1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2021-2022 Intel Corporation */ 3 4 #undef pr_fmt 5 #define pr_fmt(fmt) "tdx: " fmt 6 7 #include <linux/cpufeature.h> 8 #include <linux/export.h> 9 #include <linux/io.h> 10 #include <asm/coco.h> 11 #include <asm/tdx.h> 12 #include <asm/vmx.h> 13 #include <asm/insn.h> 14 #include <asm/insn-eval.h> 15 #include <asm/pgtable.h> 16 17 /* MMIO direction */ 18 #define EPT_READ 0 19 #define EPT_WRITE 1 20 21 /* Port I/O direction */ 22 #define PORT_READ 0 23 #define PORT_WRITE 1 24 25 /* See Exit Qualification for I/O Instructions in VMX documentation */ 26 #define VE_IS_IO_IN(e) ((e) & BIT(3)) 27 #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) 28 #define VE_GET_PORT_NUM(e) ((e) >> 16) 29 #define VE_IS_IO_STRING(e) ((e) & BIT(4)) 30 31 #define ATTR_DEBUG BIT(0) 32 #define ATTR_SEPT_VE_DISABLE BIT(28) 33 34 /* TDX Module call error codes */ 35 #define TDCALL_RETURN_CODE(a) ((a) >> 32) 36 #define TDCALL_INVALID_OPERAND 0xc0000100 37 38 #define TDREPORT_SUBTYPE_0 0 39 40 /* Called from __tdx_hypercall() for unrecoverable failure */ 41 noinstr void __tdx_hypercall_failed(void) 42 { 43 instrumentation_begin(); 44 panic("TDVMCALL failed. TDX module bug?"); 45 } 46 47 #ifdef CONFIG_KVM_GUEST 48 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, 49 unsigned long p3, unsigned long p4) 50 { 51 struct tdx_hypercall_args args = { 52 .r10 = nr, 53 .r11 = p1, 54 .r12 = p2, 55 .r13 = p3, 56 .r14 = p4, 57 }; 58 59 return __tdx_hypercall(&args); 60 } 61 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); 62 #endif 63 64 /* 65 * Used for TDX guests to make calls directly to the TD module. This 66 * should only be used for calls that have no legitimate reason to fail 67 * or where the kernel can not survive the call failing. 68 */ 69 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9, 70 struct tdx_module_output *out) 71 { 72 if (__tdx_module_call(fn, rcx, rdx, r8, r9, out)) 73 panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); 74 } 75 76 /** 77 * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT 78 * subtype 0) using TDG.MR.REPORT TDCALL. 79 * @reportdata: Address of the input buffer which contains user-defined 80 * REPORTDATA to be included into TDREPORT. 81 * @tdreport: Address of the output buffer to store TDREPORT. 82 * 83 * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module 84 * v1.0 specification for more information on TDG.MR.REPORT TDCALL. 85 * It is used in the TDX guest driver module to get the TDREPORT0. 86 * 87 * Return 0 on success, -EINVAL for invalid operands, or -EIO on 88 * other TDCALL failures. 89 */ 90 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) 91 { 92 u64 ret; 93 94 ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport), 95 virt_to_phys(reportdata), TDREPORT_SUBTYPE_0, 96 0, NULL); 97 if (ret) { 98 if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) 99 return -EINVAL; 100 return -EIO; 101 } 102 103 return 0; 104 } 105 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); 106 107 static void __noreturn tdx_panic(const char *msg) 108 { 109 struct tdx_hypercall_args args = { 110 .r10 = TDX_HYPERCALL_STANDARD, 111 .r11 = TDVMCALL_REPORT_FATAL_ERROR, 112 .r12 = 0, /* Error code: 0 is Panic */ 113 }; 114 union { 115 /* Define register order according to the GHCI */ 116 struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; 117 118 char str[64]; 119 } message; 120 121 /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ 122 strncpy(message.str, msg, 64); 123 124 args.r8 = message.r8; 125 args.r9 = message.r9; 126 args.r14 = message.r14; 127 args.r15 = message.r15; 128 args.rdi = message.rdi; 129 args.rsi = message.rsi; 130 args.rbx = message.rbx; 131 args.rdx = message.rdx; 132 133 /* 134 * This hypercall should never return and it is not safe 135 * to keep the guest running. Call it forever if it 136 * happens to return. 137 */ 138 while (1) 139 __tdx_hypercall(&args); 140 } 141 142 static void tdx_parse_tdinfo(u64 *cc_mask) 143 { 144 struct tdx_module_output out; 145 unsigned int gpa_width; 146 u64 td_attr; 147 148 /* 149 * TDINFO TDX module call is used to get the TD execution environment 150 * information like GPA width, number of available vcpus, debug mode 151 * information, etc. More details about the ABI can be found in TDX 152 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL 153 * [TDG.VP.INFO]. 154 */ 155 tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out); 156 157 /* 158 * The highest bit of a guest physical address is the "sharing" bit. 159 * Set it for shared pages and clear it for private pages. 160 * 161 * The GPA width that comes out of this call is critical. TDX guests 162 * can not meaningfully run without it. 163 */ 164 gpa_width = out.rcx & GENMASK(5, 0); 165 *cc_mask = BIT_ULL(gpa_width - 1); 166 167 /* 168 * The kernel can not handle #VE's when accessing normal kernel 169 * memory. Ensure that no #VE will be delivered for accesses to 170 * TD-private memory. Only VMM-shared memory (MMIO) will #VE. 171 */ 172 td_attr = out.rdx; 173 if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { 174 const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; 175 176 /* Relax SEPT_VE_DISABLE check for debug TD. */ 177 if (td_attr & ATTR_DEBUG) 178 pr_warn("%s\n", msg); 179 else 180 tdx_panic(msg); 181 } 182 } 183 184 /* 185 * The TDX module spec states that #VE may be injected for a limited set of 186 * reasons: 187 * 188 * - Emulation of the architectural #VE injection on EPT violation; 189 * 190 * - As a result of guest TD execution of a disallowed instruction, 191 * a disallowed MSR access, or CPUID virtualization; 192 * 193 * - A notification to the guest TD about anomalous behavior; 194 * 195 * The last one is opt-in and is not used by the kernel. 196 * 197 * The Intel Software Developer's Manual describes cases when instruction 198 * length field can be used in section "Information for VM Exits Due to 199 * Instruction Execution". 200 * 201 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length 202 * information if #VE occurred due to instruction execution, but not for EPT 203 * violations. 204 */ 205 static int ve_instr_len(struct ve_info *ve) 206 { 207 switch (ve->exit_reason) { 208 case EXIT_REASON_HLT: 209 case EXIT_REASON_MSR_READ: 210 case EXIT_REASON_MSR_WRITE: 211 case EXIT_REASON_CPUID: 212 case EXIT_REASON_IO_INSTRUCTION: 213 /* It is safe to use ve->instr_len for #VE due instructions */ 214 return ve->instr_len; 215 case EXIT_REASON_EPT_VIOLATION: 216 /* 217 * For EPT violations, ve->insn_len is not defined. For those, 218 * the kernel must decode instructions manually and should not 219 * be using this function. 220 */ 221 WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); 222 return 0; 223 default: 224 WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); 225 return ve->instr_len; 226 } 227 } 228 229 static u64 __cpuidle __halt(const bool irq_disabled) 230 { 231 struct tdx_hypercall_args args = { 232 .r10 = TDX_HYPERCALL_STANDARD, 233 .r11 = hcall_func(EXIT_REASON_HLT), 234 .r12 = irq_disabled, 235 }; 236 237 /* 238 * Emulate HLT operation via hypercall. More info about ABI 239 * can be found in TDX Guest-Host-Communication Interface 240 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. 241 * 242 * The VMM uses the "IRQ disabled" param to understand IRQ 243 * enabled status (RFLAGS.IF) of the TD guest and to determine 244 * whether or not it should schedule the halted vCPU if an 245 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM 246 * can keep the vCPU in virtual HLT, even if an IRQ is 247 * pending, without hanging/breaking the guest. 248 */ 249 return __tdx_hypercall(&args); 250 } 251 252 static int handle_halt(struct ve_info *ve) 253 { 254 const bool irq_disabled = irqs_disabled(); 255 256 if (__halt(irq_disabled)) 257 return -EIO; 258 259 return ve_instr_len(ve); 260 } 261 262 void __cpuidle tdx_safe_halt(void) 263 { 264 const bool irq_disabled = false; 265 266 /* 267 * Use WARN_ONCE() to report the failure. 268 */ 269 if (__halt(irq_disabled)) 270 WARN_ONCE(1, "HLT instruction emulation failed\n"); 271 } 272 273 static int read_msr(struct pt_regs *regs, struct ve_info *ve) 274 { 275 struct tdx_hypercall_args args = { 276 .r10 = TDX_HYPERCALL_STANDARD, 277 .r11 = hcall_func(EXIT_REASON_MSR_READ), 278 .r12 = regs->cx, 279 }; 280 281 /* 282 * Emulate the MSR read via hypercall. More info about ABI 283 * can be found in TDX Guest-Host-Communication Interface 284 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". 285 */ 286 if (__tdx_hypercall_ret(&args)) 287 return -EIO; 288 289 regs->ax = lower_32_bits(args.r11); 290 regs->dx = upper_32_bits(args.r11); 291 return ve_instr_len(ve); 292 } 293 294 static int write_msr(struct pt_regs *regs, struct ve_info *ve) 295 { 296 struct tdx_hypercall_args args = { 297 .r10 = TDX_HYPERCALL_STANDARD, 298 .r11 = hcall_func(EXIT_REASON_MSR_WRITE), 299 .r12 = regs->cx, 300 .r13 = (u64)regs->dx << 32 | regs->ax, 301 }; 302 303 /* 304 * Emulate the MSR write via hypercall. More info about ABI 305 * can be found in TDX Guest-Host-Communication Interface 306 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". 307 */ 308 if (__tdx_hypercall(&args)) 309 return -EIO; 310 311 return ve_instr_len(ve); 312 } 313 314 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) 315 { 316 struct tdx_hypercall_args args = { 317 .r10 = TDX_HYPERCALL_STANDARD, 318 .r11 = hcall_func(EXIT_REASON_CPUID), 319 .r12 = regs->ax, 320 .r13 = regs->cx, 321 }; 322 323 /* 324 * Only allow VMM to control range reserved for hypervisor 325 * communication. 326 * 327 * Return all-zeros for any CPUID outside the range. It matches CPU 328 * behaviour for non-supported leaf. 329 */ 330 if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { 331 regs->ax = regs->bx = regs->cx = regs->dx = 0; 332 return ve_instr_len(ve); 333 } 334 335 /* 336 * Emulate the CPUID instruction via a hypercall. More info about 337 * ABI can be found in TDX Guest-Host-Communication Interface 338 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". 339 */ 340 if (__tdx_hypercall_ret(&args)) 341 return -EIO; 342 343 /* 344 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of 345 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. 346 * So copy the register contents back to pt_regs. 347 */ 348 regs->ax = args.r12; 349 regs->bx = args.r13; 350 regs->cx = args.r14; 351 regs->dx = args.r15; 352 353 return ve_instr_len(ve); 354 } 355 356 static bool mmio_read(int size, unsigned long addr, unsigned long *val) 357 { 358 struct tdx_hypercall_args args = { 359 .r10 = TDX_HYPERCALL_STANDARD, 360 .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), 361 .r12 = size, 362 .r13 = EPT_READ, 363 .r14 = addr, 364 .r15 = *val, 365 }; 366 367 if (__tdx_hypercall_ret(&args)) 368 return false; 369 *val = args.r11; 370 return true; 371 } 372 373 static bool mmio_write(int size, unsigned long addr, unsigned long val) 374 { 375 return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, 376 EPT_WRITE, addr, val); 377 } 378 379 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) 380 { 381 unsigned long *reg, val, vaddr; 382 char buffer[MAX_INSN_SIZE]; 383 enum insn_mmio_type mmio; 384 struct insn insn = {}; 385 int size, extend_size; 386 u8 extend_val = 0; 387 388 /* Only in-kernel MMIO is supported */ 389 if (WARN_ON_ONCE(user_mode(regs))) 390 return -EFAULT; 391 392 if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) 393 return -EFAULT; 394 395 if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) 396 return -EINVAL; 397 398 mmio = insn_decode_mmio(&insn, &size); 399 if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) 400 return -EINVAL; 401 402 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 403 reg = insn_get_modrm_reg_ptr(&insn, regs); 404 if (!reg) 405 return -EINVAL; 406 } 407 408 /* 409 * Reject EPT violation #VEs that split pages. 410 * 411 * MMIO accesses are supposed to be naturally aligned and therefore 412 * never cross page boundaries. Seeing split page accesses indicates 413 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. 414 * 415 * load_unaligned_zeropad() will recover using exception fixups. 416 */ 417 vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); 418 if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) 419 return -EFAULT; 420 421 /* Handle writes first */ 422 switch (mmio) { 423 case INSN_MMIO_WRITE: 424 memcpy(&val, reg, size); 425 if (!mmio_write(size, ve->gpa, val)) 426 return -EIO; 427 return insn.length; 428 case INSN_MMIO_WRITE_IMM: 429 val = insn.immediate.value; 430 if (!mmio_write(size, ve->gpa, val)) 431 return -EIO; 432 return insn.length; 433 case INSN_MMIO_READ: 434 case INSN_MMIO_READ_ZERO_EXTEND: 435 case INSN_MMIO_READ_SIGN_EXTEND: 436 /* Reads are handled below */ 437 break; 438 case INSN_MMIO_MOVS: 439 case INSN_MMIO_DECODE_FAILED: 440 /* 441 * MMIO was accessed with an instruction that could not be 442 * decoded or handled properly. It was likely not using io.h 443 * helpers or accessed MMIO accidentally. 444 */ 445 return -EINVAL; 446 default: 447 WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); 448 return -EINVAL; 449 } 450 451 /* Handle reads */ 452 if (!mmio_read(size, ve->gpa, &val)) 453 return -EIO; 454 455 switch (mmio) { 456 case INSN_MMIO_READ: 457 /* Zero-extend for 32-bit operation */ 458 extend_size = size == 4 ? sizeof(*reg) : 0; 459 break; 460 case INSN_MMIO_READ_ZERO_EXTEND: 461 /* Zero extend based on operand size */ 462 extend_size = insn.opnd_bytes; 463 break; 464 case INSN_MMIO_READ_SIGN_EXTEND: 465 /* Sign extend based on operand size */ 466 extend_size = insn.opnd_bytes; 467 if (size == 1 && val & BIT(7)) 468 extend_val = 0xFF; 469 else if (size > 1 && val & BIT(15)) 470 extend_val = 0xFF; 471 break; 472 default: 473 /* All other cases has to be covered with the first switch() */ 474 WARN_ON_ONCE(1); 475 return -EINVAL; 476 } 477 478 if (extend_size) 479 memset(reg, extend_val, extend_size); 480 memcpy(reg, &val, size); 481 return insn.length; 482 } 483 484 static bool handle_in(struct pt_regs *regs, int size, int port) 485 { 486 struct tdx_hypercall_args args = { 487 .r10 = TDX_HYPERCALL_STANDARD, 488 .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), 489 .r12 = size, 490 .r13 = PORT_READ, 491 .r14 = port, 492 }; 493 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 494 bool success; 495 496 /* 497 * Emulate the I/O read via hypercall. More info about ABI can be found 498 * in TDX Guest-Host-Communication Interface (GHCI) section titled 499 * "TDG.VP.VMCALL<Instruction.IO>". 500 */ 501 success = !__tdx_hypercall_ret(&args); 502 503 /* Update part of the register affected by the emulated instruction */ 504 regs->ax &= ~mask; 505 if (success) 506 regs->ax |= args.r11 & mask; 507 508 return success; 509 } 510 511 static bool handle_out(struct pt_regs *regs, int size, int port) 512 { 513 u64 mask = GENMASK(BITS_PER_BYTE * size, 0); 514 515 /* 516 * Emulate the I/O write via hypercall. More info about ABI can be found 517 * in TDX Guest-Host-Communication Interface (GHCI) section titled 518 * "TDG.VP.VMCALL<Instruction.IO>". 519 */ 520 return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, 521 PORT_WRITE, port, regs->ax & mask); 522 } 523 524 /* 525 * Emulate I/O using hypercall. 526 * 527 * Assumes the IO instruction was using ax, which is enforced 528 * by the standard io.h macros. 529 * 530 * Return True on success or False on failure. 531 */ 532 static int handle_io(struct pt_regs *regs, struct ve_info *ve) 533 { 534 u32 exit_qual = ve->exit_qual; 535 int size, port; 536 bool in, ret; 537 538 if (VE_IS_IO_STRING(exit_qual)) 539 return -EIO; 540 541 in = VE_IS_IO_IN(exit_qual); 542 size = VE_GET_IO_SIZE(exit_qual); 543 port = VE_GET_PORT_NUM(exit_qual); 544 545 546 if (in) 547 ret = handle_in(regs, size, port); 548 else 549 ret = handle_out(regs, size, port); 550 if (!ret) 551 return -EIO; 552 553 return ve_instr_len(ve); 554 } 555 556 /* 557 * Early #VE exception handler. Only handles a subset of port I/O. 558 * Intended only for earlyprintk. If failed, return false. 559 */ 560 __init bool tdx_early_handle_ve(struct pt_regs *regs) 561 { 562 struct ve_info ve; 563 int insn_len; 564 565 tdx_get_ve_info(&ve); 566 567 if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) 568 return false; 569 570 insn_len = handle_io(regs, &ve); 571 if (insn_len < 0) 572 return false; 573 574 regs->ip += insn_len; 575 return true; 576 } 577 578 void tdx_get_ve_info(struct ve_info *ve) 579 { 580 struct tdx_module_output out; 581 582 /* 583 * Called during #VE handling to retrieve the #VE info from the 584 * TDX module. 585 * 586 * This has to be called early in #VE handling. A "nested" #VE which 587 * occurs before this will raise a #DF and is not recoverable. 588 * 589 * The call retrieves the #VE info from the TDX module, which also 590 * clears the "#VE valid" flag. This must be done before anything else 591 * because any #VE that occurs while the valid flag is set will lead to 592 * #DF. 593 * 594 * Note, the TDX module treats virtual NMIs as inhibited if the #VE 595 * valid flag is set. It means that NMI=>#VE will not result in a #DF. 596 */ 597 tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out); 598 599 /* Transfer the output parameters */ 600 ve->exit_reason = out.rcx; 601 ve->exit_qual = out.rdx; 602 ve->gla = out.r8; 603 ve->gpa = out.r9; 604 ve->instr_len = lower_32_bits(out.r10); 605 ve->instr_info = upper_32_bits(out.r10); 606 } 607 608 /* 609 * Handle the user initiated #VE. 610 * 611 * On success, returns the number of bytes RIP should be incremented (>=0) 612 * or -errno on error. 613 */ 614 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) 615 { 616 switch (ve->exit_reason) { 617 case EXIT_REASON_CPUID: 618 return handle_cpuid(regs, ve); 619 default: 620 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 621 return -EIO; 622 } 623 } 624 625 static inline bool is_private_gpa(u64 gpa) 626 { 627 return gpa == cc_mkenc(gpa); 628 } 629 630 /* 631 * Handle the kernel #VE. 632 * 633 * On success, returns the number of bytes RIP should be incremented (>=0) 634 * or -errno on error. 635 */ 636 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) 637 { 638 switch (ve->exit_reason) { 639 case EXIT_REASON_HLT: 640 return handle_halt(ve); 641 case EXIT_REASON_MSR_READ: 642 return read_msr(regs, ve); 643 case EXIT_REASON_MSR_WRITE: 644 return write_msr(regs, ve); 645 case EXIT_REASON_CPUID: 646 return handle_cpuid(regs, ve); 647 case EXIT_REASON_EPT_VIOLATION: 648 if (is_private_gpa(ve->gpa)) 649 panic("Unexpected EPT-violation on private memory."); 650 return handle_mmio(regs, ve); 651 case EXIT_REASON_IO_INSTRUCTION: 652 return handle_io(regs, ve); 653 default: 654 pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); 655 return -EIO; 656 } 657 } 658 659 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) 660 { 661 int insn_len; 662 663 if (user_mode(regs)) 664 insn_len = virt_exception_user(regs, ve); 665 else 666 insn_len = virt_exception_kernel(regs, ve); 667 if (insn_len < 0) 668 return false; 669 670 /* After successful #VE handling, move the IP */ 671 regs->ip += insn_len; 672 673 return true; 674 } 675 676 static bool tdx_tlb_flush_required(bool private) 677 { 678 /* 679 * TDX guest is responsible for flushing TLB on private->shared 680 * transition. VMM is responsible for flushing on shared->private. 681 * 682 * The VMM _can't_ flush private addresses as it can't generate PAs 683 * with the guest's HKID. Shared memory isn't subject to integrity 684 * checking, i.e. the VMM doesn't need to flush for its own protection. 685 * 686 * There's no need to flush when converting from shared to private, 687 * as flushing is the VMM's responsibility in this case, e.g. it must 688 * flush to avoid integrity failures in the face of a buggy or 689 * malicious guest. 690 */ 691 return !private; 692 } 693 694 static bool tdx_cache_flush_required(void) 695 { 696 /* 697 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. 698 * TDX doesn't have such capability. 699 * 700 * Flush cache unconditionally. 701 */ 702 return true; 703 } 704 705 /* 706 * Inform the VMM of the guest's intent for this physical page: shared with 707 * the VMM or private to the guest. The VMM is expected to change its mapping 708 * of the page in response. 709 */ 710 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) 711 { 712 phys_addr_t start = __pa(vaddr); 713 phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); 714 715 if (!enc) { 716 /* Set the shared (decrypted) bits: */ 717 start |= cc_mkdec(0); 718 end |= cc_mkdec(0); 719 } 720 721 /* 722 * Notify the VMM about page mapping conversion. More info about ABI 723 * can be found in TDX Guest-Host-Communication Interface (GHCI), 724 * section "TDG.VP.VMCALL<MapGPA>" 725 */ 726 if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0)) 727 return false; 728 729 /* shared->private conversion requires memory to be accepted before use */ 730 if (enc) 731 return tdx_accept_memory(start, end); 732 733 return true; 734 } 735 736 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, 737 bool enc) 738 { 739 /* 740 * Only handle shared->private conversion here. 741 * See the comment in tdx_early_init(). 742 */ 743 if (enc) 744 return tdx_enc_status_changed(vaddr, numpages, enc); 745 return true; 746 } 747 748 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages, 749 bool enc) 750 { 751 /* 752 * Only handle private->shared conversion here. 753 * See the comment in tdx_early_init(). 754 */ 755 if (!enc) 756 return tdx_enc_status_changed(vaddr, numpages, enc); 757 return true; 758 } 759 760 void __init tdx_early_init(void) 761 { 762 u64 cc_mask; 763 u32 eax, sig[3]; 764 765 cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); 766 767 if (memcmp(TDX_IDENT, sig, sizeof(sig))) 768 return; 769 770 setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); 771 772 cc_vendor = CC_VENDOR_INTEL; 773 tdx_parse_tdinfo(&cc_mask); 774 cc_set_mask(cc_mask); 775 776 /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ 777 tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL); 778 779 /* 780 * All bits above GPA width are reserved and kernel treats shared bit 781 * as flag, not as part of physical address. 782 * 783 * Adjust physical mask to only cover valid GPA bits. 784 */ 785 physical_mask &= cc_mask - 1; 786 787 /* 788 * The kernel mapping should match the TDX metadata for the page. 789 * load_unaligned_zeropad() can touch memory *adjacent* to that which is 790 * owned by the caller and can catch even _momentary_ mismatches. Bad 791 * things happen on mismatch: 792 * 793 * - Private mapping => Shared Page == Guest shutdown 794 * - Shared mapping => Private Page == Recoverable #VE 795 * 796 * guest.enc_status_change_prepare() converts the page from 797 * shared=>private before the mapping becomes private. 798 * 799 * guest.enc_status_change_finish() converts the page from 800 * private=>shared after the mapping becomes private. 801 * 802 * In both cases there is a temporary shared mapping to a private page, 803 * which can result in a #VE. But, there is never a private mapping to 804 * a shared page. 805 */ 806 x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; 807 x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; 808 809 x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; 810 x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; 811 812 /* 813 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel 814 * bringup low level code. That raises #VE which cannot be handled 815 * there. 816 * 817 * Intel-TDX has a secure RDMSR hypercall, but that needs to be 818 * implemented seperately in the low level startup ASM code. 819 * Until that is in place, disable parallel bringup for TDX. 820 */ 821 x86_cpuinit.parallel_bringup = false; 822 823 pr_info("Guest detected\n"); 824 } 825