1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <asm/coco.h> 11 #include <asm/tdx.h> 12 #include <asm/vmx.h> 13 #include <asm/insn.h> 14 #include <asm/insn-eval.h> 15 #include <asm/pgtable.h> 16 17 /* TDX module Call Leaf IDs */ 18 #define TDX_GET_INFO 1 19 #define TDX_GET_VEINFO 3 20 #define TDX_GET_REPORT 4 21 #define TDX_ACCEPT_PAGE 6 22 23 /* TDX hypercall Leaf IDs */ 24 #define TDVMCALL_MAP_GPA 0x10001 25 26 /* MMIO direction */ 27 #define EPT_READ 0 28 #define EPT_WRITE 1 29 30 /* Port I/O direction */ 31 #define PORT_READ 0 32 #define PORT_WRITE 1 33 34 /* See Exit Qualification for I/O Instructions in VMX documentation */ 35 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 36 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 37 #define VE_GET_PORT_NUM(e) ((e) >> 16) 38 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 39 40 #define ATTR_SEPT_VE_DISABLE BIT(28) 41 42 /* TDX Module call error codes */ 43 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 44 #define TDCALL_INVALID_OPERAND 0xc0000100 45 46 #define TDREPORT_SUBTYPE_0 0 47 48 /* 49 * Wrapper for standard use of __tdx_hypercall with no output aside from 50 * return code. 51 */ 52 static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15) 53 { 54 struct tdx_hypercall_args args = { 55 .r10 = TDX_HYPERCALL_STANDARD, 56 .r11 = fn, 57 .r12 = r12, 58 .r13 = r13, 59 .r14 = r14, 60 .r15 = r15, 61 }; 62 63 return __tdx_hypercall(&args, 0); 64 } 65 66 /* Called from __tdx_hypercall() for unrecoverable failure */ 67 noinstr void __tdx_hypercall_failed(void) 68 { 69 instrumentation_begin(); 70 panic("TDVMCALL failed. TDX module bug?"); 71 } 72 73 /* 74 * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined 75 * independently from but are currently matched 1:1 with VMX EXIT_REASONs. 76 * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and 77 * guest sides of these calls. 78 */ 79 static __always_inline u64 hcall_func(u64 exit_reason) 80 { 81 return exit_reason; 82 } 83 84 #ifdef CONFIG_KVM_GUEST 85 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 86 unsigned long p3, unsigned long p4) 87 { 88 struct tdx_hypercall_args args = { 89 .r10 = nr, 90 .r11 = p1, 91 .r12 = p2, 92 .r13 = p3, 93 .r14 = p4, 94 }; 95 96 return __tdx_hypercall(&args, 0); 97 } 98 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 99 #endif 100 101 /* 102 * Used for TDX guests to make calls directly to the TD module. This 103 * should only be used for calls that have no legitimate reason to fail 104 * or where the kernel can not survive the call failing. 105 */ 106 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9, 107 struct tdx_module_output *out) 108 { 109 if (__tdx_module_call(fn, rcx, rdx, r8, r9, out)) 110 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 111 } 112 113 /** 114 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 115 * subtype 0) using TDG.MR.REPORT TDCALL. 116 * @reportdata: Address of the input buffer which contains user-defined 117 * REPORTDATA to be included into TDREPORT. 118 * @tdreport: Address of the output buffer to store TDREPORT. 119 * 120 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 121 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 122 * It is used in the TDX guest driver module to get the TDREPORT0. 123 * 124 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 125 * other TDCALL failures. 126 */ 127 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 128 { 129 u64 ret; 130 131 ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport), 132 virt_to_phys(reportdata), TDREPORT_SUBTYPE_0, 133 0, NULL); 134 if (ret) { 135 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 136 return -EINVAL; 137 return -EIO; 138 } 139 140 return 0; 141 } 142 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 143 144 static void tdx_parse_tdinfo(u64 *cc_mask) 145 { 146 struct tdx_module_output out; 147 unsigned int gpa_width; 148 u64 td_attr; 149 150 /* 151 * TDINFO TDX module call is used to get the TD execution environment 152 * information like GPA width, number of available vcpus, debug mode 153 * information, etc. More details about the ABI can be found in TDX 154 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 155 * [TDG.VP.INFO]. 156 */ 157 tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out); 158 159 /* 160 * The highest bit of a guest physical address is the "sharing" bit. 161 * Set it for shared pages and clear it for private pages. 162 * 163 * The GPA width that comes out of this call is critical. TDX guests 164 * can not meaningfully run without it. 165 */ 166 gpa_width = out.rcx & GENMASK(5, 0); 167 *cc_mask = BIT_ULL(gpa_width - 1); 168 169 /* 170 * The kernel can not handle #VE's when accessing normal kernel 171 * memory. Ensure that no #VE will be delivered for accesses to 172 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 173 */ 174 td_attr = out.rdx; 175 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) 176 panic("TD misconfiguration: SEPT_VE_DISABLE attibute must be set.\n"); 177 } 178 179 /* 180 * The TDX module spec states that #VE may be injected for a limited set of 181 * reasons: 182 * 183 * - Emulation of the architectural #VE injection on EPT violation; 184 * 185 * - As a result of guest TD execution of a disallowed instruction, 186 * a disallowed MSR access, or CPUID virtualization; 187 * 188 * - A notification to the guest TD about anomalous behavior; 189 * 190 * The last one is opt-in and is not used by the kernel. 191 * 192 * The Intel Software Developer's Manual describes cases when instruction 193 * length field can be used in section "Information for VM Exits Due to 194 * Instruction Execution". 195 * 196 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 197 * information if #VE occurred due to instruction execution, but not for EPT 198 * violations. 199 */ 200 static int ve_instr_len(struct ve_info *ve) 201 { 202 switch (ve->exit_reason) { 203 case EXIT_REASON_HLT: 204 case EXIT_REASON_MSR_READ: 205 case EXIT_REASON_MSR_WRITE: 206 case EXIT_REASON_CPUID: 207 case EXIT_REASON_IO_INSTRUCTION: 208 /* It is safe to use ve->instr_len for #VE due instructions */ 209 return ve->instr_len; 210 case EXIT_REASON_EPT_VIOLATION: 211 /* 212 * For EPT violations, ve->insn_len is not defined. For those, 213 * the kernel must decode instructions manually and should not 214 * be using this function. 215 */ 216 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 217 return 0; 218 default: 219 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 220 return ve->instr_len; 221 } 222 } 223 224 static u64 __cpuidle __halt(const bool irq_disabled) 225 { 226 struct tdx_hypercall_args args = { 227 .r10 = TDX_HYPERCALL_STANDARD, 228 .r11 = hcall_func(EXIT_REASON_HLT), 229 .r12 = irq_disabled, 230 }; 231 232 /* 233 * Emulate HLT operation via hypercall. More info about ABI 234 * can be found in TDX Guest-Host-Communication Interface 235 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 236 * 237 * The VMM uses the "IRQ disabled" param to understand IRQ 238 * enabled status (RFLAGS.IF) of the TD guest and to determine 239 * whether or not it should schedule the halted vCPU if an 240 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 241 * can keep the vCPU in virtual HLT, even if an IRQ is 242 * pending, without hanging/breaking the guest. 243 */ 244 return __tdx_hypercall(&args, 0); 245 } 246 247 static int handle_halt(struct ve_info *ve) 248 { 249 const bool irq_disabled = irqs_disabled(); 250 251 if (__halt(irq_disabled)) 252 return -EIO; 253 254 return ve_instr_len(ve); 255 } 256 257 void __cpuidle tdx_safe_halt(void) 258 { 259 const bool irq_disabled = false; 260 261 /* 262 * Use WARN_ONCE() to report the failure. 263 */ 264 if (__halt(irq_disabled)) 265 WARN_ONCE(1, "HLT instruction emulation failed\n"); 266 } 267 268 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 269 { 270 struct tdx_hypercall_args args = { 271 .r10 = TDX_HYPERCALL_STANDARD, 272 .r11 = hcall_func(EXIT_REASON_MSR_READ), 273 .r12 = regs->cx, 274 }; 275 276 /* 277 * Emulate the MSR read via hypercall. More info about ABI 278 * can be found in TDX Guest-Host-Communication Interface 279 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 280 */ 281 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 282 return -EIO; 283 284 regs->ax = lower_32_bits(args.r11); 285 regs->dx = upper_32_bits(args.r11); 286 return ve_instr_len(ve); 287 } 288 289 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 290 { 291 struct tdx_hypercall_args args = { 292 .r10 = TDX_HYPERCALL_STANDARD, 293 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 294 .r12 = regs->cx, 295 .r13 = (u64)regs->dx << 32 | regs->ax, 296 }; 297 298 /* 299 * Emulate the MSR write via hypercall. More info about ABI 300 * can be found in TDX Guest-Host-Communication Interface 301 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 302 */ 303 if (__tdx_hypercall(&args, 0)) 304 return -EIO; 305 306 return ve_instr_len(ve); 307 } 308 309 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 310 { 311 struct tdx_hypercall_args args = { 312 .r10 = TDX_HYPERCALL_STANDARD, 313 .r11 = hcall_func(EXIT_REASON_CPUID), 314 .r12 = regs->ax, 315 .r13 = regs->cx, 316 }; 317 318 /* 319 * Only allow VMM to control range reserved for hypervisor 320 * communication. 321 * 322 * Return all-zeros for any CPUID outside the range. It matches CPU 323 * behaviour for non-supported leaf. 324 */ 325 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 326 regs->ax = regs->bx = regs->cx = regs->dx = 0; 327 return ve_instr_len(ve); 328 } 329 330 /* 331 * Emulate the CPUID instruction via a hypercall. More info about 332 * ABI can be found in TDX Guest-Host-Communication Interface 333 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 334 */ 335 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 336 return -EIO; 337 338 /* 339 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 340 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 341 * So copy the register contents back to pt_regs. 342 */ 343 regs->ax = args.r12; 344 regs->bx = args.r13; 345 regs->cx = args.r14; 346 regs->dx = args.r15; 347 348 return ve_instr_len(ve); 349 } 350 351 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 352 { 353 struct tdx_hypercall_args args = { 354 .r10 = TDX_HYPERCALL_STANDARD, 355 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 356 .r12 = size, 357 .r13 = EPT_READ, 358 .r14 = addr, 359 .r15 = *val, 360 }; 361 362 if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT)) 363 return false; 364 *val = args.r11; 365 return true; 366 } 367 368 static bool mmio_write(int size, unsigned long addr, unsigned long val) 369 { 370 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 371 EPT_WRITE, addr, val); 372 } 373 374 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 375 { 376 unsigned long *reg, val, vaddr; 377 char buffer[MAX_INSN_SIZE]; 378 enum insn_mmio_type mmio; 379 struct insn insn = {}; 380 int size, extend_size; 381 u8 extend_val = 0; 382 383 /* Only in-kernel MMIO is supported */ 384 if (WARN_ON_ONCE(user_mode(regs))) 385 return -EFAULT; 386 387 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 388 return -EFAULT; 389 390 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 391 return -EINVAL; 392 393 mmio = insn_decode_mmio(&insn, &size); 394 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 395 return -EINVAL; 396 397 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 398 reg = insn_get_modrm_reg_ptr(&insn, regs); 399 if (!reg) 400 return -EINVAL; 401 } 402 403 /* 404 * Reject EPT violation #VEs that split pages. 405 * 406 * MMIO accesses are supposed to be naturally aligned and therefore 407 * never cross page boundaries. Seeing split page accesses indicates 408 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 409 * 410 * load_unaligned_zeropad() will recover using exception fixups. 411 */ 412 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 413 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 414 return -EFAULT; 415 416 /* Handle writes first */ 417 switch (mmio) { 418 case INSN_MMIO_WRITE: 419 memcpy(&val, reg, size); 420 if (!mmio_write(size, ve->gpa, val)) 421 return -EIO; 422 return insn.length; 423 case INSN_MMIO_WRITE_IMM: 424 val = insn.immediate.value; 425 if (!mmio_write(size, ve->gpa, val)) 426 return -EIO; 427 return insn.length; 428 case INSN_MMIO_READ: 429 case INSN_MMIO_READ_ZERO_EXTEND: 430 case INSN_MMIO_READ_SIGN_EXTEND: 431 /* Reads are handled below */ 432 break; 433 case INSN_MMIO_MOVS: 434 case INSN_MMIO_DECODE_FAILED: 435 /* 436 * MMIO was accessed with an instruction that could not be 437 * decoded or handled properly. It was likely not using io.h 438 * helpers or accessed MMIO accidentally. 439 */ 440 return -EINVAL; 441 default: 442 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 443 return -EINVAL; 444 } 445 446 /* Handle reads */ 447 if (!mmio_read(size, ve->gpa, &val)) 448 return -EIO; 449 450 switch (mmio) { 451 case INSN_MMIO_READ: 452 /* Zero-extend for 32-bit operation */ 453 extend_size = size == 4 ? sizeof(*reg) : 0; 454 break; 455 case INSN_MMIO_READ_ZERO_EXTEND: 456 /* Zero extend based on operand size */ 457 extend_size = insn.opnd_bytes; 458 break; 459 case INSN_MMIO_READ_SIGN_EXTEND: 460 /* Sign extend based on operand size */ 461 extend_size = insn.opnd_bytes; 462 if (size == 1 && val & BIT(7)) 463 extend_val = 0xFF; 464 else if (size > 1 && val & BIT(15)) 465 extend_val = 0xFF; 466 break; 467 default: 468 /* All other cases has to be covered with the first switch() */ 469 WARN_ON_ONCE(1); 470 return -EINVAL; 471 } 472 473 if (extend_size) 474 memset(reg, extend_val, extend_size); 475 memcpy(reg, &val, size); 476 return insn.length; 477 } 478 479 static bool handle_in(struct pt_regs *regs, int size, int port) 480 { 481 struct tdx_hypercall_args args = { 482 .r10 = TDX_HYPERCALL_STANDARD, 483 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 484 .r12 = size, 485 .r13 = PORT_READ, 486 .r14 = port, 487 }; 488 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 489 bool success; 490 491 /* 492 * Emulate the I/O read via hypercall. More info about ABI can be found 493 * in TDX Guest-Host-Communication Interface (GHCI) section titled 494 * "TDG.VP.VMCALL<Instruction.IO>". 495 */ 496 success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT); 497 498 /* Update part of the register affected by the emulated instruction */ 499 regs->ax &= ~mask; 500 if (success) 501 regs->ax |= args.r11 & mask; 502 503 return success; 504 } 505 506 static bool handle_out(struct pt_regs *regs, int size, int port) 507 { 508 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 509 510 /* 511 * Emulate the I/O write via hypercall. More info about ABI can be found 512 * in TDX Guest-Host-Communication Interface (GHCI) section titled 513 * "TDG.VP.VMCALL<Instruction.IO>". 514 */ 515 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 516 PORT_WRITE, port, regs->ax & mask); 517 } 518 519 /* 520 * Emulate I/O using hypercall. 521 * 522 * Assumes the IO instruction was using ax, which is enforced 523 * by the standard io.h macros. 524 * 525 * Return True on success or False on failure. 526 */ 527 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 528 { 529 u32 exit_qual = ve->exit_qual; 530 int size, port; 531 bool in, ret; 532 533 if (VE_IS_IO_STRING(exit_qual)) 534 return -EIO; 535 536 in = VE_IS_IO_IN(exit_qual); 537 size = VE_GET_IO_SIZE(exit_qual); 538 port = VE_GET_PORT_NUM(exit_qual); 539 540 541 if (in) 542 ret = handle_in(regs, size, port); 543 else 544 ret = handle_out(regs, size, port); 545 if (!ret) 546 return -EIO; 547 548 return ve_instr_len(ve); 549 } 550 551 /* 552 * Early #VE exception handler. Only handles a subset of port I/O. 553 * Intended only for earlyprintk. If failed, return false. 554 */ 555 __init bool tdx_early_handle_ve(struct pt_regs *regs) 556 { 557 struct ve_info ve; 558 int insn_len; 559 560 tdx_get_ve_info(&ve); 561 562 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 563 return false; 564 565 insn_len = handle_io(regs, &ve); 566 if (insn_len < 0) 567 return false; 568 569 regs->ip += insn_len; 570 return true; 571 } 572 573 void tdx_get_ve_info(struct ve_info *ve) 574 { 575 struct tdx_module_output out; 576 577 /* 578 * Called during #VE handling to retrieve the #VE info from the 579 * TDX module. 580 * 581 * This has to be called early in #VE handling. A "nested" #VE which 582 * occurs before this will raise a #DF and is not recoverable. 583 * 584 * The call retrieves the #VE info from the TDX module, which also 585 * clears the "#VE valid" flag. This must be done before anything else 586 * because any #VE that occurs while the valid flag is set will lead to 587 * #DF. 588 * 589 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 590 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 591 */ 592 tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out); 593 594 /* Transfer the output parameters */ 595 ve->exit_reason = out.rcx; 596 ve->exit_qual = out.rdx; 597 ve->gla = out.r8; 598 ve->gpa = out.r9; 599 ve->instr_len = lower_32_bits(out.r10); 600 ve->instr_info = upper_32_bits(out.r10); 601 } 602 603 /* 604 * Handle the user initiated #VE. 605 * 606 * On success, returns the number of bytes RIP should be incremented (>=0) 607 * or -errno on error. 608 */ 609 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 610 { 611 switch (ve->exit_reason) { 612 case EXIT_REASON_CPUID: 613 return handle_cpuid(regs, ve); 614 default: 615 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 616 return -EIO; 617 } 618 } 619 620 /* 621 * Handle the kernel #VE. 622 * 623 * On success, returns the number of bytes RIP should be incremented (>=0) 624 * or -errno on error. 625 */ 626 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 627 { 628 switch (ve->exit_reason) { 629 case EXIT_REASON_HLT: 630 return handle_halt(ve); 631 case EXIT_REASON_MSR_READ: 632 return read_msr(regs, ve); 633 case EXIT_REASON_MSR_WRITE: 634 return write_msr(regs, ve); 635 case EXIT_REASON_CPUID: 636 return handle_cpuid(regs, ve); 637 case EXIT_REASON_EPT_VIOLATION: 638 return handle_mmio(regs, ve); 639 case EXIT_REASON_IO_INSTRUCTION: 640 return handle_io(regs, ve); 641 default: 642 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 643 return -EIO; 644 } 645 } 646 647 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 648 { 649 int insn_len; 650 651 if (user_mode(regs)) 652 insn_len = virt_exception_user(regs, ve); 653 else 654 insn_len = virt_exception_kernel(regs, ve); 655 if (insn_len < 0) 656 return false; 657 658 /* After successful #VE handling, move the IP */ 659 regs->ip += insn_len; 660 661 return true; 662 } 663 664 static bool tdx_tlb_flush_required(bool private) 665 { 666 /* 667 * TDX guest is responsible for flushing TLB on private->shared 668 * transition. VMM is responsible for flushing on shared->private. 669 * 670 * The VMM _can't_ flush private addresses as it can't generate PAs 671 * with the guest's HKID. Shared memory isn't subject to integrity 672 * checking, i.e. the VMM doesn't need to flush for its own protection. 673 * 674 * There's no need to flush when converting from shared to private, 675 * as flushing is the VMM's responsibility in this case, e.g. it must 676 * flush to avoid integrity failures in the face of a buggy or 677 * malicious guest. 678 */ 679 return !private; 680 } 681 682 static bool tdx_cache_flush_required(void) 683 { 684 /* 685 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 686 * TDX doesn't have such capability. 687 * 688 * Flush cache unconditionally. 689 */ 690 return true; 691 } 692 693 static bool try_accept_one(phys_addr_t *start, unsigned long len, 694 enum pg_level pg_level) 695 { 696 unsigned long accept_size = page_level_size(pg_level); 697 u64 tdcall_rcx; 698 u8 page_size; 699 700 if (!IS_ALIGNED(*start, accept_size)) 701 return false; 702 703 if (len < accept_size) 704 return false; 705 706 /* 707 * Pass the page physical address to the TDX module to accept the 708 * pending, private page. 709 * 710 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G. 711 */ 712 switch (pg_level) { 713 case PG_LEVEL_4K: 714 page_size = 0; 715 break; 716 case PG_LEVEL_2M: 717 page_size = 1; 718 break; 719 case PG_LEVEL_1G: 720 page_size = 2; 721 break; 722 default: 723 return false; 724 } 725 726 tdcall_rcx = *start | page_size; 727 if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL)) 728 return false; 729 730 *start += accept_size; 731 return true; 732 } 733 734 /* 735 * Inform the VMM of the guest's intent for this physical page: shared with 736 * the VMM or private to the guest. The VMM is expected to change its mapping 737 * of the page in response. 738 */ 739 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 740 { 741 phys_addr_t start = __pa(vaddr); 742 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 743 744 if (!enc) { 745 /* Set the shared (decrypted) bits: */ 746 start |= cc_mkdec(0); 747 end |= cc_mkdec(0); 748 } 749 750 /* 751 * Notify the VMM about page mapping conversion. More info about ABI 752 * can be found in TDX Guest-Host-Communication Interface (GHCI), 753 * section "TDG.VP.VMCALL<MapGPA>" 754 */ 755 if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0)) 756 return false; 757 758 /* private->shared conversion requires only MapGPA call */ 759 if (!enc) 760 return true; 761 762 /* 763 * For shared->private conversion, accept the page using 764 * TDX_ACCEPT_PAGE TDX module call. 765 */ 766 while (start < end) { 767 unsigned long len = end - start; 768 769 /* 770 * Try larger accepts first. It gives chance to VMM to keep 771 * 1G/2M SEPT entries where possible and speeds up process by 772 * cutting number of hypercalls (if successful). 773 */ 774 775 if (try_accept_one(&start, len, PG_LEVEL_1G)) 776 continue; 777 778 if (try_accept_one(&start, len, PG_LEVEL_2M)) 779 continue; 780 781 if (!try_accept_one(&start, len, PG_LEVEL_4K)) 782 return false; 783 } 784 785 return true; 786 } 787 788 void __init tdx_early_init(void) 789 { 790 u64 cc_mask; 791 u32 eax, sig[3]; 792 793 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 794 795 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 796 return; 797 798 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 799 800 cc_set_vendor(CC_VENDOR_INTEL); 801 tdx_parse_tdinfo(&cc_mask); 802 cc_set_mask(cc_mask); 803 804 /* 805 * All bits above GPA width are reserved and kernel treats shared bit 806 * as flag, not as part of physical address. 807 * 808 * Adjust physical mask to only cover valid GPA bits. 809 */ 810 physical_mask &= cc_mask - 1; 811 812 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 813 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 814 x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed; 815 816 pr_info("Guest detected\n"); 817 } 818