	 * Pass the page physical address to the TDX module to accept the
668 	 * pending, private page.
669 	 *
670 	 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G.
671 	 */
672 	switch (pg_level) {
673 	case PG_LEVEL_4K:
674 		page_size = 0;
675 		break;
676 	case PG_LEVEL_2M:
677 		page_size = 1;
678 		break;
679 	case PG_LEVEL_1G:
680 		page_size = 2;
681 		break;
682 	default:
683 		return false;
684 	}
685 
686 	tdcall_rcx = *start | page_size;
687 	if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL))
688 		return false;
689 
690 	*start += accept_size;
691 	return true;
692 }
693 
694 /*
695  * Inform the VMM of the guest's intent for this physical page: shared with
696  * the VMM or private to the guest.  The VMM is expected to change its mapping
697  * of the page in response.
698  */
699 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
700 {
701 	phys_addr_t start = __pa(vaddr);
702 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
703 
704 	if (!enc) {
705 		/* Set the shared (decrypted) bits: */
706 		start |= cc_mkdec(0);
707 		end   |= cc_mkdec(0);
708 	}
709 
710 	/*
711 	 * Notify the VMM about page mapping conversion. More info about ABI
712 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
713 	 * section "TDG.VP.VMCALL<MapGPA>"
714 	 */
715 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
716 		return false;
717 
718 	/* private->shared conversion  requires only MapGPA call */
719 	if (!enc)
720 		return true;
721 
722 	/*
723 	 * For shared->private conversion, accept the page using
724 	 * TDX_ACCEPT_PAGE TDX module call.
725 	 */
726 	while (start < end) {
727 		unsigned long len = end - start;
728 
729 		/*
730 		 * Try larger accepts first. It gives chance to VMM to keep
731 		 * 1G/2M SEPT entries where possible and speeds up process by
732 		 * cutting number of hypercalls (if successful).
733 		 */
734 
735 		if (try_accept_one(&start, len, PG_LEVEL_1G))
736 			continue;
737 
738 		if (try_accept_one(&start, len, PG_LEVEL_2M))
739 			continue;
740 
741 		if (!try_accept_one(&start, len, PG_LEVEL_4K))
742 			return false;
743 	}
744 
745 	return true;
746 }
747 
748 void __init tdx_early_init(void)
749 {
750 	u64 cc_mask;
751 	u32 eax, sig[3];
752 
753 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
754 
755 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
756 		return;
757 
758 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
759 
760 	cc_set_vendor(CC_VENDOR_INTEL);
761 	cc_mask = get_cc_mask();
762 	cc_set_mask(cc_mask);
763 
764 	/*
765 	 * All bits above GPA width are reserved and kernel treats shared bit
766 	 * as flag, not as part of physical address.
767 	 *
768 	 * Adjust physical mask to only cover valid GPA bits.
769 	 */
770 	physical_mask &= cc_mask - 1;
771 
772 	x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
773 	x86_platform.guest.enc_tlb_flush_required   = tdx_tlb_flush_required;
774 	x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed;
775 
776 	pr_info("Guest detected\n");
777 }
778