1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <asm/coco.h> 11 #include <asm/tdx.h> 12 #include <asm/vmx.h> 13 #include <asm/ia32.h> 14 #include <asm/insn.h> 15 #include <asm/insn-eval.h> 16 #include <asm/pgtable.h> 17 #include <asm/traps.h> 18 19 /* MMIO direction */ 20 #define EPT_READ 0 21 #define EPT_WRITE 1 22 23 /* Port I/O direction */ 24 #define PORT_READ 0 25 #define PORT_WRITE 1 26 27 /* See Exit Qualification for I/O Instructions in VMX documentation */ 28 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 29 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 30 #define VE_GET_PORT_NUM(e) ((e) >> 16) 31 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 32 33 #define ATTR_DEBUG BIT(0) 34 #define ATTR_SEPT_VE_DISABLE BIT(28) 35 36 /* TDX Module call error codes */ 37 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 38 #define TDCALL_INVALID_OPERAND 0xc0000100 39 40 #define TDREPORT_SUBTYPE_0 0 41 42 /* Called from __tdx_hypercall() for unrecoverable failure */ 43 noinstr void __tdx_hypercall_failed(void) 44 { 45 instrumentation_begin(); 46 panic("TDVMCALL failed. TDX module bug?"); 47 } 48 49 #ifdef CONFIG_KVM_GUEST 50 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 51 unsigned long p3, unsigned long p4) 52 { 53 struct tdx_hypercall_args args = { 54 .r10 = nr, 55 .r11 = p1, 56 .r12 = p2, 57 .r13 = p3, 58 .r14 = p4, 59 }; 60 61 return __tdx_hypercall(&args); 62 } 63 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 64 #endif 65 66 /* 67 * Used for TDX guests to make calls directly to the TD module. This 68 * should only be used for calls that have no legitimate reason to fail 69 * or where the kernel can not survive the call failing. 70 */ 71 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9, 72 struct tdx_module_output *out) 73 { 74 if (__tdx_module_call(fn, rcx, rdx, r8, r9, out)) 75 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 76 } 77 78 /** 79 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 80 * subtype 0) using TDG.MR.REPORT TDCALL. 81 * @reportdata: Address of the input buffer which contains user-defined 82 * REPORTDATA to be included into TDREPORT. 83 * @tdreport: Address of the output buffer to store TDREPORT. 84 * 85 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 86 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 87 * It is used in the TDX guest driver module to get the TDREPORT0. 88 * 89 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 90 * other TDCALL failures. 91 */ 92 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 93 { 94 u64 ret; 95 96 ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport), 97 virt_to_phys(reportdata), TDREPORT_SUBTYPE_0, 98 0, NULL); 99 if (ret) { 100 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 101 return -EINVAL; 102 return -EIO; 103 } 104 105 return 0; 106 } 107 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 108 109 static void __noreturn tdx_panic(const char *msg) 110 { 111 struct tdx_hypercall_args args = { 112 .r10 = TDX_HYPERCALL_STANDARD, 113 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 114 .r12 = 0, /* Error code: 0 is Panic */ 115 }; 116 union { 117 /* Define register order according to the GHCI */ 118 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 119 120 char str[64]; 121 } message; 122 123 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 124 strncpy(message.str, msg, 64); 125 126 args.r8 = message.r8; 127 args.r9 = message.r9; 128 args.r14 = message.r14; 129 args.r15 = message.r15; 130 args.rdi = message.rdi; 131 args.rsi = message.rsi; 132 args.rbx = message.rbx; 133 args.rdx = message.rdx; 134 135 /* 136 * This hypercall should never return and it is not safe 137 * to keep the guest running. Call it forever if it 138 * happens to return. 139 */ 140 while (1) 141 __tdx_hypercall(&args); 142 } 143 144 static void tdx_parse_tdinfo(u64 *cc_mask) 145 { 146 struct tdx_module_output out; 147 unsigned int gpa_width; 148 u64 td_attr; 149 150 /* 151 * TDINFO TDX module call is used to get the TD execution environment 152 * information like GPA width, number of available vcpus, debug mode 153 * information, etc. More details about the ABI can be found in TDX 154 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 155 * [TDG.VP.INFO]. 156 */ 157 tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out); 158 159 /* 160 * The highest bit of a guest physical address is the "sharing" bit. 161 * Set it for shared pages and clear it for private pages. 162 * 163 * The GPA width that comes out of this call is critical. TDX guests 164 * can not meaningfully run without it. 165 */ 166 gpa_width = out.rcx & GENMASK(5, 0); 167 *cc_mask = BIT_ULL(gpa_width - 1); 168 169 /* 170 * The kernel can not handle #VE's when accessing normal kernel 171 * memory. Ensure that no #VE will be delivered for accesses to 172 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 173 */ 174 td_attr = out.rdx; 175 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { 176 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; 177 178 /* Relax SEPT_VE_DISABLE check for debug TD. */ 179 if (td_attr & ATTR_DEBUG) 180 pr_warn("%s\n", msg); 181 else 182 tdx_panic(msg); 183 } 184 } 185 186 /* 187 * The TDX module spec states that #VE may be injected for a limited set of 188 * reasons: 189 * 190 * - Emulation of the architectural #VE injection on EPT violation; 191 * 192 * - As a result of guest TD execution of a disallowed instruction, 193 * a disallowed MSR access, or CPUID virtualization; 194 * 195 * - A notification to the guest TD about anomalous behavior; 196 * 197 * The last one is opt-in and is not used by the kernel. 198 * 199 * The Intel Software Developer's Manual describes cases when instruction 200 * length field can be used in section "Information for VM Exits Due to 201 * Instruction Execution". 202 * 203 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 204 * information if #VE occurred due to instruction execution, but not for EPT 205 * violations. 206 */ 207 static int ve_instr_len(struct ve_info *ve) 208 { 209 switch (ve->exit_reason) { 210 case EXIT_REASON_HLT: 211 case EXIT_REASON_MSR_READ: 212 case EXIT_REASON_MSR_WRITE: 213 case EXIT_REASON_CPUID: 214 case EXIT_REASON_IO_INSTRUCTION: 215 /* It is safe to use ve->instr_len for #VE due instructions */ 216 return ve->instr_len; 217 case EXIT_REASON_EPT_VIOLATION: 218 /* 219 * For EPT violations, ve->insn_len is not defined. For those, 220 * the kernel must decode instructions manually and should not 221 * be using this function. 222 */ 223 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 224 return 0; 225 default: 226 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 227 return ve->instr_len; 228 } 229 } 230 231 static u64 __cpuidle __halt(const bool irq_disabled) 232 { 233 struct tdx_hypercall_args args = { 234 .r10 = TDX_HYPERCALL_STANDARD, 235 .r11 = hcall_func(EXIT_REASON_HLT), 236 .r12 = irq_disabled, 237 }; 238 239 /* 240 * Emulate HLT operation via hypercall. More info about ABI 241 * can be found in TDX Guest-Host-Communication Interface 242 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 243 * 244 * The VMM uses the "IRQ disabled" param to understand IRQ 245 * enabled status (RFLAGS.IF) of the TD guest and to determine 246 * whether or not it should schedule the halted vCPU if an 247 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 248 * can keep the vCPU in virtual HLT, even if an IRQ is 249 * pending, without hanging/breaking the guest. 250 */ 251 return __tdx_hypercall(&args); 252 } 253 254 static int handle_halt(struct ve_info *ve) 255 { 256 const bool irq_disabled = irqs_disabled(); 257 258 if (__halt(irq_disabled)) 259 return -EIO; 260 261 return ve_instr_len(ve); 262 } 263 264 void __cpuidle tdx_safe_halt(void) 265 { 266 const bool irq_disabled = false; 267 268 /* 269 * Use WARN_ONCE() to report the failure. 270 */ 271 if (__halt(irq_disabled)) 272 WARN_ONCE(1, "HLT instruction emulation failed\n"); 273 } 274 275 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 276 { 277 struct tdx_hypercall_args args = { 278 .r10 = TDX_HYPERCALL_STANDARD, 279 .r11 = hcall_func(EXIT_REASON_MSR_READ), 280 .r12 = regs->cx, 281 }; 282 283 /* 284 * Emulate the MSR read via hypercall. More info about ABI 285 * can be found in TDX Guest-Host-Communication Interface 286 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 287 */ 288 if (__tdx_hypercall_ret(&args)) 289 return -EIO; 290 291 regs->ax = lower_32_bits(args.r11); 292 regs->dx = upper_32_bits(args.r11); 293 return ve_instr_len(ve); 294 } 295 296 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 297 { 298 struct tdx_hypercall_args args = { 299 .r10 = TDX_HYPERCALL_STANDARD, 300 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 301 .r12 = regs->cx, 302 .r13 = (u64)regs->dx << 32 | regs->ax, 303 }; 304 305 /* 306 * Emulate the MSR write via hypercall. More info about ABI 307 * can be found in TDX Guest-Host-Communication Interface 308 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 309 */ 310 if (__tdx_hypercall(&args)) 311 return -EIO; 312 313 return ve_instr_len(ve); 314 } 315 316 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 317 { 318 struct tdx_hypercall_args args = { 319 .r10 = TDX_HYPERCALL_STANDARD, 320 .r11 = hcall_func(EXIT_REASON_CPUID), 321 .r12 = regs->ax, 322 .r13 = regs->cx, 323 }; 324 325 /* 326 * Only allow VMM to control range reserved for hypervisor 327 * communication. 328 * 329 * Return all-zeros for any CPUID outside the range. It matches CPU 330 * behaviour for non-supported leaf. 331 */ 332 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 333 regs->ax = regs->bx = regs->cx = regs->dx = 0; 334 return ve_instr_len(ve); 335 } 336 337 /* 338 * Emulate the CPUID instruction via a hypercall. More info about 339 * ABI can be found in TDX Guest-Host-Communication Interface 340 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 341 */ 342 if (__tdx_hypercall_ret(&args)) 343 return -EIO; 344 345 /* 346 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 347 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 348 * So copy the register contents back to pt_regs. 349 */ 350 regs->ax = args.r12; 351 regs->bx = args.r13; 352 regs->cx = args.r14; 353 regs->dx = args.r15; 354 355 return ve_instr_len(ve); 356 } 357 358 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 359 { 360 struct tdx_hypercall_args args = { 361 .r10 = TDX_HYPERCALL_STANDARD, 362 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 363 .r12 = size, 364 .r13 = EPT_READ, 365 .r14 = addr, 366 }; 367 368 if (__tdx_hypercall_ret(&args)) 369 return false; 370 *val = args.r11; 371 return true; 372 } 373 374 static bool mmio_write(int size, unsigned long addr, unsigned long val) 375 { 376 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 377 EPT_WRITE, addr, val); 378 } 379 380 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 381 { 382 unsigned long *reg, val, vaddr; 383 char buffer[MAX_INSN_SIZE]; 384 enum insn_mmio_type mmio; 385 struct insn insn = {}; 386 int size, extend_size; 387 u8 extend_val = 0; 388 389 /* Only in-kernel MMIO is supported */ 390 if (WARN_ON_ONCE(user_mode(regs))) 391 return -EFAULT; 392 393 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 394 return -EFAULT; 395 396 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 397 return -EINVAL; 398 399 mmio = insn_decode_mmio(&insn, &size); 400 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 401 return -EINVAL; 402 403 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 404 reg = insn_get_modrm_reg_ptr(&insn, regs); 405 if (!reg) 406 return -EINVAL; 407 } 408 409 if (!fault_in_kernel_space(ve->gla)) { 410 WARN_ONCE(1, "Access to userspace address is not supported"); 411 return -EINVAL; 412 } 413 414 /* 415 * Reject EPT violation #VEs that split pages. 416 * 417 * MMIO accesses are supposed to be naturally aligned and therefore 418 * never cross page boundaries. Seeing split page accesses indicates 419 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 420 * 421 * load_unaligned_zeropad() will recover using exception fixups. 422 */ 423 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 424 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 425 return -EFAULT; 426 427 /* Handle writes first */ 428 switch (mmio) { 429 case INSN_MMIO_WRITE: 430 memcpy(&val, reg, size); 431 if (!mmio_write(size, ve->gpa, val)) 432 return -EIO; 433 return insn.length; 434 case INSN_MMIO_WRITE_IMM: 435 val = insn.immediate.value; 436 if (!mmio_write(size, ve->gpa, val)) 437 return -EIO; 438 return insn.length; 439 case INSN_MMIO_READ: 440 case INSN_MMIO_READ_ZERO_EXTEND: 441 case INSN_MMIO_READ_SIGN_EXTEND: 442 /* Reads are handled below */ 443 break; 444 case INSN_MMIO_MOVS: 445 case INSN_MMIO_DECODE_FAILED: 446 /* 447 * MMIO was accessed with an instruction that could not be 448 * decoded or handled properly. It was likely not using io.h 449 * helpers or accessed MMIO accidentally. 450 */ 451 return -EINVAL; 452 default: 453 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 454 return -EINVAL; 455 } 456 457 /* Handle reads */ 458 if (!mmio_read(size, ve->gpa, &val)) 459 return -EIO; 460 461 switch (mmio) { 462 case INSN_MMIO_READ: 463 /* Zero-extend for 32-bit operation */ 464 extend_size = size == 4 ? sizeof(*reg) : 0; 465 break; 466 case INSN_MMIO_READ_ZERO_EXTEND: 467 /* Zero extend based on operand size */ 468 extend_size = insn.opnd_bytes; 469 break; 470 case INSN_MMIO_READ_SIGN_EXTEND: 471 /* Sign extend based on operand size */ 472 extend_size = insn.opnd_bytes; 473 if (size == 1 && val & BIT(7)) 474 extend_val = 0xFF; 475 else if (size > 1 && val & BIT(15)) 476 extend_val = 0xFF; 477 break; 478 default: 479 /* All other cases has to be covered with the first switch() */ 480 WARN_ON_ONCE(1); 481 return -EINVAL; 482 } 483 484 if (extend_size) 485 memset(reg, extend_val, extend_size); 486 memcpy(reg, &val, size); 487 return insn.length; 488 } 489 490 static bool handle_in(struct pt_regs *regs, int size, int port) 491 { 492 struct tdx_hypercall_args args = { 493 .r10 = TDX_HYPERCALL_STANDARD, 494 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 495 .r12 = size, 496 .r13 = PORT_READ, 497 .r14 = port, 498 }; 499 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 500 bool success; 501 502 /* 503 * Emulate the I/O read via hypercall. More info about ABI can be found 504 * in TDX Guest-Host-Communication Interface (GHCI) section titled 505 * "TDG.VP.VMCALL<Instruction.IO>". 506 */ 507 success = !__tdx_hypercall_ret(&args); 508 509 /* Update part of the register affected by the emulated instruction */ 510 regs->ax &= ~mask; 511 if (success) 512 regs->ax |= args.r11 & mask; 513 514 return success; 515 } 516 517 static bool handle_out(struct pt_regs *regs, int size, int port) 518 { 519 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 520 521 /* 522 * Emulate the I/O write via hypercall. More info about ABI can be found 523 * in TDX Guest-Host-Communication Interface (GHCI) section titled 524 * "TDG.VP.VMCALL<Instruction.IO>". 525 */ 526 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 527 PORT_WRITE, port, regs->ax & mask); 528 } 529 530 /* 531 * Emulate I/O using hypercall. 532 * 533 * Assumes the IO instruction was using ax, which is enforced 534 * by the standard io.h macros. 535 * 536 * Return True on success or False on failure. 537 */ 538 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 539 { 540 u32 exit_qual = ve->exit_qual; 541 int size, port; 542 bool in, ret; 543 544 if (VE_IS_IO_STRING(exit_qual)) 545 return -EIO; 546 547 in = VE_IS_IO_IN(exit_qual); 548 size = VE_GET_IO_SIZE(exit_qual); 549 port = VE_GET_PORT_NUM(exit_qual); 550 551 552 if (in) 553 ret = handle_in(regs, size, port); 554 else 555 ret = handle_out(regs, size, port); 556 if (!ret) 557 return -EIO; 558 559 return ve_instr_len(ve); 560 } 561 562 /* 563 * Early #VE exception handler. Only handles a subset of port I/O. 564 * Intended only for earlyprintk. If failed, return false. 565 */ 566 __init bool tdx_early_handle_ve(struct pt_regs *regs) 567 { 568 struct ve_info ve; 569 int insn_len; 570 571 tdx_get_ve_info(&ve); 572 573 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 574 return false; 575 576 insn_len = handle_io(regs, &ve); 577 if (insn_len < 0) 578 return false; 579 580 regs->ip += insn_len; 581 return true; 582 } 583 584 void tdx_get_ve_info(struct ve_info *ve) 585 { 586 struct tdx_module_output out; 587 588 /* 589 * Called during #VE handling to retrieve the #VE info from the 590 * TDX module. 591 * 592 * This has to be called early in #VE handling. A "nested" #VE which 593 * occurs before this will raise a #DF and is not recoverable. 594 * 595 * The call retrieves the #VE info from the TDX module, which also 596 * clears the "#VE valid" flag. This must be done before anything else 597 * because any #VE that occurs while the valid flag is set will lead to 598 * #DF. 599 * 600 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 601 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 602 */ 603 tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out); 604 605 /* Transfer the output parameters */ 606 ve->exit_reason = out.rcx; 607 ve->exit_qual = out.rdx; 608 ve->gla = out.r8; 609 ve->gpa = out.r9; 610 ve->instr_len = lower_32_bits(out.r10); 611 ve->instr_info = upper_32_bits(out.r10); 612 } 613 614 /* 615 * Handle the user initiated #VE. 616 * 617 * On success, returns the number of bytes RIP should be incremented (>=0) 618 * or -errno on error. 619 */ 620 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 621 { 622 switch (ve->exit_reason) { 623 case EXIT_REASON_CPUID: 624 return handle_cpuid(regs, ve); 625 default: 626 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 627 return -EIO; 628 } 629 } 630 631 static inline bool is_private_gpa(u64 gpa) 632 { 633 return gpa == cc_mkenc(gpa); 634 } 635 636 /* 637 * Handle the kernel #VE. 638 * 639 * On success, returns the number of bytes RIP should be incremented (>=0) 640 * or -errno on error. 641 */ 642 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 643 { 644 switch (ve->exit_reason) { 645 case EXIT_REASON_HLT: 646 return handle_halt(ve); 647 case EXIT_REASON_MSR_READ: 648 return read_msr(regs, ve); 649 case EXIT_REASON_MSR_WRITE: 650 return write_msr(regs, ve); 651 case EXIT_REASON_CPUID: 652 return handle_cpuid(regs, ve); 653 case EXIT_REASON_EPT_VIOLATION: 654 if (is_private_gpa(ve->gpa)) 655 panic("Unexpected EPT-violation on private memory."); 656 return handle_mmio(regs, ve); 657 case EXIT_REASON_IO_INSTRUCTION: 658 return handle_io(regs, ve); 659 default: 660 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 661 return -EIO; 662 } 663 } 664 665 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 666 { 667 int insn_len; 668 669 if (user_mode(regs)) 670 insn_len = virt_exception_user(regs, ve); 671 else 672 insn_len = virt_exception_kernel(regs, ve); 673 if (insn_len < 0) 674 return false; 675 676 /* After successful #VE handling, move the IP */ 677 regs->ip += insn_len; 678 679 return true; 680 } 681 682 static bool tdx_tlb_flush_required(bool private) 683 { 684 /* 685 * TDX guest is responsible for flushing TLB on private->shared 686 * transition. VMM is responsible for flushing on shared->private. 687 * 688 * The VMM _can't_ flush private addresses as it can't generate PAs 689 * with the guest's HKID. Shared memory isn't subject to integrity 690 * checking, i.e. the VMM doesn't need to flush for its own protection. 691 * 692 * There's no need to flush when converting from shared to private, 693 * as flushing is the VMM's responsibility in this case, e.g. it must 694 * flush to avoid integrity failures in the face of a buggy or 695 * malicious guest. 696 */ 697 return !private; 698 } 699 700 static bool tdx_cache_flush_required(void) 701 { 702 /* 703 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 704 * TDX doesn't have such capability. 705 * 706 * Flush cache unconditionally. 707 */ 708 return true; 709 } 710 711 /* 712 * Inform the VMM of the guest's intent for this physical page: shared with 713 * the VMM or private to the guest. The VMM is expected to change its mapping 714 * of the page in response. 715 */ 716 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 717 { 718 phys_addr_t start = __pa(vaddr); 719 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 720 721 if (!enc) { 722 /* Set the shared (decrypted) bits: */ 723 start |= cc_mkdec(0); 724 end |= cc_mkdec(0); 725 } 726 727 /* 728 * Notify the VMM about page mapping conversion. More info about ABI 729 * can be found in TDX Guest-Host-Communication Interface (GHCI), 730 * section "TDG.VP.VMCALL<MapGPA>" 731 */ 732 if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0)) 733 return false; 734 735 /* shared->private conversion requires memory to be accepted before use */ 736 if (enc) 737 return tdx_accept_memory(start, end); 738 739 return true; 740 } 741 742 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 743 bool enc) 744 { 745 /* 746 * Only handle shared->private conversion here. 747 * See the comment in tdx_early_init(). 748 */ 749 if (enc) 750 return tdx_enc_status_changed(vaddr, numpages, enc); 751 return true; 752 } 753 754 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 755 bool enc) 756 { 757 /* 758 * Only handle private->shared conversion here. 759 * See the comment in tdx_early_init(). 760 */ 761 if (!enc) 762 return tdx_enc_status_changed(vaddr, numpages, enc); 763 return true; 764 } 765 766 void __init tdx_early_init(void) 767 { 768 u64 cc_mask; 769 u32 eax, sig[3]; 770 771 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 772 773 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 774 return; 775 776 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 777 778 cc_vendor = CC_VENDOR_INTEL; 779 tdx_parse_tdinfo(&cc_mask); 780 cc_set_mask(cc_mask); 781 782 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 783 tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL); 784 785 /* 786 * All bits above GPA width are reserved and kernel treats shared bit 787 * as flag, not as part of physical address. 788 * 789 * Adjust physical mask to only cover valid GPA bits. 790 */ 791 physical_mask &= cc_mask - 1; 792 793 /* 794 * The kernel mapping should match the TDX metadata for the page. 795 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 796 * owned by the caller and can catch even _momentary_ mismatches. Bad 797 * things happen on mismatch: 798 * 799 * - Private mapping => Shared Page == Guest shutdown 800 * - Shared mapping => Private Page == Recoverable #VE 801 * 802 * guest.enc_status_change_prepare() converts the page from 803 * shared=>private before the mapping becomes private. 804 * 805 * guest.enc_status_change_finish() converts the page from 806 * private=>shared after the mapping becomes private. 807 * 808 * In both cases there is a temporary shared mapping to a private page, 809 * which can result in a #VE. But, there is never a private mapping to 810 * a shared page. 811 */ 812 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 813 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 814 815 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 816 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 817 818 /* 819 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 820 * bringup low level code. That raises #VE which cannot be handled 821 * there. 822 * 823 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 824 * implemented seperately in the low level startup ASM code. 825 * Until that is in place, disable parallel bringup for TDX. 826 */ 827 x86_cpuinit.parallel_bringup = false; 828 829 pr_info("Guest detected\n"); 830 } 831