xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision 9470114d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/ia32.h>
14 #include <asm/insn.h>
15 #include <asm/insn-eval.h>
16 #include <asm/pgtable.h>
17 
18 /* MMIO direction */
19 #define EPT_READ	0
20 #define EPT_WRITE	1
21 
22 /* Port I/O direction */
23 #define PORT_READ	0
24 #define PORT_WRITE	1
25 
26 /* See Exit Qualification for I/O Instructions in VMX documentation */
27 #define VE_IS_IO_IN(e)		((e) & BIT(3))
28 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
29 #define VE_GET_PORT_NUM(e)	((e) >> 16)
30 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
31 
32 #define ATTR_DEBUG		BIT(0)
33 #define ATTR_SEPT_VE_DISABLE	BIT(28)
34 
35 /* TDX Module call error codes */
36 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
37 #define TDCALL_INVALID_OPERAND	0xc0000100
38 
39 #define TDREPORT_SUBTYPE_0	0
40 
41 /* Called from __tdx_hypercall() for unrecoverable failure */
42 noinstr void __tdx_hypercall_failed(void)
43 {
44 	instrumentation_begin();
45 	panic("TDVMCALL failed. TDX module bug?");
46 }
47 
48 #ifdef CONFIG_KVM_GUEST
49 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
50 		       unsigned long p3, unsigned long p4)
51 {
52 	struct tdx_hypercall_args args = {
53 		.r10 = nr,
54 		.r11 = p1,
55 		.r12 = p2,
56 		.r13 = p3,
57 		.r14 = p4,
58 	};
59 
60 	return __tdx_hypercall(&args);
61 }
62 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
63 #endif
64 
65 /*
66  * Used for TDX guests to make calls directly to the TD module.  This
67  * should only be used for calls that have no legitimate reason to fail
68  * or where the kernel can not survive the call failing.
69  */
70 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
71 				   struct tdx_module_output *out)
72 {
73 	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
74 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
75 }
76 
77 /**
78  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
79  *                           subtype 0) using TDG.MR.REPORT TDCALL.
80  * @reportdata: Address of the input buffer which contains user-defined
81  *              REPORTDATA to be included into TDREPORT.
82  * @tdreport: Address of the output buffer to store TDREPORT.
83  *
84  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
85  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
86  * It is used in the TDX guest driver module to get the TDREPORT0.
87  *
88  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
89  * other TDCALL failures.
90  */
91 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
92 {
93 	u64 ret;
94 
95 	ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport),
96 				virt_to_phys(reportdata), TDREPORT_SUBTYPE_0,
97 				0, NULL);
98 	if (ret) {
99 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
100 			return -EINVAL;
101 		return -EIO;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
107 
108 static void __noreturn tdx_panic(const char *msg)
109 {
110 	struct tdx_hypercall_args args = {
111 		.r10 = TDX_HYPERCALL_STANDARD,
112 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
113 		.r12 = 0, /* Error code: 0 is Panic */
114 	};
115 	union {
116 		/* Define register order according to the GHCI */
117 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
118 
119 		char str[64];
120 	} message;
121 
122 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
123 	strncpy(message.str, msg, 64);
124 
125 	args.r8  = message.r8;
126 	args.r9  = message.r9;
127 	args.r14 = message.r14;
128 	args.r15 = message.r15;
129 	args.rdi = message.rdi;
130 	args.rsi = message.rsi;
131 	args.rbx = message.rbx;
132 	args.rdx = message.rdx;
133 
134 	/*
135 	 * This hypercall should never return and it is not safe
136 	 * to keep the guest running. Call it forever if it
137 	 * happens to return.
138 	 */
139 	while (1)
140 		__tdx_hypercall(&args);
141 }
142 
143 static void tdx_parse_tdinfo(u64 *cc_mask)
144 {
145 	struct tdx_module_output out;
146 	unsigned int gpa_width;
147 	u64 td_attr;
148 
149 	/*
150 	 * TDINFO TDX module call is used to get the TD execution environment
151 	 * information like GPA width, number of available vcpus, debug mode
152 	 * information, etc. More details about the ABI can be found in TDX
153 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
154 	 * [TDG.VP.INFO].
155 	 */
156 	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
157 
158 	/*
159 	 * The highest bit of a guest physical address is the "sharing" bit.
160 	 * Set it for shared pages and clear it for private pages.
161 	 *
162 	 * The GPA width that comes out of this call is critical. TDX guests
163 	 * can not meaningfully run without it.
164 	 */
165 	gpa_width = out.rcx & GENMASK(5, 0);
166 	*cc_mask = BIT_ULL(gpa_width - 1);
167 
168 	/*
169 	 * The kernel can not handle #VE's when accessing normal kernel
170 	 * memory.  Ensure that no #VE will be delivered for accesses to
171 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
172 	 */
173 	td_attr = out.rdx;
174 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
175 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
176 
177 		/* Relax SEPT_VE_DISABLE check for debug TD. */
178 		if (td_attr & ATTR_DEBUG)
179 			pr_warn("%s\n", msg);
180 		else
181 			tdx_panic(msg);
182 	}
183 }
184 
185 /*
186  * The TDX module spec states that #VE may be injected for a limited set of
187  * reasons:
188  *
189  *  - Emulation of the architectural #VE injection on EPT violation;
190  *
191  *  - As a result of guest TD execution of a disallowed instruction,
192  *    a disallowed MSR access, or CPUID virtualization;
193  *
194  *  - A notification to the guest TD about anomalous behavior;
195  *
196  * The last one is opt-in and is not used by the kernel.
197  *
198  * The Intel Software Developer's Manual describes cases when instruction
199  * length field can be used in section "Information for VM Exits Due to
200  * Instruction Execution".
201  *
202  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
203  * information if #VE occurred due to instruction execution, but not for EPT
204  * violations.
205  */
206 static int ve_instr_len(struct ve_info *ve)
207 {
208 	switch (ve->exit_reason) {
209 	case EXIT_REASON_HLT:
210 	case EXIT_REASON_MSR_READ:
211 	case EXIT_REASON_MSR_WRITE:
212 	case EXIT_REASON_CPUID:
213 	case EXIT_REASON_IO_INSTRUCTION:
214 		/* It is safe to use ve->instr_len for #VE due instructions */
215 		return ve->instr_len;
216 	case EXIT_REASON_EPT_VIOLATION:
217 		/*
218 		 * For EPT violations, ve->insn_len is not defined. For those,
219 		 * the kernel must decode instructions manually and should not
220 		 * be using this function.
221 		 */
222 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
223 		return 0;
224 	default:
225 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
226 		return ve->instr_len;
227 	}
228 }
229 
230 static u64 __cpuidle __halt(const bool irq_disabled)
231 {
232 	struct tdx_hypercall_args args = {
233 		.r10 = TDX_HYPERCALL_STANDARD,
234 		.r11 = hcall_func(EXIT_REASON_HLT),
235 		.r12 = irq_disabled,
236 	};
237 
238 	/*
239 	 * Emulate HLT operation via hypercall. More info about ABI
240 	 * can be found in TDX Guest-Host-Communication Interface
241 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
242 	 *
243 	 * The VMM uses the "IRQ disabled" param to understand IRQ
244 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
245 	 * whether or not it should schedule the halted vCPU if an
246 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
247 	 * can keep the vCPU in virtual HLT, even if an IRQ is
248 	 * pending, without hanging/breaking the guest.
249 	 */
250 	return __tdx_hypercall(&args);
251 }
252 
253 static int handle_halt(struct ve_info *ve)
254 {
255 	const bool irq_disabled = irqs_disabled();
256 
257 	if (__halt(irq_disabled))
258 		return -EIO;
259 
260 	return ve_instr_len(ve);
261 }
262 
263 void __cpuidle tdx_safe_halt(void)
264 {
265 	const bool irq_disabled = false;
266 
267 	/*
268 	 * Use WARN_ONCE() to report the failure.
269 	 */
270 	if (__halt(irq_disabled))
271 		WARN_ONCE(1, "HLT instruction emulation failed\n");
272 }
273 
274 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
275 {
276 	struct tdx_hypercall_args args = {
277 		.r10 = TDX_HYPERCALL_STANDARD,
278 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
279 		.r12 = regs->cx,
280 	};
281 
282 	/*
283 	 * Emulate the MSR read via hypercall. More info about ABI
284 	 * can be found in TDX Guest-Host-Communication Interface
285 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
286 	 */
287 	if (__tdx_hypercall_ret(&args))
288 		return -EIO;
289 
290 	regs->ax = lower_32_bits(args.r11);
291 	regs->dx = upper_32_bits(args.r11);
292 	return ve_instr_len(ve);
293 }
294 
295 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
296 {
297 	struct tdx_hypercall_args args = {
298 		.r10 = TDX_HYPERCALL_STANDARD,
299 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
300 		.r12 = regs->cx,
301 		.r13 = (u64)regs->dx << 32 | regs->ax,
302 	};
303 
304 	/*
305 	 * Emulate the MSR write via hypercall. More info about ABI
306 	 * can be found in TDX Guest-Host-Communication Interface
307 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
308 	 */
309 	if (__tdx_hypercall(&args))
310 		return -EIO;
311 
312 	return ve_instr_len(ve);
313 }
314 
315 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
316 {
317 	struct tdx_hypercall_args args = {
318 		.r10 = TDX_HYPERCALL_STANDARD,
319 		.r11 = hcall_func(EXIT_REASON_CPUID),
320 		.r12 = regs->ax,
321 		.r13 = regs->cx,
322 	};
323 
324 	/*
325 	 * Only allow VMM to control range reserved for hypervisor
326 	 * communication.
327 	 *
328 	 * Return all-zeros for any CPUID outside the range. It matches CPU
329 	 * behaviour for non-supported leaf.
330 	 */
331 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
332 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
333 		return ve_instr_len(ve);
334 	}
335 
336 	/*
337 	 * Emulate the CPUID instruction via a hypercall. More info about
338 	 * ABI can be found in TDX Guest-Host-Communication Interface
339 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
340 	 */
341 	if (__tdx_hypercall_ret(&args))
342 		return -EIO;
343 
344 	/*
345 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
346 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
347 	 * So copy the register contents back to pt_regs.
348 	 */
349 	regs->ax = args.r12;
350 	regs->bx = args.r13;
351 	regs->cx = args.r14;
352 	regs->dx = args.r15;
353 
354 	return ve_instr_len(ve);
355 }
356 
357 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
358 {
359 	struct tdx_hypercall_args args = {
360 		.r10 = TDX_HYPERCALL_STANDARD,
361 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
362 		.r12 = size,
363 		.r13 = EPT_READ,
364 		.r14 = addr,
365 		.r15 = *val,
366 	};
367 
368 	if (__tdx_hypercall_ret(&args))
369 		return false;
370 	*val = args.r11;
371 	return true;
372 }
373 
374 static bool mmio_write(int size, unsigned long addr, unsigned long val)
375 {
376 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
377 			       EPT_WRITE, addr, val);
378 }
379 
380 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
381 {
382 	unsigned long *reg, val, vaddr;
383 	char buffer[MAX_INSN_SIZE];
384 	enum insn_mmio_type mmio;
385 	struct insn insn = {};
386 	int size, extend_size;
387 	u8 extend_val = 0;
388 
389 	/* Only in-kernel MMIO is supported */
390 	if (WARN_ON_ONCE(user_mode(regs)))
391 		return -EFAULT;
392 
393 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
394 		return -EFAULT;
395 
396 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
397 		return -EINVAL;
398 
399 	mmio = insn_decode_mmio(&insn, &size);
400 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
401 		return -EINVAL;
402 
403 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
404 		reg = insn_get_modrm_reg_ptr(&insn, regs);
405 		if (!reg)
406 			return -EINVAL;
407 	}
408 
409 	/*
410 	 * Reject EPT violation #VEs that split pages.
411 	 *
412 	 * MMIO accesses are supposed to be naturally aligned and therefore
413 	 * never cross page boundaries. Seeing split page accesses indicates
414 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
415 	 *
416 	 * load_unaligned_zeropad() will recover using exception fixups.
417 	 */
418 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
419 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
420 		return -EFAULT;
421 
422 	/* Handle writes first */
423 	switch (mmio) {
424 	case INSN_MMIO_WRITE:
425 		memcpy(&val, reg, size);
426 		if (!mmio_write(size, ve->gpa, val))
427 			return -EIO;
428 		return insn.length;
429 	case INSN_MMIO_WRITE_IMM:
430 		val = insn.immediate.value;
431 		if (!mmio_write(size, ve->gpa, val))
432 			return -EIO;
433 		return insn.length;
434 	case INSN_MMIO_READ:
435 	case INSN_MMIO_READ_ZERO_EXTEND:
436 	case INSN_MMIO_READ_SIGN_EXTEND:
437 		/* Reads are handled below */
438 		break;
439 	case INSN_MMIO_MOVS:
440 	case INSN_MMIO_DECODE_FAILED:
441 		/*
442 		 * MMIO was accessed with an instruction that could not be
443 		 * decoded or handled properly. It was likely not using io.h
444 		 * helpers or accessed MMIO accidentally.
445 		 */
446 		return -EINVAL;
447 	default:
448 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
449 		return -EINVAL;
450 	}
451 
452 	/* Handle reads */
453 	if (!mmio_read(size, ve->gpa, &val))
454 		return -EIO;
455 
456 	switch (mmio) {
457 	case INSN_MMIO_READ:
458 		/* Zero-extend for 32-bit operation */
459 		extend_size = size == 4 ? sizeof(*reg) : 0;
460 		break;
461 	case INSN_MMIO_READ_ZERO_EXTEND:
462 		/* Zero extend based on operand size */
463 		extend_size = insn.opnd_bytes;
464 		break;
465 	case INSN_MMIO_READ_SIGN_EXTEND:
466 		/* Sign extend based on operand size */
467 		extend_size = insn.opnd_bytes;
468 		if (size == 1 && val & BIT(7))
469 			extend_val = 0xFF;
470 		else if (size > 1 && val & BIT(15))
471 			extend_val = 0xFF;
472 		break;
473 	default:
474 		/* All other cases has to be covered with the first switch() */
475 		WARN_ON_ONCE(1);
476 		return -EINVAL;
477 	}
478 
479 	if (extend_size)
480 		memset(reg, extend_val, extend_size);
481 	memcpy(reg, &val, size);
482 	return insn.length;
483 }
484 
485 static bool handle_in(struct pt_regs *regs, int size, int port)
486 {
487 	struct tdx_hypercall_args args = {
488 		.r10 = TDX_HYPERCALL_STANDARD,
489 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
490 		.r12 = size,
491 		.r13 = PORT_READ,
492 		.r14 = port,
493 	};
494 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
495 	bool success;
496 
497 	/*
498 	 * Emulate the I/O read via hypercall. More info about ABI can be found
499 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
500 	 * "TDG.VP.VMCALL<Instruction.IO>".
501 	 */
502 	success = !__tdx_hypercall_ret(&args);
503 
504 	/* Update part of the register affected by the emulated instruction */
505 	regs->ax &= ~mask;
506 	if (success)
507 		regs->ax |= args.r11 & mask;
508 
509 	return success;
510 }
511 
512 static bool handle_out(struct pt_regs *regs, int size, int port)
513 {
514 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
515 
516 	/*
517 	 * Emulate the I/O write via hypercall. More info about ABI can be found
518 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
519 	 * "TDG.VP.VMCALL<Instruction.IO>".
520 	 */
521 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
522 			       PORT_WRITE, port, regs->ax & mask);
523 }
524 
525 /*
526  * Emulate I/O using hypercall.
527  *
528  * Assumes the IO instruction was using ax, which is enforced
529  * by the standard io.h macros.
530  *
531  * Return True on success or False on failure.
532  */
533 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
534 {
535 	u32 exit_qual = ve->exit_qual;
536 	int size, port;
537 	bool in, ret;
538 
539 	if (VE_IS_IO_STRING(exit_qual))
540 		return -EIO;
541 
542 	in   = VE_IS_IO_IN(exit_qual);
543 	size = VE_GET_IO_SIZE(exit_qual);
544 	port = VE_GET_PORT_NUM(exit_qual);
545 
546 
547 	if (in)
548 		ret = handle_in(regs, size, port);
549 	else
550 		ret = handle_out(regs, size, port);
551 	if (!ret)
552 		return -EIO;
553 
554 	return ve_instr_len(ve);
555 }
556 
557 /*
558  * Early #VE exception handler. Only handles a subset of port I/O.
559  * Intended only for earlyprintk. If failed, return false.
560  */
561 __init bool tdx_early_handle_ve(struct pt_regs *regs)
562 {
563 	struct ve_info ve;
564 	int insn_len;
565 
566 	tdx_get_ve_info(&ve);
567 
568 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
569 		return false;
570 
571 	insn_len = handle_io(regs, &ve);
572 	if (insn_len < 0)
573 		return false;
574 
575 	regs->ip += insn_len;
576 	return true;
577 }
578 
579 void tdx_get_ve_info(struct ve_info *ve)
580 {
581 	struct tdx_module_output out;
582 
583 	/*
584 	 * Called during #VE handling to retrieve the #VE info from the
585 	 * TDX module.
586 	 *
587 	 * This has to be called early in #VE handling.  A "nested" #VE which
588 	 * occurs before this will raise a #DF and is not recoverable.
589 	 *
590 	 * The call retrieves the #VE info from the TDX module, which also
591 	 * clears the "#VE valid" flag. This must be done before anything else
592 	 * because any #VE that occurs while the valid flag is set will lead to
593 	 * #DF.
594 	 *
595 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
596 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
597 	 */
598 	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
599 
600 	/* Transfer the output parameters */
601 	ve->exit_reason = out.rcx;
602 	ve->exit_qual   = out.rdx;
603 	ve->gla         = out.r8;
604 	ve->gpa         = out.r9;
605 	ve->instr_len   = lower_32_bits(out.r10);
606 	ve->instr_info  = upper_32_bits(out.r10);
607 }
608 
609 /*
610  * Handle the user initiated #VE.
611  *
612  * On success, returns the number of bytes RIP should be incremented (>=0)
613  * or -errno on error.
614  */
615 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
616 {
617 	switch (ve->exit_reason) {
618 	case EXIT_REASON_CPUID:
619 		return handle_cpuid(regs, ve);
620 	default:
621 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
622 		return -EIO;
623 	}
624 }
625 
626 static inline bool is_private_gpa(u64 gpa)
627 {
628 	return gpa == cc_mkenc(gpa);
629 }
630 
631 /*
632  * Handle the kernel #VE.
633  *
634  * On success, returns the number of bytes RIP should be incremented (>=0)
635  * or -errno on error.
636  */
637 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
638 {
639 	switch (ve->exit_reason) {
640 	case EXIT_REASON_HLT:
641 		return handle_halt(ve);
642 	case EXIT_REASON_MSR_READ:
643 		return read_msr(regs, ve);
644 	case EXIT_REASON_MSR_WRITE:
645 		return write_msr(regs, ve);
646 	case EXIT_REASON_CPUID:
647 		return handle_cpuid(regs, ve);
648 	case EXIT_REASON_EPT_VIOLATION:
649 		if (is_private_gpa(ve->gpa))
650 			panic("Unexpected EPT-violation on private memory.");
651 		return handle_mmio(regs, ve);
652 	case EXIT_REASON_IO_INSTRUCTION:
653 		return handle_io(regs, ve);
654 	default:
655 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
656 		return -EIO;
657 	}
658 }
659 
660 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
661 {
662 	int insn_len;
663 
664 	if (user_mode(regs))
665 		insn_len = virt_exception_user(regs, ve);
666 	else
667 		insn_len = virt_exception_kernel(regs, ve);
668 	if (insn_len < 0)
669 		return false;
670 
671 	/* After successful #VE handling, move the IP */
672 	regs->ip += insn_len;
673 
674 	return true;
675 }
676 
677 static bool tdx_tlb_flush_required(bool private)
678 {
679 	/*
680 	 * TDX guest is responsible for flushing TLB on private->shared
681 	 * transition. VMM is responsible for flushing on shared->private.
682 	 *
683 	 * The VMM _can't_ flush private addresses as it can't generate PAs
684 	 * with the guest's HKID.  Shared memory isn't subject to integrity
685 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
686 	 *
687 	 * There's no need to flush when converting from shared to private,
688 	 * as flushing is the VMM's responsibility in this case, e.g. it must
689 	 * flush to avoid integrity failures in the face of a buggy or
690 	 * malicious guest.
691 	 */
692 	return !private;
693 }
694 
695 static bool tdx_cache_flush_required(void)
696 {
697 	/*
698 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
699 	 * TDX doesn't have such capability.
700 	 *
701 	 * Flush cache unconditionally.
702 	 */
703 	return true;
704 }
705 
706 /*
707  * Inform the VMM of the guest's intent for this physical page: shared with
708  * the VMM or private to the guest.  The VMM is expected to change its mapping
709  * of the page in response.
710  */
711 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
712 {
713 	phys_addr_t start = __pa(vaddr);
714 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
715 
716 	if (!enc) {
717 		/* Set the shared (decrypted) bits: */
718 		start |= cc_mkdec(0);
719 		end   |= cc_mkdec(0);
720 	}
721 
722 	/*
723 	 * Notify the VMM about page mapping conversion. More info about ABI
724 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
725 	 * section "TDG.VP.VMCALL<MapGPA>"
726 	 */
727 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
728 		return false;
729 
730 	/* shared->private conversion requires memory to be accepted before use */
731 	if (enc)
732 		return tdx_accept_memory(start, end);
733 
734 	return true;
735 }
736 
737 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
738 					  bool enc)
739 {
740 	/*
741 	 * Only handle shared->private conversion here.
742 	 * See the comment in tdx_early_init().
743 	 */
744 	if (enc)
745 		return tdx_enc_status_changed(vaddr, numpages, enc);
746 	return true;
747 }
748 
749 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
750 					 bool enc)
751 {
752 	/*
753 	 * Only handle private->shared conversion here.
754 	 * See the comment in tdx_early_init().
755 	 */
756 	if (!enc)
757 		return tdx_enc_status_changed(vaddr, numpages, enc);
758 	return true;
759 }
760 
761 void __init tdx_early_init(void)
762 {
763 	u64 cc_mask;
764 	u32 eax, sig[3];
765 
766 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
767 
768 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
769 		return;
770 
771 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
772 
773 	cc_vendor = CC_VENDOR_INTEL;
774 	tdx_parse_tdinfo(&cc_mask);
775 	cc_set_mask(cc_mask);
776 
777 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
778 	tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL);
779 
780 	/*
781 	 * All bits above GPA width are reserved and kernel treats shared bit
782 	 * as flag, not as part of physical address.
783 	 *
784 	 * Adjust physical mask to only cover valid GPA bits.
785 	 */
786 	physical_mask &= cc_mask - 1;
787 
788 	/*
789 	 * The kernel mapping should match the TDX metadata for the page.
790 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
791 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
792 	 * things happen on mismatch:
793 	 *
794 	 *   - Private mapping => Shared Page  == Guest shutdown
795          *   - Shared mapping  => Private Page == Recoverable #VE
796 	 *
797 	 * guest.enc_status_change_prepare() converts the page from
798 	 * shared=>private before the mapping becomes private.
799 	 *
800 	 * guest.enc_status_change_finish() converts the page from
801 	 * private=>shared after the mapping becomes private.
802 	 *
803 	 * In both cases there is a temporary shared mapping to a private page,
804 	 * which can result in a #VE.  But, there is never a private mapping to
805 	 * a shared page.
806 	 */
807 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
808 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
809 
810 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
811 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
812 
813 	/*
814 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
815 	 * bringup low level code. That raises #VE which cannot be handled
816 	 * there.
817 	 *
818 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
819 	 * implemented seperately in the low level startup ASM code.
820 	 * Until that is in place, disable parallel bringup for TDX.
821 	 */
822 	x86_cpuinit.parallel_bringup = false;
823 
824 	pr_info("Guest detected\n");
825 }
826