xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision 1f489656)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/ia32.h>
14 #include <asm/insn.h>
15 #include <asm/insn-eval.h>
16 #include <asm/pgtable.h>
17 
18 /* MMIO direction */
19 #define EPT_READ	0
20 #define EPT_WRITE	1
21 
22 /* Port I/O direction */
23 #define PORT_READ	0
24 #define PORT_WRITE	1
25 
26 /* See Exit Qualification for I/O Instructions in VMX documentation */
27 #define VE_IS_IO_IN(e)		((e) & BIT(3))
28 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
29 #define VE_GET_PORT_NUM(e)	((e) >> 16)
30 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
31 
32 #define ATTR_DEBUG		BIT(0)
33 #define ATTR_SEPT_VE_DISABLE	BIT(28)
34 
35 /* TDX Module call error codes */
36 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
37 #define TDCALL_INVALID_OPERAND	0xc0000100
38 
39 #define TDREPORT_SUBTYPE_0	0
40 
41 /* Called from __tdx_hypercall() for unrecoverable failure */
42 noinstr void __tdx_hypercall_failed(void)
43 {
44 	instrumentation_begin();
45 	panic("TDVMCALL failed. TDX module bug?");
46 }
47 
48 #ifdef CONFIG_KVM_GUEST
49 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
50 		       unsigned long p3, unsigned long p4)
51 {
52 	struct tdx_hypercall_args args = {
53 		.r10 = nr,
54 		.r11 = p1,
55 		.r12 = p2,
56 		.r13 = p3,
57 		.r14 = p4,
58 	};
59 
60 	return __tdx_hypercall(&args);
61 }
62 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
63 #endif
64 
65 /*
66  * Used for TDX guests to make calls directly to the TD module.  This
67  * should only be used for calls that have no legitimate reason to fail
68  * or where the kernel can not survive the call failing.
69  */
70 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
71 				   struct tdx_module_output *out)
72 {
73 	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
74 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
75 }
76 
77 /**
78  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
79  *                           subtype 0) using TDG.MR.REPORT TDCALL.
80  * @reportdata: Address of the input buffer which contains user-defined
81  *              REPORTDATA to be included into TDREPORT.
82  * @tdreport: Address of the output buffer to store TDREPORT.
83  *
84  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
85  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
86  * It is used in the TDX guest driver module to get the TDREPORT0.
87  *
88  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
89  * other TDCALL failures.
90  */
91 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
92 {
93 	u64 ret;
94 
95 	ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport),
96 				virt_to_phys(reportdata), TDREPORT_SUBTYPE_0,
97 				0, NULL);
98 	if (ret) {
99 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
100 			return -EINVAL;
101 		return -EIO;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
107 
108 static void __noreturn tdx_panic(const char *msg)
109 {
110 	struct tdx_hypercall_args args = {
111 		.r10 = TDX_HYPERCALL_STANDARD,
112 		.r11 = TDVMCALL_REPORT_FATAL_ERROR,
113 		.r12 = 0, /* Error code: 0 is Panic */
114 	};
115 	union {
116 		/* Define register order according to the GHCI */
117 		struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
118 
119 		char str[64];
120 	} message;
121 
122 	/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
123 	strncpy(message.str, msg, 64);
124 
125 	args.r8  = message.r8;
126 	args.r9  = message.r9;
127 	args.r14 = message.r14;
128 	args.r15 = message.r15;
129 	args.rdi = message.rdi;
130 	args.rsi = message.rsi;
131 	args.rbx = message.rbx;
132 	args.rdx = message.rdx;
133 
134 	/*
135 	 * This hypercall should never return and it is not safe
136 	 * to keep the guest running. Call it forever if it
137 	 * happens to return.
138 	 */
139 	while (1)
140 		__tdx_hypercall(&args);
141 }
142 
143 static void tdx_parse_tdinfo(u64 *cc_mask)
144 {
145 	struct tdx_module_output out;
146 	unsigned int gpa_width;
147 	u64 td_attr;
148 
149 	/*
150 	 * TDINFO TDX module call is used to get the TD execution environment
151 	 * information like GPA width, number of available vcpus, debug mode
152 	 * information, etc. More details about the ABI can be found in TDX
153 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
154 	 * [TDG.VP.INFO].
155 	 */
156 	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
157 
158 	/*
159 	 * The highest bit of a guest physical address is the "sharing" bit.
160 	 * Set it for shared pages and clear it for private pages.
161 	 *
162 	 * The GPA width that comes out of this call is critical. TDX guests
163 	 * can not meaningfully run without it.
164 	 */
165 	gpa_width = out.rcx & GENMASK(5, 0);
166 	*cc_mask = BIT_ULL(gpa_width - 1);
167 
168 	/*
169 	 * The kernel can not handle #VE's when accessing normal kernel
170 	 * memory.  Ensure that no #VE will be delivered for accesses to
171 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
172 	 */
173 	td_attr = out.rdx;
174 	if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
175 		const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
176 
177 		/* Relax SEPT_VE_DISABLE check for debug TD. */
178 		if (td_attr & ATTR_DEBUG)
179 			pr_warn("%s\n", msg);
180 		else
181 			tdx_panic(msg);
182 	}
183 }
184 
185 /*
186  * The TDX module spec states that #VE may be injected for a limited set of
187  * reasons:
188  *
189  *  - Emulation of the architectural #VE injection on EPT violation;
190  *
191  *  - As a result of guest TD execution of a disallowed instruction,
192  *    a disallowed MSR access, or CPUID virtualization;
193  *
194  *  - A notification to the guest TD about anomalous behavior;
195  *
196  * The last one is opt-in and is not used by the kernel.
197  *
198  * The Intel Software Developer's Manual describes cases when instruction
199  * length field can be used in section "Information for VM Exits Due to
200  * Instruction Execution".
201  *
202  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
203  * information if #VE occurred due to instruction execution, but not for EPT
204  * violations.
205  */
206 static int ve_instr_len(struct ve_info *ve)
207 {
208 	switch (ve->exit_reason) {
209 	case EXIT_REASON_HLT:
210 	case EXIT_REASON_MSR_READ:
211 	case EXIT_REASON_MSR_WRITE:
212 	case EXIT_REASON_CPUID:
213 	case EXIT_REASON_IO_INSTRUCTION:
214 		/* It is safe to use ve->instr_len for #VE due instructions */
215 		return ve->instr_len;
216 	case EXIT_REASON_EPT_VIOLATION:
217 		/*
218 		 * For EPT violations, ve->insn_len is not defined. For those,
219 		 * the kernel must decode instructions manually and should not
220 		 * be using this function.
221 		 */
222 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
223 		return 0;
224 	default:
225 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
226 		return ve->instr_len;
227 	}
228 }
229 
230 static u64 __cpuidle __halt(const bool irq_disabled)
231 {
232 	struct tdx_hypercall_args args = {
233 		.r10 = TDX_HYPERCALL_STANDARD,
234 		.r11 = hcall_func(EXIT_REASON_HLT),
235 		.r12 = irq_disabled,
236 	};
237 
238 	/*
239 	 * Emulate HLT operation via hypercall. More info about ABI
240 	 * can be found in TDX Guest-Host-Communication Interface
241 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
242 	 *
243 	 * The VMM uses the "IRQ disabled" param to understand IRQ
244 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
245 	 * whether or not it should schedule the halted vCPU if an
246 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
247 	 * can keep the vCPU in virtual HLT, even if an IRQ is
248 	 * pending, without hanging/breaking the guest.
249 	 */
250 	return __tdx_hypercall(&args);
251 }
252 
253 static int handle_halt(struct ve_info *ve)
254 {
255 	const bool irq_disabled = irqs_disabled();
256 
257 	if (__halt(irq_disabled))
258 		return -EIO;
259 
260 	return ve_instr_len(ve);
261 }
262 
263 void __cpuidle tdx_safe_halt(void)
264 {
265 	const bool irq_disabled = false;
266 
267 	/*
268 	 * Use WARN_ONCE() to report the failure.
269 	 */
270 	if (__halt(irq_disabled))
271 		WARN_ONCE(1, "HLT instruction emulation failed\n");
272 }
273 
274 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
275 {
276 	struct tdx_hypercall_args args = {
277 		.r10 = TDX_HYPERCALL_STANDARD,
278 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
279 		.r12 = regs->cx,
280 	};
281 
282 	/*
283 	 * Emulate the MSR read via hypercall. More info about ABI
284 	 * can be found in TDX Guest-Host-Communication Interface
285 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
286 	 */
287 	if (__tdx_hypercall_ret(&args))
288 		return -EIO;
289 
290 	regs->ax = lower_32_bits(args.r11);
291 	regs->dx = upper_32_bits(args.r11);
292 	return ve_instr_len(ve);
293 }
294 
295 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
296 {
297 	struct tdx_hypercall_args args = {
298 		.r10 = TDX_HYPERCALL_STANDARD,
299 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
300 		.r12 = regs->cx,
301 		.r13 = (u64)regs->dx << 32 | regs->ax,
302 	};
303 
304 	/*
305 	 * Emulate the MSR write via hypercall. More info about ABI
306 	 * can be found in TDX Guest-Host-Communication Interface
307 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
308 	 */
309 	if (__tdx_hypercall(&args))
310 		return -EIO;
311 
312 	return ve_instr_len(ve);
313 }
314 
315 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
316 {
317 	struct tdx_hypercall_args args = {
318 		.r10 = TDX_HYPERCALL_STANDARD,
319 		.r11 = hcall_func(EXIT_REASON_CPUID),
320 		.r12 = regs->ax,
321 		.r13 = regs->cx,
322 	};
323 
324 	/*
325 	 * Only allow VMM to control range reserved for hypervisor
326 	 * communication.
327 	 *
328 	 * Return all-zeros for any CPUID outside the range. It matches CPU
329 	 * behaviour for non-supported leaf.
330 	 */
331 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
332 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
333 		return ve_instr_len(ve);
334 	}
335 
336 	/*
337 	 * Emulate the CPUID instruction via a hypercall. More info about
338 	 * ABI can be found in TDX Guest-Host-Communication Interface
339 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
340 	 */
341 	if (__tdx_hypercall_ret(&args))
342 		return -EIO;
343 
344 	/*
345 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
346 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
347 	 * So copy the register contents back to pt_regs.
348 	 */
349 	regs->ax = args.r12;
350 	regs->bx = args.r13;
351 	regs->cx = args.r14;
352 	regs->dx = args.r15;
353 
354 	return ve_instr_len(ve);
355 }
356 
357 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
358 {
359 	struct tdx_hypercall_args args = {
360 		.r10 = TDX_HYPERCALL_STANDARD,
361 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
362 		.r12 = size,
363 		.r13 = EPT_READ,
364 		.r14 = addr,
365 	};
366 
367 	if (__tdx_hypercall_ret(&args))
368 		return false;
369 	*val = args.r11;
370 	return true;
371 }
372 
373 static bool mmio_write(int size, unsigned long addr, unsigned long val)
374 {
375 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
376 			       EPT_WRITE, addr, val);
377 }
378 
379 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
380 {
381 	unsigned long *reg, val, vaddr;
382 	char buffer[MAX_INSN_SIZE];
383 	enum insn_mmio_type mmio;
384 	struct insn insn = {};
385 	int size, extend_size;
386 	u8 extend_val = 0;
387 
388 	/* Only in-kernel MMIO is supported */
389 	if (WARN_ON_ONCE(user_mode(regs)))
390 		return -EFAULT;
391 
392 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
393 		return -EFAULT;
394 
395 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
396 		return -EINVAL;
397 
398 	mmio = insn_decode_mmio(&insn, &size);
399 	if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
400 		return -EINVAL;
401 
402 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
403 		reg = insn_get_modrm_reg_ptr(&insn, regs);
404 		if (!reg)
405 			return -EINVAL;
406 	}
407 
408 	/*
409 	 * Reject EPT violation #VEs that split pages.
410 	 *
411 	 * MMIO accesses are supposed to be naturally aligned and therefore
412 	 * never cross page boundaries. Seeing split page accesses indicates
413 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
414 	 *
415 	 * load_unaligned_zeropad() will recover using exception fixups.
416 	 */
417 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
418 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
419 		return -EFAULT;
420 
421 	/* Handle writes first */
422 	switch (mmio) {
423 	case INSN_MMIO_WRITE:
424 		memcpy(&val, reg, size);
425 		if (!mmio_write(size, ve->gpa, val))
426 			return -EIO;
427 		return insn.length;
428 	case INSN_MMIO_WRITE_IMM:
429 		val = insn.immediate.value;
430 		if (!mmio_write(size, ve->gpa, val))
431 			return -EIO;
432 		return insn.length;
433 	case INSN_MMIO_READ:
434 	case INSN_MMIO_READ_ZERO_EXTEND:
435 	case INSN_MMIO_READ_SIGN_EXTEND:
436 		/* Reads are handled below */
437 		break;
438 	case INSN_MMIO_MOVS:
439 	case INSN_MMIO_DECODE_FAILED:
440 		/*
441 		 * MMIO was accessed with an instruction that could not be
442 		 * decoded or handled properly. It was likely not using io.h
443 		 * helpers or accessed MMIO accidentally.
444 		 */
445 		return -EINVAL;
446 	default:
447 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
448 		return -EINVAL;
449 	}
450 
451 	/* Handle reads */
452 	if (!mmio_read(size, ve->gpa, &val))
453 		return -EIO;
454 
455 	switch (mmio) {
456 	case INSN_MMIO_READ:
457 		/* Zero-extend for 32-bit operation */
458 		extend_size = size == 4 ? sizeof(*reg) : 0;
459 		break;
460 	case INSN_MMIO_READ_ZERO_EXTEND:
461 		/* Zero extend based on operand size */
462 		extend_size = insn.opnd_bytes;
463 		break;
464 	case INSN_MMIO_READ_SIGN_EXTEND:
465 		/* Sign extend based on operand size */
466 		extend_size = insn.opnd_bytes;
467 		if (size == 1 && val & BIT(7))
468 			extend_val = 0xFF;
469 		else if (size > 1 && val & BIT(15))
470 			extend_val = 0xFF;
471 		break;
472 	default:
473 		/* All other cases has to be covered with the first switch() */
474 		WARN_ON_ONCE(1);
475 		return -EINVAL;
476 	}
477 
478 	if (extend_size)
479 		memset(reg, extend_val, extend_size);
480 	memcpy(reg, &val, size);
481 	return insn.length;
482 }
483 
484 static bool handle_in(struct pt_regs *regs, int size, int port)
485 {
486 	struct tdx_hypercall_args args = {
487 		.r10 = TDX_HYPERCALL_STANDARD,
488 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
489 		.r12 = size,
490 		.r13 = PORT_READ,
491 		.r14 = port,
492 	};
493 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
494 	bool success;
495 
496 	/*
497 	 * Emulate the I/O read via hypercall. More info about ABI can be found
498 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
499 	 * "TDG.VP.VMCALL<Instruction.IO>".
500 	 */
501 	success = !__tdx_hypercall_ret(&args);
502 
503 	/* Update part of the register affected by the emulated instruction */
504 	regs->ax &= ~mask;
505 	if (success)
506 		regs->ax |= args.r11 & mask;
507 
508 	return success;
509 }
510 
511 static bool handle_out(struct pt_regs *regs, int size, int port)
512 {
513 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
514 
515 	/*
516 	 * Emulate the I/O write via hypercall. More info about ABI can be found
517 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
518 	 * "TDG.VP.VMCALL<Instruction.IO>".
519 	 */
520 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
521 			       PORT_WRITE, port, regs->ax & mask);
522 }
523 
524 /*
525  * Emulate I/O using hypercall.
526  *
527  * Assumes the IO instruction was using ax, which is enforced
528  * by the standard io.h macros.
529  *
530  * Return True on success or False on failure.
531  */
532 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
533 {
534 	u32 exit_qual = ve->exit_qual;
535 	int size, port;
536 	bool in, ret;
537 
538 	if (VE_IS_IO_STRING(exit_qual))
539 		return -EIO;
540 
541 	in   = VE_IS_IO_IN(exit_qual);
542 	size = VE_GET_IO_SIZE(exit_qual);
543 	port = VE_GET_PORT_NUM(exit_qual);
544 
545 
546 	if (in)
547 		ret = handle_in(regs, size, port);
548 	else
549 		ret = handle_out(regs, size, port);
550 	if (!ret)
551 		return -EIO;
552 
553 	return ve_instr_len(ve);
554 }
555 
556 /*
557  * Early #VE exception handler. Only handles a subset of port I/O.
558  * Intended only for earlyprintk. If failed, return false.
559  */
560 __init bool tdx_early_handle_ve(struct pt_regs *regs)
561 {
562 	struct ve_info ve;
563 	int insn_len;
564 
565 	tdx_get_ve_info(&ve);
566 
567 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
568 		return false;
569 
570 	insn_len = handle_io(regs, &ve);
571 	if (insn_len < 0)
572 		return false;
573 
574 	regs->ip += insn_len;
575 	return true;
576 }
577 
578 void tdx_get_ve_info(struct ve_info *ve)
579 {
580 	struct tdx_module_output out;
581 
582 	/*
583 	 * Called during #VE handling to retrieve the #VE info from the
584 	 * TDX module.
585 	 *
586 	 * This has to be called early in #VE handling.  A "nested" #VE which
587 	 * occurs before this will raise a #DF and is not recoverable.
588 	 *
589 	 * The call retrieves the #VE info from the TDX module, which also
590 	 * clears the "#VE valid" flag. This must be done before anything else
591 	 * because any #VE that occurs while the valid flag is set will lead to
592 	 * #DF.
593 	 *
594 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
595 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
596 	 */
597 	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
598 
599 	/* Transfer the output parameters */
600 	ve->exit_reason = out.rcx;
601 	ve->exit_qual   = out.rdx;
602 	ve->gla         = out.r8;
603 	ve->gpa         = out.r9;
604 	ve->instr_len   = lower_32_bits(out.r10);
605 	ve->instr_info  = upper_32_bits(out.r10);
606 }
607 
608 /*
609  * Handle the user initiated #VE.
610  *
611  * On success, returns the number of bytes RIP should be incremented (>=0)
612  * or -errno on error.
613  */
614 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
615 {
616 	switch (ve->exit_reason) {
617 	case EXIT_REASON_CPUID:
618 		return handle_cpuid(regs, ve);
619 	default:
620 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
621 		return -EIO;
622 	}
623 }
624 
625 static inline bool is_private_gpa(u64 gpa)
626 {
627 	return gpa == cc_mkenc(gpa);
628 }
629 
630 /*
631  * Handle the kernel #VE.
632  *
633  * On success, returns the number of bytes RIP should be incremented (>=0)
634  * or -errno on error.
635  */
636 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
637 {
638 	switch (ve->exit_reason) {
639 	case EXIT_REASON_HLT:
640 		return handle_halt(ve);
641 	case EXIT_REASON_MSR_READ:
642 		return read_msr(regs, ve);
643 	case EXIT_REASON_MSR_WRITE:
644 		return write_msr(regs, ve);
645 	case EXIT_REASON_CPUID:
646 		return handle_cpuid(regs, ve);
647 	case EXIT_REASON_EPT_VIOLATION:
648 		if (is_private_gpa(ve->gpa))
649 			panic("Unexpected EPT-violation on private memory.");
650 		return handle_mmio(regs, ve);
651 	case EXIT_REASON_IO_INSTRUCTION:
652 		return handle_io(regs, ve);
653 	default:
654 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
655 		return -EIO;
656 	}
657 }
658 
659 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
660 {
661 	int insn_len;
662 
663 	if (user_mode(regs))
664 		insn_len = virt_exception_user(regs, ve);
665 	else
666 		insn_len = virt_exception_kernel(regs, ve);
667 	if (insn_len < 0)
668 		return false;
669 
670 	/* After successful #VE handling, move the IP */
671 	regs->ip += insn_len;
672 
673 	return true;
674 }
675 
676 static bool tdx_tlb_flush_required(bool private)
677 {
678 	/*
679 	 * TDX guest is responsible for flushing TLB on private->shared
680 	 * transition. VMM is responsible for flushing on shared->private.
681 	 *
682 	 * The VMM _can't_ flush private addresses as it can't generate PAs
683 	 * with the guest's HKID.  Shared memory isn't subject to integrity
684 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
685 	 *
686 	 * There's no need to flush when converting from shared to private,
687 	 * as flushing is the VMM's responsibility in this case, e.g. it must
688 	 * flush to avoid integrity failures in the face of a buggy or
689 	 * malicious guest.
690 	 */
691 	return !private;
692 }
693 
694 static bool tdx_cache_flush_required(void)
695 {
696 	/*
697 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
698 	 * TDX doesn't have such capability.
699 	 *
700 	 * Flush cache unconditionally.
701 	 */
702 	return true;
703 }
704 
705 /*
706  * Inform the VMM of the guest's intent for this physical page: shared with
707  * the VMM or private to the guest.  The VMM is expected to change its mapping
708  * of the page in response.
709  */
710 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
711 {
712 	phys_addr_t start = __pa(vaddr);
713 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
714 
715 	if (!enc) {
716 		/* Set the shared (decrypted) bits: */
717 		start |= cc_mkdec(0);
718 		end   |= cc_mkdec(0);
719 	}
720 
721 	/*
722 	 * Notify the VMM about page mapping conversion. More info about ABI
723 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
724 	 * section "TDG.VP.VMCALL<MapGPA>"
725 	 */
726 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
727 		return false;
728 
729 	/* shared->private conversion requires memory to be accepted before use */
730 	if (enc)
731 		return tdx_accept_memory(start, end);
732 
733 	return true;
734 }
735 
736 static bool tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
737 					  bool enc)
738 {
739 	/*
740 	 * Only handle shared->private conversion here.
741 	 * See the comment in tdx_early_init().
742 	 */
743 	if (enc)
744 		return tdx_enc_status_changed(vaddr, numpages, enc);
745 	return true;
746 }
747 
748 static bool tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
749 					 bool enc)
750 {
751 	/*
752 	 * Only handle private->shared conversion here.
753 	 * See the comment in tdx_early_init().
754 	 */
755 	if (!enc)
756 		return tdx_enc_status_changed(vaddr, numpages, enc);
757 	return true;
758 }
759 
760 void __init tdx_early_init(void)
761 {
762 	u64 cc_mask;
763 	u32 eax, sig[3];
764 
765 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
766 
767 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
768 		return;
769 
770 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
771 
772 	cc_vendor = CC_VENDOR_INTEL;
773 	tdx_parse_tdinfo(&cc_mask);
774 	cc_set_mask(cc_mask);
775 
776 	/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
777 	tdx_module_call(TDX_WR, 0, TDCS_NOTIFY_ENABLES, 0, -1ULL, NULL);
778 
779 	/*
780 	 * All bits above GPA width are reserved and kernel treats shared bit
781 	 * as flag, not as part of physical address.
782 	 *
783 	 * Adjust physical mask to only cover valid GPA bits.
784 	 */
785 	physical_mask &= cc_mask - 1;
786 
787 	/*
788 	 * The kernel mapping should match the TDX metadata for the page.
789 	 * load_unaligned_zeropad() can touch memory *adjacent* to that which is
790 	 * owned by the caller and can catch even _momentary_ mismatches.  Bad
791 	 * things happen on mismatch:
792 	 *
793 	 *   - Private mapping => Shared Page  == Guest shutdown
794          *   - Shared mapping  => Private Page == Recoverable #VE
795 	 *
796 	 * guest.enc_status_change_prepare() converts the page from
797 	 * shared=>private before the mapping becomes private.
798 	 *
799 	 * guest.enc_status_change_finish() converts the page from
800 	 * private=>shared after the mapping becomes private.
801 	 *
802 	 * In both cases there is a temporary shared mapping to a private page,
803 	 * which can result in a #VE.  But, there is never a private mapping to
804 	 * a shared page.
805 	 */
806 	x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
807 	x86_platform.guest.enc_status_change_finish  = tdx_enc_status_change_finish;
808 
809 	x86_platform.guest.enc_cache_flush_required  = tdx_cache_flush_required;
810 	x86_platform.guest.enc_tlb_flush_required    = tdx_tlb_flush_required;
811 
812 	/*
813 	 * TDX intercepts the RDMSR to read the X2APIC ID in the parallel
814 	 * bringup low level code. That raises #VE which cannot be handled
815 	 * there.
816 	 *
817 	 * Intel-TDX has a secure RDMSR hypercall, but that needs to be
818 	 * implemented seperately in the low level startup ASM code.
819 	 * Until that is in place, disable parallel bringup for TDX.
820 	 */
821 	x86_cpuinit.parallel_bringup = false;
822 
823 	pr_info("Guest detected\n");
824 }
825