xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision 88a6f899)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/pgtable.h>
16 
17 /* MMIO direction */
18 #define EPT_READ	0
19 #define EPT_WRITE	1
20 
21 /* Port I/O direction */
22 #define PORT_READ	0
23 #define PORT_WRITE	1
24 
25 /* See Exit Qualification for I/O Instructions in VMX documentation */
26 #define VE_IS_IO_IN(e)		((e) & BIT(3))
27 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
28 #define VE_GET_PORT_NUM(e)	((e) >> 16)
29 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
30 
31 #define ATTR_DEBUG		BIT(0)
32 #define ATTR_SEPT_VE_DISABLE	BIT(28)
33 
34 /* TDX Module call error codes */
35 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
36 #define TDCALL_INVALID_OPERAND	0xc0000100
37 
38 #define TDREPORT_SUBTYPE_0	0
39 
40 /* Called from __tdx_hypercall() for unrecoverable failure */
41 noinstr void __tdx_hypercall_failed(void)
42 {
43 	instrumentation_begin();
44 	panic("TDVMCALL failed. TDX module bug?");
45 }
46 
47 #ifdef CONFIG_KVM_GUEST
48 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
49 		       unsigned long p3, unsigned long p4)
50 {
51 	struct tdx_hypercall_args args = {
52 		.r10 = nr,
53 		.r11 = p1,
54 		.r12 = p2,
55 		.r13 = p3,
56 		.r14 = p4,
57 	};
58 
59 	return __tdx_hypercall(&args);
60 }
61 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
62 #endif
63 
64 /*
65  * Used for TDX guests to make calls directly to the TD module.  This
66  * should only be used for calls that have no legitimate reason to fail
67  * or where the kernel can not survive the call failing.
68  */
69 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
70 				   struct tdx_module_output *out)
71 {
72 	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
73 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
74 }
75 
76 /**
77  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
78  *                           subtype 0) using TDG.MR.REPORT TDCALL.
79  * @reportdata: Address of the input buffer which contains user-defined
80  *              REPORTDATA to be included into TDREPORT.
81  * @tdreport: Address of the output buffer to store TDREPORT.
82  *
83  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
84  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
85  * It is used in the TDX guest driver module to get the TDREPORT0.
86  *
87  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
88  * other TDCALL failures.
89  */
90 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
91 {
92 	u64 ret;
93 
94 	ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport),
95 				virt_to_phys(reportdata), TDREPORT_SUBTYPE_0,
96 				0, NULL);
97 	if (ret) {
98 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
99 			return -EINVAL;
100 		return -EIO;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
106 
107 static void __noreturn tdx_panic(const char *msg)
108 {
109 	struct tdx_hypercall_args args = {
110 		.r10 = TDX_HYPERCALL_STANDARD,
111 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
112 		.r12 = 0, /* Error code: 0 is Panic */
113 	};
114 	union {
115 		/* Define register order according to the GHCI */
116 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
117 
118 		char str[64];
119 	} message;
120 
121 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
122 	strncpy(message.str, msg, 64);
123 
124 	args.r8  = message.r8;
125 	args.r9  = message.r9;
126 	args.r14 = message.r14;
127 	args.r15 = message.r15;
128 	args.rdi = message.rdi;
129 	args.rsi = message.rsi;
130 	args.rbx = message.rbx;
131 	args.rdx = message.rdx;
132 
133 	/*
134 	 * This hypercall should never return and it is not safe
135 	 * to keep the guest running. Call it forever if it
136 	 * happens to return.
137 	 */
138 	while (1)
139 		__tdx_hypercall(&args);
140 }
141 
142 static void tdx_parse_tdinfo(u64 *cc_mask)
143 {
144 	struct tdx_module_output out;
145 	unsigned int gpa_width;
146 	u64 td_attr;
147 
148 	/*
149 	 * TDINFO TDX module call is used to get the TD execution environment
150 	 * information like GPA width, number of available vcpus, debug mode
151 	 * information, etc. More details about the ABI can be found in TDX
152 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
153 	 * [TDG.VP.INFO].
154 	 */
155 	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
156 
157 	/*
158 	 * The highest bit of a guest physical address is the "sharing" bit.
159 	 * Set it for shared pages and clear it for private pages.
160 	 *
161 	 * The GPA width that comes out of this call is critical. TDX guests
162 	 * can not meaningfully run without it.
163 	 */
164 	gpa_width = out.rcx & GENMASK(5, 0);
165 	*cc_mask = BIT_ULL(gpa_width - 1);
166 
167 	/*
168 	 * The kernel can not handle #VE's when accessing normal kernel
169 	 * memory.  Ensure that no #VE will be delivered for accesses to
170 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
171 	 */
172 	td_attr = out.rdx;
173 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
174 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
175 
176 		/* Relax SEPT_VE_DISABLE check for debug TD. */
177 		if (td_attr & ATTR_DEBUG)
178 			pr_warn("%s\n", msg);
179 		else
180 			tdx_panic(msg);
181 	}
182 }
183 
184 /*
185  * The TDX module spec states that #VE may be injected for a limited set of
186  * reasons:
187  *
188  *  - Emulation of the architectural #VE injection on EPT violation;
189  *
190  *  - As a result of guest TD execution of a disallowed instruction,
191  *    a disallowed MSR access, or CPUID virtualization;
192  *
193  *  - A notification to the guest TD about anomalous behavior;
194  *
195  * The last one is opt-in and is not used by the kernel.
196  *
197  * The Intel Software Developer's Manual describes cases when instruction
198  * length field can be used in section "Information for VM Exits Due to
199  * Instruction Execution".
200  *
201  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
202  * information if #VE occurred due to instruction execution, but not for EPT
203  * violations.
204  */
205 static int ve_instr_len(struct ve_info *ve)
206 {
207 	switch (ve->exit_reason) {
208 	case EXIT_REASON_HLT:
209 	case EXIT_REASON_MSR_READ:
210 	case EXIT_REASON_MSR_WRITE:
211 	case EXIT_REASON_CPUID:
212 	case EXIT_REASON_IO_INSTRUCTION:
213 		/* It is safe to use ve->instr_len for #VE due instructions */
214 		return ve->instr_len;
215 	case EXIT_REASON_EPT_VIOLATION:
216 		/*
217 		 * For EPT violations, ve->insn_len is not defined. For those,
218 		 * the kernel must decode instructions manually and should not
219 		 * be using this function.
220 		 */
221 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
222 		return 0;
223 	default:
224 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
225 		return ve->instr_len;
226 	}
227 }
228 
229 static u64 __cpuidle __halt(const bool irq_disabled)
230 {
231 	struct tdx_hypercall_args args = {
232 		.r10 = TDX_HYPERCALL_STANDARD,
233 		.r11 = hcall_func(EXIT_REASON_HLT),
234 		.r12 = irq_disabled,
235 	};
236 
237 	/*
238 	 * Emulate HLT operation via hypercall. More info about ABI
239 	 * can be found in TDX Guest-Host-Communication Interface
240 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
241 	 *
242 	 * The VMM uses the "IRQ disabled" param to understand IRQ
243 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
244 	 * whether or not it should schedule the halted vCPU if an
245 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
246 	 * can keep the vCPU in virtual HLT, even if an IRQ is
247 	 * pending, without hanging/breaking the guest.
248 	 */
249 	return __tdx_hypercall(&args);
250 }
251 
252 static int handle_halt(struct ve_info *ve)
253 {
254 	const bool irq_disabled = irqs_disabled();
255 
256 	if (__halt(irq_disabled))
257 		return -EIO;
258 
259 	return ve_instr_len(ve);
260 }
261 
262 void __cpuidle tdx_safe_halt(void)
263 {
264 	const bool irq_disabled = false;
265 
266 	/*
267 	 * Use WARN_ONCE() to report the failure.
268 	 */
269 	if (__halt(irq_disabled))
270 		WARN_ONCE(1, "HLT instruction emulation failed\n");
271 }
272 
273 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
274 {
275 	struct tdx_hypercall_args args = {
276 		.r10 = TDX_HYPERCALL_STANDARD,
277 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
278 		.r12 = regs->cx,
279 	};
280 
281 	/*
282 	 * Emulate the MSR read via hypercall. More info about ABI
283 	 * can be found in TDX Guest-Host-Communication Interface
284 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
285 	 */
286 	if (__tdx_hypercall_ret(&args))
287 		return -EIO;
288 
289 	regs->ax = lower_32_bits(args.r11);
290 	regs->dx = upper_32_bits(args.r11);
291 	return ve_instr_len(ve);
292 }
293 
294 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
295 {
296 	struct tdx_hypercall_args args = {
297 		.r10 = TDX_HYPERCALL_STANDARD,
298 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
299 		.r12 = regs->cx,
300 		.r13 = (u64)regs->dx << 32 | regs->ax,
301 	};
302 
303 	/*
304 	 * Emulate the MSR write via hypercall. More info about ABI
305 	 * can be found in TDX Guest-Host-Communication Interface
306 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
307 	 */
308 	if (__tdx_hypercall(&args))
309 		return -EIO;
310 
311 	return ve_instr_len(ve);
312 }
313 
314 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
315 {
316 	struct tdx_hypercall_args args = {
317 		.r10 = TDX_HYPERCALL_STANDARD,
318 		.r11 = hcall_func(EXIT_REASON_CPUID),
319 		.r12 = regs->ax,
320 		.r13 = regs->cx,
321 	};
322 
323 	/*
324 	 * Only allow VMM to control range reserved for hypervisor
325 	 * communication.
326 	 *
327 	 * Return all-zeros for any CPUID outside the range. It matches CPU
328 	 * behaviour for non-supported leaf.
329 	 */
330 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
331 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
332 		return ve_instr_len(ve);
333 	}
334 
335 	/*
336 	 * Emulate the CPUID instruction via a hypercall. More info about
337 	 * ABI can be found in TDX Guest-Host-Communication Interface
338 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
339 	 */
340 	if (__tdx_hypercall_ret(&args))
341 		return -EIO;
342 
343 	/*
344 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
345 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
346 	 * So copy the register contents back to pt_regs.
347 	 */
348 	regs->ax = args.r12;
349 	regs->bx = args.r13;
350 	regs->cx = args.r14;
351 	regs->dx = args.r15;
352 
353 	return ve_instr_len(ve);
354 }
355 
356 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
357 {
358 	struct tdx_hypercall_args args = {
359 		.r10 = TDX_HYPERCALL_STANDARD,
360 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
361 		.r12 = size,
362 		.r13 = EPT_READ,
363 		.r14 = addr,
364 		.r15 = *val,
365 	};
366 
367 	if (__tdx_hypercall_ret(&args))
368 		return false;
369 	*val = args.r11;
370 	return true;
371 }
372 
373 static bool mmio_write(int size, unsigned long addr, unsigned long val)
374 {
375 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
376 			       EPT_WRITE, addr, val);
377 }
378 
379 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
380 {
381 	unsigned long *reg, val, vaddr;
382 	char buffer[MAX_INSN_SIZE];
383 	enum insn_mmio_type mmio;
384 	struct insn insn = {};
385 	int size, extend_size;
386 	u8 extend_val = 0;
387 
388 	/* Only in-kernel MMIO is supported */
389 	if (WARN_ON_ONCE(user_mode(regs)))
390 		return -EFAULT;
391 
392 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
393 		return -EFAULT;
394 
395 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
396 		return -EINVAL;
397 
398 	mmio = insn_decode_mmio(&insn, &size);
399 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
400 		return -EINVAL;
401 
402 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
403 		reg = insn_get_modrm_reg_ptr(&insn, regs);
404 		if (!reg)
405 			return -EINVAL;
406 	}
407 
408 	/*
409 	 * Reject EPT violation #VEs that split pages.
410 	 *
411 	 * MMIO accesses are supposed to be naturally aligned and therefore
412 	 * never cross page boundaries. Seeing split page accesses indicates
413 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
414 	 *
415 	 * load_unaligned_zeropad() will recover using exception fixups.
416 	 */
417 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
418 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
419 		return -EFAULT;
420 
421 	/* Handle writes first */
422 	switch (mmio) {
423 	case INSN_MMIO_WRITE:
424 		memcpy(&val, reg, size);
425 		if (!mmio_write(size, ve->gpa, val))
426 			return -EIO;
427 		return insn.length;
428 	case INSN_MMIO_WRITE_IMM:
429 		val = insn.immediate.value;
430 		if (!mmio_write(size, ve->gpa, val))
431 			return -EIO;
432 		return insn.length;
433 	case INSN_MMIO_READ:
434 	case INSN_MMIO_READ_ZERO_EXTEND:
435 	case INSN_MMIO_READ_SIGN_EXTEND:
436 		/* Reads are handled below */
437 		break;
438 	case INSN_MMIO_MOVS:
439 	case INSN_MMIO_DECODE_FAILED:
440 		/*
441 		 * MMIO was accessed with an instruction that could not be
442 		 * decoded or handled properly. It was likely not using io.h
443 		 * helpers or accessed MMIO accidentally.
444 		 */
445 		return -EINVAL;
446 	default:
447 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
448 		return -EINVAL;
449 	}
450 
451 	/* Handle reads */
452 	if (!mmio_read(size, ve->gpa, &val))
453 		return -EIO;
454 
455 	switch (mmio) {
456 	case INSN_MMIO_READ:
457 		/* Zero-extend for 32-bit operation */
458 		extend_size = size == 4 ? sizeof(*reg) : 0;
459 		break;
460 	case INSN_MMIO_READ_ZERO_EXTEND:
461 		/* Zero extend based on operand size */
462 		extend_size = insn.opnd_bytes;
463 		break;
464 	case INSN_MMIO_READ_SIGN_EXTEND:
465 		/* Sign extend based on operand size */
466 		extend_size = insn.opnd_bytes;
467 		if (size == 1 && val & BIT(7))
468 			extend_val = 0xFF;
469 		else if (size > 1 && val & BIT(15))
470 			extend_val = 0xFF;
471 		break;
472 	default:
473 		/* All other cases has to be covered with the first switch() */
474 		WARN_ON_ONCE(1);
475 		return -EINVAL;
476 	}
477 
478 	if (extend_size)
479 		memset(reg, extend_val, extend_size);
480 	memcpy(reg, &val, size);
481 	return insn.length;
482 }
483 
484 static bool handle_in(struct pt_regs *regs, int size, int port)
485 {
486 	struct tdx_hypercall_args args = {
487 		.r10 = TDX_HYPERCALL_STANDARD,
488 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
489 		.r12 = size,
490 		.r13 = PORT_READ,
491 		.r14 = port,
492 	};
493 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
494 	bool success;
495 
496 	/*
497 	 * Emulate the I/O read via hypercall. More info about ABI can be found
498 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
499 	 * "TDG.VP.VMCALL<Instruction.IO>".
500 	 */
501 	success = !__tdx_hypercall_ret(&args);
502 
503 	/* Update part of the register affected by the emulated instruction */
504 	regs->ax &= ~mask;
505 	if (success)
506 		regs->ax |= args.r11 & mask;
507 
508 	return success;
509 }
510 
511 static bool handle_out(struct pt_regs *regs, int size, int port)
512 {
513 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
514 
515 	/*
516 	 * Emulate the I/O write via hypercall. More info about ABI can be found
517 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
518 	 * "TDG.VP.VMCALL<Instruction.IO>".
519 	 */
520 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
521 			       PORT_WRITE, port, regs->ax & mask);
522 }
523 
524 /*
525  * Emulate I/O using hypercall.
526  *
527  * Assumes the IO instruction was using ax, which is enforced
528  * by the standard io.h macros.
529  *
530  * Return True on success or False on failure.
531  */
532 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
533 {
534 	u32 exit_qual = ve->exit_qual;
535 	int size, port;
536 	bool in, ret;
537 
538 	if (VE_IS_IO_STRING(exit_qual))
539 		return -EIO;
540 
541 	in   = VE_IS_IO_IN(exit_qual);
542 	size = VE_GET_IO_SIZE(exit_qual);
543 	port = VE_GET_PORT_NUM(exit_qual);
544 
545 
546 	if (in)
547 		ret = handle_in(regs, size, port);
548 	else
549 		ret = handle_out(regs, size, port);
550 	if (!ret)
551 		return -EIO;
552 
553 	return ve_instr_len(ve);
554 }
555 
556 /*
557  * Early #VE exception handler. Only handles a subset of port I/O.
558  * Intended only for earlyprintk. If failed, return false.
559  */
560 __init bool tdx_early_handle_ve(struct pt_regs *regs)
561 {
562 	struct ve_info ve;
563 	int insn_len;
564 
565 	tdx_get_ve_info(&ve);
566 
567 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
568 		return false;
569 
570 	insn_len = handle_io(regs, &ve);
571 	if (insn_len < 0)
572 		return false;
573 
574 	regs->ip += insn_len;
575 	return true;
576 }
577 
578 void tdx_get_ve_info(struct ve_info *ve)
579 {
580 	struct tdx_module_output out;
581 
582 	/*
583 	 * Called during #VE handling to retrieve the #VE info from the
584 	 * TDX module.
585 	 *
586 	 * This has to be called early in #VE handling.  A "nested" #VE which
587 	 * occurs before this will raise a #DF and is not recoverable.
588 	 *
589 	 * The call retrieves the #VE info from the TDX module, which also
590 	 * clears the "#VE valid" flag. This must be done before anything else
591 	 * because any #VE that occurs while the valid flag is set will lead to
592 	 * #DF.
593 	 *
594 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
595 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
596 	 */
597 	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
598 
599 	/* Transfer the output parameters */
600 	ve->exit_reason = out.rcx;
601 	ve->exit_qual   = out.rdx;
602 	ve->gla         = out.r8;
603 	ve->gpa         = out.r9;
604 	ve->instr_len   = lower_32_bits(out.r10);
605 	ve->instr_info  = upper_32_bits(out.r10);
606 }
607 
608 /*
609  * Handle the user initiated #VE.
610  *
611  * On success, returns the number of bytes RIP should be incremented (>=0)
612  * or -errno on error.
613  */
614 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
615 {
616 	switch (ve->exit_reason) {
617 	case EXIT_REASON_CPUID:
618 		return handle_cpuid(regs, ve);
619 	default:
620 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
621 		return -EIO;
622 	}
623 }
624 
625 static inline bool is_private_gpa(u64 gpa)
626 {
627 	return gpa == cc_mkenc(gpa);
628 }
629 
630 /*
631  * Handle the kernel #VE.
632  *
633  * On success, returns the number of bytes RIP should be incremented (>=0)
634  * or -errno on error.
635  */
636 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
637 {
638 	switch (ve->exit_reason) {
639 	case EXIT_REASON_HLT:
640 		return handle_halt(ve);
641 	case EXIT_REASON_MSR_READ:
642 		return read_msr(regs, ve);
643 	case EXIT_REASON_MSR_WRITE:
644 		return write_msr(regs, ve);
645 	case EXIT_REASON_CPUID:
646 		return handle_cpuid(regs, ve);
647 	case EXIT_REASON_EPT_VIOLATION:
648 		if (is_private_gpa(ve->gpa))
649 			panic("Unexpected EPT-violation on private memory.");
650 		return handle_mmio(regs, ve);
651 	case EXIT_REASON_IO_INSTRUCTION:
652 		return handle_io(regs, ve);
653 	default:
654 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
655 		return -EIO;
656 	}
657 }
658 
659 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
660 {
661 	int insn_len;
662 
663 	if (user_mode(regs))
664 		insn_len = virt_exception_user(regs, ve);
665 	else
666 		insn_len = virt_exception_kernel(regs, ve);
667 	if (insn_len < 0)
668 		return false;
669 
670 	/* After successful #VE handling, move the IP */
671 	regs->ip += insn_len;
672 
673 	return true;
674 }
675 
676 static bool tdx_tlb_flush_required(bool private)
677 {
678 	/*
679 	 * TDX guest is responsible for flushing TLB on private->shared
680 	 * transition. VMM is responsible for flushing on shared->private.
681 	 *
682 	 * The VMM _can't_ flush private addresses as it can't generate PAs
683 	 * with the guest's HKID.  Shared memory isn't subject to integrity
684 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
685 	 *
686 	 * There's no need to flush when converting from shared to private,
687 	 * as flushing is the VMM's responsibility in this case, e.g. it must
688 	 * flush to avoid integrity failures in the face of a buggy or
689 	 * malicious guest.
690 	 */
691 	return !private;
692 }
693 
694 static bool tdx_cache_flush_required(void)
695 {
696 	/*
697 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
698 	 * TDX doesn't have such capability.
699 	 *
700 	 * Flush cache unconditionally.
701 	 */
702 	return true;
703 }
704 
705 /*
706  * Inform the VMM of the guest's intent for this physical page: shared with
707  * the VMM or private to the guest.  The VMM is expected to change its mapping
708  * of the page in response.
709  */
710 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
711 {
712 	phys_addr_t start = __pa(vaddr);
713 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
714 
715 	if (!enc) {
716 		/* Set the shared (decrypted) bits: */
717 		start |= cc_mkdec(0);
718 		end   |= cc_mkdec(0);
719 	}
720 
721 	/*
722 	 * Notify the VMM about page mapping conversion. More info about ABI
723 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
724 	 * section "TDG.VP.VMCALL<MapGPA>"
725 	 */
726 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
727 		return false;
728 
729 	/* shared->private conversion requires memory to be accepted before use */
730 	if (enc)
731 		return tdx_accept_memory(start, end);
732 
733 	return true;
734 }
735 
736 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
737 					  bool enc)
738 {
739 	/*
740 	 * Only handle shared->private conversion here.
741 	 * See the comment in tdx_early_init().
742 	 */
743 	if (enc)
744 		return tdx_enc_status_changed(vaddr, numpages, enc);
745 	return true;
746 }
747 
748 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
749 					 bool enc)
750 {
751 	/*
752 	 * Only handle private->shared conversion here.
753 	 * See the comment in tdx_early_init().
754 	 */
755 	if (!enc)
756 		return tdx_enc_status_changed(vaddr, numpages, enc);
757 	return true;
758 }
759 
760 void __init tdx_early_init(void)
761 {
762 	u64 cc_mask;
763 	u32 eax, sig[3];
764 
765 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
766 
767 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
768 		return;
769 
770 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
771 
772 	cc_vendor = CC_VENDOR_INTEL;
773 	tdx_parse_tdinfo(&cc_mask);
774 	cc_set_mask(cc_mask);
775 
776 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
777 	tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL);
778 
779 	/*
780 	 * All bits above GPA width are reserved and kernel treats shared bit
781 	 * as flag, not as part of physical address.
782 	 *
783 	 * Adjust physical mask to only cover valid GPA bits.
784 	 */
785 	physical_mask &= cc_mask - 1;
786 
787 	/*
788 	 * The kernel mapping should match the TDX metadata for the page.
789 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
790 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
791 	 * things happen on mismatch:
792 	 *
793 	 *   - Private mapping => Shared Page  == Guest shutdown
794          *   - Shared mapping  => Private Page == Recoverable #VE
795 	 *
796 	 * guest.enc_status_change_prepare() converts the page from
797 	 * shared=>private before the mapping becomes private.
798 	 *
799 	 * guest.enc_status_change_finish() converts the page from
800 	 * private=>shared after the mapping becomes private.
801 	 *
802 	 * In both cases there is a temporary shared mapping to a private page,
803 	 * which can result in a #VE.  But, there is never a private mapping to
804 	 * a shared page.
805 	 */
806 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
807 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
808 
809 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
810 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
811 
812 	/*
813 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
814 	 * bringup low level code. That raises #VE which cannot be handled
815 	 * there.
816 	 *
817 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
818 	 * implemented seperately in the low level startup ASM code.
819 	 * Until that is in place, disable parallel bringup for TDX.
820 	 */
821 	x86_cpuinit.parallel_bringup = false;
822 
823 	pr_info("Guest detected\n");
824 }
825