xref: /openbmc/linux/arch/x86/coco/tdx/tdx.c (revision 0cb4228f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021-2022 Intel Corporation */
3 
4 #undef pr_fmt
5 #define pr_fmt(fmt)     "tdx: " fmt
6 
7 #include <linux/cpufeature.h>
8 #include <linux/export.h>
9 #include <linux/io.h>
10 #include <asm/coco.h>
11 #include <asm/tdx.h>
12 #include <asm/vmx.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/pgtable.h>
16 
17 /* TDX module Call Leaf IDs */
18 #define TDX_GET_INFO			1
19 #define TDX_GET_VEINFO			3
20 #define TDX_GET_REPORT			4
21 #define TDX_ACCEPT_PAGE			6
22 
23 /* TDX hypercall Leaf IDs */
24 #define TDVMCALL_MAP_GPA		0x10001
25 
26 /* MMIO direction */
27 #define EPT_READ	0
28 #define EPT_WRITE	1
29 
30 /* Port I/O direction */
31 #define PORT_READ	0
32 #define PORT_WRITE	1
33 
34 /* See Exit Qualification for I/O Instructions in VMX documentation */
35 #define VE_IS_IO_IN(e)		((e) & BIT(3))
36 #define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
37 #define VE_GET_PORT_NUM(e)	((e) >> 16)
38 #define VE_IS_IO_STRING(e)	((e) & BIT(4))
39 
40 #define ATTR_SEPT_VE_DISABLE	BIT(28)
41 
42 /* TDX Module call error codes */
43 #define TDCALL_RETURN_CODE(a)	((a) >> 32)
44 #define TDCALL_INVALID_OPERAND	0xc0000100
45 
46 #define TDREPORT_SUBTYPE_0	0
47 
48 /*
49  * Wrapper for standard use of __tdx_hypercall with no output aside from
50  * return code.
51  */
52 static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
53 {
54 	struct tdx_hypercall_args args = {
55 		.r10 = TDX_HYPERCALL_STANDARD,
56 		.r11 = fn,
57 		.r12 = r12,
58 		.r13 = r13,
59 		.r14 = r14,
60 		.r15 = r15,
61 	};
62 
63 	return __tdx_hypercall(&args, 0);
64 }
65 
66 /* Called from __tdx_hypercall() for unrecoverable failure */
67 void __tdx_hypercall_failed(void)
68 {
69 	panic("TDVMCALL failed. TDX module bug?");
70 }
71 
72 /*
73  * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
74  * independently from but are currently matched 1:1 with VMX EXIT_REASONs.
75  * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
76  * guest sides of these calls.
77  */
78 static u64 hcall_func(u64 exit_reason)
79 {
80 	return exit_reason;
81 }
82 
83 #ifdef CONFIG_KVM_GUEST
84 long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
85 		       unsigned long p3, unsigned long p4)
86 {
87 	struct tdx_hypercall_args args = {
88 		.r10 = nr,
89 		.r11 = p1,
90 		.r12 = p2,
91 		.r13 = p3,
92 		.r14 = p4,
93 	};
94 
95 	return __tdx_hypercall(&args, 0);
96 }
97 EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
98 #endif
99 
100 /*
101  * Used for TDX guests to make calls directly to the TD module.  This
102  * should only be used for calls that have no legitimate reason to fail
103  * or where the kernel can not survive the call failing.
104  */
105 static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
106 				   struct tdx_module_output *out)
107 {
108 	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
109 		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
110 }
111 
112 /**
113  * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
114  *                           subtype 0) using TDG.MR.REPORT TDCALL.
115  * @reportdata: Address of the input buffer which contains user-defined
116  *              REPORTDATA to be included into TDREPORT.
117  * @tdreport: Address of the output buffer to store TDREPORT.
118  *
119  * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
120  * v1.0 specification for more information on TDG.MR.REPORT TDCALL.
121  * It is used in the TDX guest driver module to get the TDREPORT0.
122  *
123  * Return 0 on success, -EINVAL for invalid operands, or -EIO on
124  * other TDCALL failures.
125  */
126 int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
127 {
128 	u64 ret;
129 
130 	ret = __tdx_module_call(TDX_GET_REPORT, virt_to_phys(tdreport),
131 				virt_to_phys(reportdata), TDREPORT_SUBTYPE_0,
132 				0, NULL);
133 	if (ret) {
134 		if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
135 			return -EINVAL;
136 		return -EIO;
137 	}
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
142 
143 static void tdx_parse_tdinfo(u64 *cc_mask)
144 {
145 	struct tdx_module_output out;
146 	unsigned int gpa_width;
147 	u64 td_attr;
148 
149 	/*
150 	 * TDINFO TDX module call is used to get the TD execution environment
151 	 * information like GPA width, number of available vcpus, debug mode
152 	 * information, etc. More details about the ABI can be found in TDX
153 	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
154 	 * [TDG.VP.INFO].
155 	 */
156 	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);
157 
158 	/*
159 	 * The highest bit of a guest physical address is the "sharing" bit.
160 	 * Set it for shared pages and clear it for private pages.
161 	 *
162 	 * The GPA width that comes out of this call is critical. TDX guests
163 	 * can not meaningfully run without it.
164 	 */
165 	gpa_width = out.rcx & GENMASK(5, 0);
166 	*cc_mask = BIT_ULL(gpa_width - 1);
167 
168 	/*
169 	 * The kernel can not handle #VE's when accessing normal kernel
170 	 * memory.  Ensure that no #VE will be delivered for accesses to
171 	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
172 	 */
173 	td_attr = out.rdx;
174 	if (!(td_attr & ATTR_SEPT_VE_DISABLE))
175 		panic("TD misconfiguration: SEPT_VE_DISABLE attibute must be set.\n");
176 }
177 
178 /*
179  * The TDX module spec states that #VE may be injected for a limited set of
180  * reasons:
181  *
182  *  - Emulation of the architectural #VE injection on EPT violation;
183  *
184  *  - As a result of guest TD execution of a disallowed instruction,
185  *    a disallowed MSR access, or CPUID virtualization;
186  *
187  *  - A notification to the guest TD about anomalous behavior;
188  *
189  * The last one is opt-in and is not used by the kernel.
190  *
191  * The Intel Software Developer's Manual describes cases when instruction
192  * length field can be used in section "Information for VM Exits Due to
193  * Instruction Execution".
194  *
195  * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
196  * information if #VE occurred due to instruction execution, but not for EPT
197  * violations.
198  */
199 static int ve_instr_len(struct ve_info *ve)
200 {
201 	switch (ve->exit_reason) {
202 	case EXIT_REASON_HLT:
203 	case EXIT_REASON_MSR_READ:
204 	case EXIT_REASON_MSR_WRITE:
205 	case EXIT_REASON_CPUID:
206 	case EXIT_REASON_IO_INSTRUCTION:
207 		/* It is safe to use ve->instr_len for #VE due instructions */
208 		return ve->instr_len;
209 	case EXIT_REASON_EPT_VIOLATION:
210 		/*
211 		 * For EPT violations, ve->insn_len is not defined. For those,
212 		 * the kernel must decode instructions manually and should not
213 		 * be using this function.
214 		 */
215 		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
216 		return 0;
217 	default:
218 		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
219 		return ve->instr_len;
220 	}
221 }
222 
223 static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti)
224 {
225 	struct tdx_hypercall_args args = {
226 		.r10 = TDX_HYPERCALL_STANDARD,
227 		.r11 = hcall_func(EXIT_REASON_HLT),
228 		.r12 = irq_disabled,
229 	};
230 
231 	/*
232 	 * Emulate HLT operation via hypercall. More info about ABI
233 	 * can be found in TDX Guest-Host-Communication Interface
234 	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
235 	 *
236 	 * The VMM uses the "IRQ disabled" param to understand IRQ
237 	 * enabled status (RFLAGS.IF) of the TD guest and to determine
238 	 * whether or not it should schedule the halted vCPU if an
239 	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
240 	 * can keep the vCPU in virtual HLT, even if an IRQ is
241 	 * pending, without hanging/breaking the guest.
242 	 */
243 	return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0);
244 }
245 
246 static int handle_halt(struct ve_info *ve)
247 {
248 	/*
249 	 * Since non safe halt is mainly used in CPU offlining
250 	 * and the guest will always stay in the halt state, don't
251 	 * call the STI instruction (set do_sti as false).
252 	 */
253 	const bool irq_disabled = irqs_disabled();
254 	const bool do_sti = false;
255 
256 	if (__halt(irq_disabled, do_sti))
257 		return -EIO;
258 
259 	return ve_instr_len(ve);
260 }
261 
262 void __cpuidle tdx_safe_halt(void)
263 {
264 	 /*
265 	  * For do_sti=true case, __tdx_hypercall() function enables
266 	  * interrupts using the STI instruction before the TDCALL. So
267 	  * set irq_disabled as false.
268 	  */
269 	const bool irq_disabled = false;
270 	const bool do_sti = true;
271 
272 	/*
273 	 * Use WARN_ONCE() to report the failure.
274 	 */
275 	if (__halt(irq_disabled, do_sti))
276 		WARN_ONCE(1, "HLT instruction emulation failed\n");
277 }
278 
279 static int read_msr(struct pt_regs *regs, struct ve_info *ve)
280 {
281 	struct tdx_hypercall_args args = {
282 		.r10 = TDX_HYPERCALL_STANDARD,
283 		.r11 = hcall_func(EXIT_REASON_MSR_READ),
284 		.r12 = regs->cx,
285 	};
286 
287 	/*
288 	 * Emulate the MSR read via hypercall. More info about ABI
289 	 * can be found in TDX Guest-Host-Communication Interface
290 	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
291 	 */
292 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
293 		return -EIO;
294 
295 	regs->ax = lower_32_bits(args.r11);
296 	regs->dx = upper_32_bits(args.r11);
297 	return ve_instr_len(ve);
298 }
299 
300 static int write_msr(struct pt_regs *regs, struct ve_info *ve)
301 {
302 	struct tdx_hypercall_args args = {
303 		.r10 = TDX_HYPERCALL_STANDARD,
304 		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
305 		.r12 = regs->cx,
306 		.r13 = (u64)regs->dx << 32 | regs->ax,
307 	};
308 
309 	/*
310 	 * Emulate the MSR write via hypercall. More info about ABI
311 	 * can be found in TDX Guest-Host-Communication Interface
312 	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
313 	 */
314 	if (__tdx_hypercall(&args, 0))
315 		return -EIO;
316 
317 	return ve_instr_len(ve);
318 }
319 
320 static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
321 {
322 	struct tdx_hypercall_args args = {
323 		.r10 = TDX_HYPERCALL_STANDARD,
324 		.r11 = hcall_func(EXIT_REASON_CPUID),
325 		.r12 = regs->ax,
326 		.r13 = regs->cx,
327 	};
328 
329 	/*
330 	 * Only allow VMM to control range reserved for hypervisor
331 	 * communication.
332 	 *
333 	 * Return all-zeros for any CPUID outside the range. It matches CPU
334 	 * behaviour for non-supported leaf.
335 	 */
336 	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
337 		regs->ax = regs->bx = regs->cx = regs->dx = 0;
338 		return ve_instr_len(ve);
339 	}
340 
341 	/*
342 	 * Emulate the CPUID instruction via a hypercall. More info about
343 	 * ABI can be found in TDX Guest-Host-Communication Interface
344 	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
345 	 */
346 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
347 		return -EIO;
348 
349 	/*
350 	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
351 	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
352 	 * So copy the register contents back to pt_regs.
353 	 */
354 	regs->ax = args.r12;
355 	regs->bx = args.r13;
356 	regs->cx = args.r14;
357 	regs->dx = args.r15;
358 
359 	return ve_instr_len(ve);
360 }
361 
362 static bool mmio_read(int size, unsigned long addr, unsigned long *val)
363 {
364 	struct tdx_hypercall_args args = {
365 		.r10 = TDX_HYPERCALL_STANDARD,
366 		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
367 		.r12 = size,
368 		.r13 = EPT_READ,
369 		.r14 = addr,
370 		.r15 = *val,
371 	};
372 
373 	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
374 		return false;
375 	*val = args.r11;
376 	return true;
377 }
378 
379 static bool mmio_write(int size, unsigned long addr, unsigned long val)
380 {
381 	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
382 			       EPT_WRITE, addr, val);
383 }
384 
385 static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
386 {
387 	unsigned long *reg, val, vaddr;
388 	char buffer[MAX_INSN_SIZE];
389 	struct insn insn = {};
390 	enum mmio_type mmio;
391 	int size, extend_size;
392 	u8 extend_val = 0;
393 
394 	/* Only in-kernel MMIO is supported */
395 	if (WARN_ON_ONCE(user_mode(regs)))
396 		return -EFAULT;
397 
398 	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
399 		return -EFAULT;
400 
401 	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
402 		return -EINVAL;
403 
404 	mmio = insn_decode_mmio(&insn, &size);
405 	if (WARN_ON_ONCE(mmio == MMIO_DECODE_FAILED))
406 		return -EINVAL;
407 
408 	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
409 		reg = insn_get_modrm_reg_ptr(&insn, regs);
410 		if (!reg)
411 			return -EINVAL;
412 	}
413 
414 	/*
415 	 * Reject EPT violation #VEs that split pages.
416 	 *
417 	 * MMIO accesses are supposed to be naturally aligned and therefore
418 	 * never cross page boundaries. Seeing split page accesses indicates
419 	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
420 	 *
421 	 * load_unaligned_zeropad() will recover using exception fixups.
422 	 */
423 	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
424 	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
425 		return -EFAULT;
426 
427 	/* Handle writes first */
428 	switch (mmio) {
429 	case MMIO_WRITE:
430 		memcpy(&val, reg, size);
431 		if (!mmio_write(size, ve->gpa, val))
432 			return -EIO;
433 		return insn.length;
434 	case MMIO_WRITE_IMM:
435 		val = insn.immediate.value;
436 		if (!mmio_write(size, ve->gpa, val))
437 			return -EIO;
438 		return insn.length;
439 	case MMIO_READ:
440 	case MMIO_READ_ZERO_EXTEND:
441 	case MMIO_READ_SIGN_EXTEND:
442 		/* Reads are handled below */
443 		break;
444 	case MMIO_MOVS:
445 	case MMIO_DECODE_FAILED:
446 		/*
447 		 * MMIO was accessed with an instruction that could not be
448 		 * decoded or handled properly. It was likely not using io.h
449 		 * helpers or accessed MMIO accidentally.
450 		 */
451 		return -EINVAL;
452 	default:
453 		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
454 		return -EINVAL;
455 	}
456 
457 	/* Handle reads */
458 	if (!mmio_read(size, ve->gpa, &val))
459 		return -EIO;
460 
461 	switch (mmio) {
462 	case MMIO_READ:
463 		/* Zero-extend for 32-bit operation */
464 		extend_size = size == 4 ? sizeof(*reg) : 0;
465 		break;
466 	case MMIO_READ_ZERO_EXTEND:
467 		/* Zero extend based on operand size */
468 		extend_size = insn.opnd_bytes;
469 		break;
470 	case MMIO_READ_SIGN_EXTEND:
471 		/* Sign extend based on operand size */
472 		extend_size = insn.opnd_bytes;
473 		if (size == 1 && val & BIT(7))
474 			extend_val = 0xFF;
475 		else if (size > 1 && val & BIT(15))
476 			extend_val = 0xFF;
477 		break;
478 	default:
479 		/* All other cases has to be covered with the first switch() */
480 		WARN_ON_ONCE(1);
481 		return -EINVAL;
482 	}
483 
484 	if (extend_size)
485 		memset(reg, extend_val, extend_size);
486 	memcpy(reg, &val, size);
487 	return insn.length;
488 }
489 
490 static bool handle_in(struct pt_regs *regs, int size, int port)
491 {
492 	struct tdx_hypercall_args args = {
493 		.r10 = TDX_HYPERCALL_STANDARD,
494 		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
495 		.r12 = size,
496 		.r13 = PORT_READ,
497 		.r14 = port,
498 	};
499 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
500 	bool success;
501 
502 	/*
503 	 * Emulate the I/O read via hypercall. More info about ABI can be found
504 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
505 	 * "TDG.VP.VMCALL<Instruction.IO>".
506 	 */
507 	success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT);
508 
509 	/* Update part of the register affected by the emulated instruction */
510 	regs->ax &= ~mask;
511 	if (success)
512 		regs->ax |= args.r11 & mask;
513 
514 	return success;
515 }
516 
517 static bool handle_out(struct pt_regs *regs, int size, int port)
518 {
519 	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
520 
521 	/*
522 	 * Emulate the I/O write via hypercall. More info about ABI can be found
523 	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
524 	 * "TDG.VP.VMCALL<Instruction.IO>".
525 	 */
526 	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
527 			       PORT_WRITE, port, regs->ax & mask);
528 }
529 
530 /*
531  * Emulate I/O using hypercall.
532  *
533  * Assumes the IO instruction was using ax, which is enforced
534  * by the standard io.h macros.
535  *
536  * Return True on success or False on failure.
537  */
538 static int handle_io(struct pt_regs *regs, struct ve_info *ve)
539 {
540 	u32 exit_qual = ve->exit_qual;
541 	int size, port;
542 	bool in, ret;
543 
544 	if (VE_IS_IO_STRING(exit_qual))
545 		return -EIO;
546 
547 	in   = VE_IS_IO_IN(exit_qual);
548 	size = VE_GET_IO_SIZE(exit_qual);
549 	port = VE_GET_PORT_NUM(exit_qual);
550 
551 
552 	if (in)
553 		ret = handle_in(regs, size, port);
554 	else
555 		ret = handle_out(regs, size, port);
556 	if (!ret)
557 		return -EIO;
558 
559 	return ve_instr_len(ve);
560 }
561 
562 /*
563  * Early #VE exception handler. Only handles a subset of port I/O.
564  * Intended only for earlyprintk. If failed, return false.
565  */
566 __init bool tdx_early_handle_ve(struct pt_regs *regs)
567 {
568 	struct ve_info ve;
569 	int insn_len;
570 
571 	tdx_get_ve_info(&ve);
572 
573 	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
574 		return false;
575 
576 	insn_len = handle_io(regs, &ve);
577 	if (insn_len < 0)
578 		return false;
579 
580 	regs->ip += insn_len;
581 	return true;
582 }
583 
584 void tdx_get_ve_info(struct ve_info *ve)
585 {
586 	struct tdx_module_output out;
587 
588 	/*
589 	 * Called during #VE handling to retrieve the #VE info from the
590 	 * TDX module.
591 	 *
592 	 * This has to be called early in #VE handling.  A "nested" #VE which
593 	 * occurs before this will raise a #DF and is not recoverable.
594 	 *
595 	 * The call retrieves the #VE info from the TDX module, which also
596 	 * clears the "#VE valid" flag. This must be done before anything else
597 	 * because any #VE that occurs while the valid flag is set will lead to
598 	 * #DF.
599 	 *
600 	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
601 	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
602 	 */
603 	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);
604 
605 	/* Transfer the output parameters */
606 	ve->exit_reason = out.rcx;
607 	ve->exit_qual   = out.rdx;
608 	ve->gla         = out.r8;
609 	ve->gpa         = out.r9;
610 	ve->instr_len   = lower_32_bits(out.r10);
611 	ve->instr_info  = upper_32_bits(out.r10);
612 }
613 
614 /*
615  * Handle the user initiated #VE.
616  *
617  * On success, returns the number of bytes RIP should be incremented (>=0)
618  * or -errno on error.
619  */
620 static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
621 {
622 	switch (ve->exit_reason) {
623 	case EXIT_REASON_CPUID:
624 		return handle_cpuid(regs, ve);
625 	default:
626 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
627 		return -EIO;
628 	}
629 }
630 
631 /*
632  * Handle the kernel #VE.
633  *
634  * On success, returns the number of bytes RIP should be incremented (>=0)
635  * or -errno on error.
636  */
637 static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
638 {
639 	switch (ve->exit_reason) {
640 	case EXIT_REASON_HLT:
641 		return handle_halt(ve);
642 	case EXIT_REASON_MSR_READ:
643 		return read_msr(regs, ve);
644 	case EXIT_REASON_MSR_WRITE:
645 		return write_msr(regs, ve);
646 	case EXIT_REASON_CPUID:
647 		return handle_cpuid(regs, ve);
648 	case EXIT_REASON_EPT_VIOLATION:
649 		return handle_mmio(regs, ve);
650 	case EXIT_REASON_IO_INSTRUCTION:
651 		return handle_io(regs, ve);
652 	default:
653 		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
654 		return -EIO;
655 	}
656 }
657 
658 bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
659 {
660 	int insn_len;
661 
662 	if (user_mode(regs))
663 		insn_len = virt_exception_user(regs, ve);
664 	else
665 		insn_len = virt_exception_kernel(regs, ve);
666 	if (insn_len < 0)
667 		return false;
668 
669 	/* After successful #VE handling, move the IP */
670 	regs->ip += insn_len;
671 
672 	return true;
673 }
674 
675 static bool tdx_tlb_flush_required(bool private)
676 {
677 	/*
678 	 * TDX guest is responsible for flushing TLB on private->shared
679 	 * transition. VMM is responsible for flushing on shared->private.
680 	 *
681 	 * The VMM _can't_ flush private addresses as it can't generate PAs
682 	 * with the guest's HKID.  Shared memory isn't subject to integrity
683 	 * checking, i.e. the VMM doesn't need to flush for its own protection.
684 	 *
685 	 * There's no need to flush when converting from shared to private,
686 	 * as flushing is the VMM's responsibility in this case, e.g. it must
687 	 * flush to avoid integrity failures in the face of a buggy or
688 	 * malicious guest.
689 	 */
690 	return !private;
691 }
692 
693 static bool tdx_cache_flush_required(void)
694 {
695 	/*
696 	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
697 	 * TDX doesn't have such capability.
698 	 *
699 	 * Flush cache unconditionally.
700 	 */
701 	return true;
702 }
703 
704 static bool try_accept_one(phys_addr_t *start, unsigned long len,
705 			  enum pg_level pg_level)
706 {
707 	unsigned long accept_size = page_level_size(pg_level);
708 	u64 tdcall_rcx;
709 	u8 page_size;
710 
711 	if (!IS_ALIGNED(*start, accept_size))
712 		return false;
713 
714 	if (len < accept_size)
715 		return false;
716 
717 	/*
718 	 * Pass the page physical address to the TDX module to accept the
719 	 * pending, private page.
720 	 *
721 	 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G.
722 	 */
723 	switch (pg_level) {
724 	case PG_LEVEL_4K:
725 		page_size = 0;
726 		break;
727 	case PG_LEVEL_2M:
728 		page_size = 1;
729 		break;
730 	case PG_LEVEL_1G:
731 		page_size = 2;
732 		break;
733 	default:
734 		return false;
735 	}
736 
737 	tdcall_rcx = *start | page_size;
738 	if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL))
739 		return false;
740 
741 	*start += accept_size;
742 	return true;
743 }
744 
745 /*
746  * Inform the VMM of the guest's intent for this physical page: shared with
747  * the VMM or private to the guest.  The VMM is expected to change its mapping
748  * of the page in response.
749  */
750 static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
751 {
752 	phys_addr_t start = __pa(vaddr);
753 	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);
754 
755 	if (!enc) {
756 		/* Set the shared (decrypted) bits: */
757 		start |= cc_mkdec(0);
758 		end   |= cc_mkdec(0);
759 	}
760 
761 	/*
762 	 * Notify the VMM about page mapping conversion. More info about ABI
763 	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
764 	 * section "TDG.VP.VMCALL<MapGPA>"
765 	 */
766 	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
767 		return false;
768 
769 	/* private->shared conversion  requires only MapGPA call */
770 	if (!enc)
771 		return true;
772 
773 	/*
774 	 * For shared->private conversion, accept the page using
775 	 * TDX_ACCEPT_PAGE TDX module call.
776 	 */
777 	while (start < end) {
778 		unsigned long len = end - start;
779 
780 		/*
781 		 * Try larger accepts first. It gives chance to VMM to keep
782 		 * 1G/2M SEPT entries where possible and speeds up process by
783 		 * cutting number of hypercalls (if successful).
784 		 */
785 
786 		if (try_accept_one(&start, len, PG_LEVEL_1G))
787 			continue;
788 
789 		if (try_accept_one(&start, len, PG_LEVEL_2M))
790 			continue;
791 
792 		if (!try_accept_one(&start, len, PG_LEVEL_4K))
793 			return false;
794 	}
795 
796 	return true;
797 }
798 
799 void __init tdx_early_init(void)
800 {
801 	u64 cc_mask;
802 	u32 eax, sig[3];
803 
804 	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);
805 
806 	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
807 		return;
808 
809 	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
810 
811 	cc_set_vendor(CC_VENDOR_INTEL);
812 	tdx_parse_tdinfo(&cc_mask);
813 	cc_set_mask(cc_mask);
814 
815 	/*
816 	 * All bits above GPA width are reserved and kernel treats shared bit
817 	 * as flag, not as part of physical address.
818 	 *
819 	 * Adjust physical mask to only cover valid GPA bits.
820 	 */
821 	physical_mask &= cc_mask - 1;
822 
823 	x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
824 	x86_platform.guest.enc_tlb_flush_required   = tdx_tlb_flush_required;
825 	x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed;
826 
827 	pr_info("Guest detected\n");
828 }
829