xref: /openbmc/linux/arch/x86/boot/compressed/sev.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  */
7 
8 /*
9  * misc.h needs to be first because it knows how to include the other kernel
10  * headers in the pre-decompression code in a way that does not break
11  * compilation.
12  */
13 #include "misc.h"
14 
15 #include <asm/pgtable_types.h>
16 #include <asm/sev.h>
17 #include <asm/trapnr.h>
18 #include <asm/trap_pf.h>
19 #include <asm/msr-index.h>
20 #include <asm/fpu/xcr.h>
21 #include <asm/ptrace.h>
22 #include <asm/svm.h>
23 #include <asm/cpuid.h>
24 
25 #include "error.h"
26 #include "../msr.h"
27 
28 struct ghcb boot_ghcb_page __aligned(PAGE_SIZE);
29 struct ghcb *boot_ghcb;
30 
31 /*
32  * Copy a version of this function here - insn-eval.c can't be used in
33  * pre-decompression code.
34  */
35 static bool insn_has_rep_prefix(struct insn *insn)
36 {
37 	insn_byte_t p;
38 	int i;
39 
40 	insn_get_prefixes(insn);
41 
42 	for_each_insn_prefix(insn, i, p) {
43 		if (p == 0xf2 || p == 0xf3)
44 			return true;
45 	}
46 
47 	return false;
48 }
49 
50 /*
51  * Only a dummy for insn_get_seg_base() - Early boot-code is 64bit only and
52  * doesn't use segments.
53  */
54 static unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
55 {
56 	return 0UL;
57 }
58 
59 static inline u64 sev_es_rd_ghcb_msr(void)
60 {
61 	struct msr m;
62 
63 	boot_rdmsr(MSR_AMD64_SEV_ES_GHCB, &m);
64 
65 	return m.q;
66 }
67 
68 static inline void sev_es_wr_ghcb_msr(u64 val)
69 {
70 	struct msr m;
71 
72 	m.q = val;
73 	boot_wrmsr(MSR_AMD64_SEV_ES_GHCB, &m);
74 }
75 
76 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
77 {
78 	char buffer[MAX_INSN_SIZE];
79 	int ret;
80 
81 	memcpy(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
82 
83 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
84 	if (ret < 0)
85 		return ES_DECODE_FAILED;
86 
87 	return ES_OK;
88 }
89 
90 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
91 				   void *dst, char *buf, size_t size)
92 {
93 	memcpy(dst, buf, size);
94 
95 	return ES_OK;
96 }
97 
98 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
99 				  void *src, char *buf, size_t size)
100 {
101 	memcpy(buf, src, size);
102 
103 	return ES_OK;
104 }
105 
106 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
107 {
108 	return ES_OK;
109 }
110 
111 static bool fault_in_kernel_space(unsigned long address)
112 {
113 	return false;
114 }
115 
116 #undef __init
117 #define __init
118 
119 #undef __head
120 #define __head
121 
122 #define __BOOT_COMPRESSED
123 
124 /* Basic instruction decoding support needed */
125 #include "../../lib/inat.c"
126 #include "../../lib/insn.c"
127 
128 /* Include code for early handlers */
129 #include "../../kernel/sev-shared.c"
130 
131 bool sev_snp_enabled(void)
132 {
133 	return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
134 }
135 
136 static void __page_state_change(unsigned long paddr, enum psc_op op)
137 {
138 	u64 val;
139 
140 	if (!sev_snp_enabled())
141 		return;
142 
143 	/*
144 	 * If private -> shared then invalidate the page before requesting the
145 	 * state change in the RMP table.
146 	 */
147 	if (op == SNP_PAGE_STATE_SHARED && pvalidate(paddr, RMP_PG_SIZE_4K, 0))
148 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
149 
150 	/* Issue VMGEXIT to change the page state in RMP table. */
151 	sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
152 	VMGEXIT();
153 
154 	/* Read the response of the VMGEXIT. */
155 	val = sev_es_rd_ghcb_msr();
156 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
157 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
158 
159 	/*
160 	 * Now that page state is changed in the RMP table, validate it so that it is
161 	 * consistent with the RMP entry.
162 	 */
163 	if (op == SNP_PAGE_STATE_PRIVATE && pvalidate(paddr, RMP_PG_SIZE_4K, 1))
164 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
165 }
166 
167 void snp_set_page_private(unsigned long paddr)
168 {
169 	__page_state_change(paddr, SNP_PAGE_STATE_PRIVATE);
170 }
171 
172 void snp_set_page_shared(unsigned long paddr)
173 {
174 	__page_state_change(paddr, SNP_PAGE_STATE_SHARED);
175 }
176 
177 static bool early_setup_ghcb(void)
178 {
179 	if (set_page_decrypted((unsigned long)&boot_ghcb_page))
180 		return false;
181 
182 	/* Page is now mapped decrypted, clear it */
183 	memset(&boot_ghcb_page, 0, sizeof(boot_ghcb_page));
184 
185 	boot_ghcb = &boot_ghcb_page;
186 
187 	/* Initialize lookup tables for the instruction decoder */
188 	inat_init_tables();
189 
190 	/* SNP guest requires the GHCB GPA must be registered */
191 	if (sev_snp_enabled())
192 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
193 
194 	return true;
195 }
196 
197 static phys_addr_t __snp_accept_memory(struct snp_psc_desc *desc,
198 				       phys_addr_t pa, phys_addr_t pa_end)
199 {
200 	struct psc_hdr *hdr;
201 	struct psc_entry *e;
202 	unsigned int i;
203 
204 	hdr = &desc->hdr;
205 	memset(hdr, 0, sizeof(*hdr));
206 
207 	e = desc->entries;
208 
209 	i = 0;
210 	while (pa < pa_end && i < VMGEXIT_PSC_MAX_ENTRY) {
211 		hdr->end_entry = i;
212 
213 		e->gfn = pa >> PAGE_SHIFT;
214 		e->operation = SNP_PAGE_STATE_PRIVATE;
215 		if (IS_ALIGNED(pa, PMD_SIZE) && (pa_end - pa) >= PMD_SIZE) {
216 			e->pagesize = RMP_PG_SIZE_2M;
217 			pa += PMD_SIZE;
218 		} else {
219 			e->pagesize = RMP_PG_SIZE_4K;
220 			pa += PAGE_SIZE;
221 		}
222 
223 		e++;
224 		i++;
225 	}
226 
227 	if (vmgexit_psc(boot_ghcb, desc))
228 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
229 
230 	pvalidate_pages(desc);
231 
232 	return pa;
233 }
234 
235 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
236 {
237 	struct snp_psc_desc desc = {};
238 	unsigned int i;
239 	phys_addr_t pa;
240 
241 	if (!boot_ghcb && !early_setup_ghcb())
242 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
243 
244 	pa = start;
245 	while (pa < end)
246 		pa = __snp_accept_memory(&desc, pa, end);
247 }
248 
249 void sev_es_shutdown_ghcb(void)
250 {
251 	if (!boot_ghcb)
252 		return;
253 
254 	if (!sev_es_check_cpu_features())
255 		error("SEV-ES CPU Features missing.");
256 
257 	/*
258 	 * GHCB Page must be flushed from the cache and mapped encrypted again.
259 	 * Otherwise the running kernel will see strange cache effects when
260 	 * trying to use that page.
261 	 */
262 	if (set_page_encrypted((unsigned long)&boot_ghcb_page))
263 		error("Can't map GHCB page encrypted");
264 
265 	/*
266 	 * GHCB page is mapped encrypted again and flushed from the cache.
267 	 * Mark it non-present now to catch bugs when #VC exceptions trigger
268 	 * after this point.
269 	 */
270 	if (set_page_non_present((unsigned long)&boot_ghcb_page))
271 		error("Can't unmap GHCB page");
272 }
273 
274 static void __noreturn sev_es_ghcb_terminate(struct ghcb *ghcb, unsigned int set,
275 					     unsigned int reason, u64 exit_info_2)
276 {
277 	u64 exit_info_1 = SVM_VMGEXIT_TERM_REASON(set, reason);
278 
279 	vc_ghcb_invalidate(ghcb);
280 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_TERM_REQUEST);
281 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
282 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
283 
284 	sev_es_wr_ghcb_msr(__pa(ghcb));
285 	VMGEXIT();
286 
287 	while (true)
288 		asm volatile("hlt\n" : : : "memory");
289 }
290 
291 bool sev_es_check_ghcb_fault(unsigned long address)
292 {
293 	/* Check whether the fault was on the GHCB page */
294 	return ((address & PAGE_MASK) == (unsigned long)&boot_ghcb_page);
295 }
296 
297 void do_boot_stage2_vc(struct pt_regs *regs, unsigned long exit_code)
298 {
299 	struct es_em_ctxt ctxt;
300 	enum es_result result;
301 
302 	if (!boot_ghcb && !early_setup_ghcb())
303 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
304 
305 	vc_ghcb_invalidate(boot_ghcb);
306 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
307 	if (result != ES_OK)
308 		goto finish;
309 
310 	switch (exit_code) {
311 	case SVM_EXIT_RDTSC:
312 	case SVM_EXIT_RDTSCP:
313 		result = vc_handle_rdtsc(boot_ghcb, &ctxt, exit_code);
314 		break;
315 	case SVM_EXIT_IOIO:
316 		result = vc_handle_ioio(boot_ghcb, &ctxt);
317 		break;
318 	case SVM_EXIT_CPUID:
319 		result = vc_handle_cpuid(boot_ghcb, &ctxt);
320 		break;
321 	default:
322 		result = ES_UNSUPPORTED;
323 		break;
324 	}
325 
326 finish:
327 	if (result == ES_OK)
328 		vc_finish_insn(&ctxt);
329 	else if (result != ES_RETRY)
330 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
331 }
332 
333 static void enforce_vmpl0(void)
334 {
335 	u64 attrs;
336 	int err;
337 
338 	/*
339 	 * RMPADJUST modifies RMP permissions of a lesser-privileged (numerically
340 	 * higher) privilege level. Here, clear the VMPL1 permission mask of the
341 	 * GHCB page. If the guest is not running at VMPL0, this will fail.
342 	 *
343 	 * If the guest is running at VMPL0, it will succeed. Even if that operation
344 	 * modifies permission bits, it is still ok to do so currently because Linux
345 	 * SNP guests are supported only on VMPL0 so VMPL1 or higher permission masks
346 	 * changing is a don't-care.
347 	 */
348 	attrs = 1;
349 	if (rmpadjust((unsigned long)&boot_ghcb_page, RMP_PG_SIZE_4K, attrs))
350 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NOT_VMPL0);
351 }
352 
353 /*
354  * SNP_FEATURES_IMPL_REQ is the mask of SNP features that will need
355  * guest side implementation for proper functioning of the guest. If any
356  * of these features are enabled in the hypervisor but are lacking guest
357  * side implementation, the behavior of the guest will be undefined. The
358  * guest could fail in non-obvious way making it difficult to debug.
359  *
360  * As the behavior of reserved feature bits is unknown to be on the
361  * safe side add them to the required features mask.
362  */
363 #define SNP_FEATURES_IMPL_REQ	(MSR_AMD64_SNP_VTOM |			\
364 				 MSR_AMD64_SNP_REFLECT_VC |		\
365 				 MSR_AMD64_SNP_RESTRICTED_INJ |		\
366 				 MSR_AMD64_SNP_ALT_INJ |		\
367 				 MSR_AMD64_SNP_DEBUG_SWAP |		\
368 				 MSR_AMD64_SNP_VMPL_SSS |		\
369 				 MSR_AMD64_SNP_SECURE_TSC |		\
370 				 MSR_AMD64_SNP_VMGEXIT_PARAM |		\
371 				 MSR_AMD64_SNP_VMSA_REG_PROTECTION |	\
372 				 MSR_AMD64_SNP_RESERVED_BIT13 |		\
373 				 MSR_AMD64_SNP_RESERVED_BIT15 |		\
374 				 MSR_AMD64_SNP_RESERVED_MASK)
375 
376 /*
377  * SNP_FEATURES_PRESENT is the mask of SNP features that are implemented
378  * by the guest kernel. As and when a new feature is implemented in the
379  * guest kernel, a corresponding bit should be added to the mask.
380  */
381 #define SNP_FEATURES_PRESENT	MSR_AMD64_SNP_DEBUG_SWAP
382 
383 u64 snp_get_unsupported_features(u64 status)
384 {
385 	if (!(status & MSR_AMD64_SEV_SNP_ENABLED))
386 		return 0;
387 
388 	return status & SNP_FEATURES_IMPL_REQ & ~SNP_FEATURES_PRESENT;
389 }
390 
391 void snp_check_features(void)
392 {
393 	u64 unsupported;
394 
395 	/*
396 	 * Terminate the boot if hypervisor has enabled any feature lacking
397 	 * guest side implementation. Pass on the unsupported features mask through
398 	 * EXIT_INFO_2 of the GHCB protocol so that those features can be reported
399 	 * as part of the guest boot failure.
400 	 */
401 	unsupported = snp_get_unsupported_features(sev_status);
402 	if (unsupported) {
403 		if (ghcb_version < 2 || (!boot_ghcb && !early_setup_ghcb()))
404 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
405 
406 		sev_es_ghcb_terminate(boot_ghcb, SEV_TERM_SET_GEN,
407 				      GHCB_SNP_UNSUPPORTED, unsupported);
408 	}
409 }
410 
411 /*
412  * sev_check_cpu_support - Check for SEV support in the CPU capabilities
413  *
414  * Returns < 0 if SEV is not supported, otherwise the position of the
415  * encryption bit in the page table descriptors.
416  */
417 static int sev_check_cpu_support(void)
418 {
419 	unsigned int eax, ebx, ecx, edx;
420 
421 	/* Check for the SME/SEV support leaf */
422 	eax = 0x80000000;
423 	ecx = 0;
424 	native_cpuid(&eax, &ebx, &ecx, &edx);
425 	if (eax < 0x8000001f)
426 		return -ENODEV;
427 
428 	/*
429 	 * Check for the SME/SEV feature:
430 	 *   CPUID Fn8000_001F[EAX]
431 	 *   - Bit 0 - Secure Memory Encryption support
432 	 *   - Bit 1 - Secure Encrypted Virtualization support
433 	 *   CPUID Fn8000_001F[EBX]
434 	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
435 	 */
436 	eax = 0x8000001f;
437 	ecx = 0;
438 	native_cpuid(&eax, &ebx, &ecx, &edx);
439 	/* Check whether SEV is supported */
440 	if (!(eax & BIT(1)))
441 		return -ENODEV;
442 
443 	return ebx & 0x3f;
444 }
445 
446 void sev_enable(struct boot_params *bp)
447 {
448 	struct msr m;
449 	int bitpos;
450 	bool snp;
451 
452 	/*
453 	 * bp->cc_blob_address should only be set by boot/compressed kernel.
454 	 * Initialize it to 0 to ensure that uninitialized values from
455 	 * buggy bootloaders aren't propagated.
456 	 */
457 	if (bp)
458 		bp->cc_blob_address = 0;
459 
460 	/*
461 	 * Do an initial SEV capability check before snp_init() which
462 	 * loads the CPUID page and the same checks afterwards are done
463 	 * without the hypervisor and are trustworthy.
464 	 *
465 	 * If the HV fakes SEV support, the guest will crash'n'burn
466 	 * which is good enough.
467 	 */
468 
469 	if (sev_check_cpu_support() < 0)
470 		return;
471 
472 	/*
473 	 * Setup/preliminary detection of SNP. This will be sanity-checked
474 	 * against CPUID/MSR values later.
475 	 */
476 	snp = snp_init(bp);
477 
478 	/* Now repeat the checks with the SNP CPUID table. */
479 
480 	bitpos = sev_check_cpu_support();
481 	if (bitpos < 0) {
482 		if (snp)
483 			error("SEV-SNP support indicated by CC blob, but not CPUID.");
484 		return;
485 	}
486 
487 	/* Set the SME mask if this is an SEV guest. */
488 	boot_rdmsr(MSR_AMD64_SEV, &m);
489 	sev_status = m.q;
490 	if (!(sev_status & MSR_AMD64_SEV_ENABLED))
491 		return;
492 
493 	/* Negotiate the GHCB protocol version. */
494 	if (sev_status & MSR_AMD64_SEV_ES_ENABLED) {
495 		if (!sev_es_negotiate_protocol())
496 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_PROT_UNSUPPORTED);
497 	}
498 
499 	/*
500 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
501 	 * features.
502 	 */
503 	if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
504 		if (!(get_hv_features() & GHCB_HV_FT_SNP))
505 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
506 
507 		enforce_vmpl0();
508 	}
509 
510 	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
511 		error("SEV-SNP supported indicated by CC blob, but not SEV status MSR.");
512 
513 	sme_me_mask = BIT_ULL(bitpos);
514 }
515 
516 /*
517  * sev_get_status - Retrieve the SEV status mask
518  *
519  * Returns 0 if the CPU is not SEV capable, otherwise the value of the
520  * AMD64_SEV MSR.
521  */
522 u64 sev_get_status(void)
523 {
524 	struct msr m;
525 
526 	if (sev_check_cpu_support() < 0)
527 		return 0;
528 
529 	boot_rdmsr(MSR_AMD64_SEV, &m);
530 	return m.q;
531 }
532 
533 /* Search for Confidential Computing blob in the EFI config table. */
534 static struct cc_blob_sev_info *find_cc_blob_efi(struct boot_params *bp)
535 {
536 	unsigned long cfg_table_pa;
537 	unsigned int cfg_table_len;
538 	int ret;
539 
540 	ret = efi_get_conf_table(bp, &cfg_table_pa, &cfg_table_len);
541 	if (ret)
542 		return NULL;
543 
544 	return (struct cc_blob_sev_info *)efi_find_vendor_table(bp, cfg_table_pa,
545 								cfg_table_len,
546 								EFI_CC_BLOB_GUID);
547 }
548 
549 /*
550  * Initial set up of SNP relies on information provided by the
551  * Confidential Computing blob, which can be passed to the boot kernel
552  * by firmware/bootloader in the following ways:
553  *
554  * - via an entry in the EFI config table
555  * - via a setup_data structure, as defined by the Linux Boot Protocol
556  *
557  * Scan for the blob in that order.
558  */
559 static struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
560 {
561 	struct cc_blob_sev_info *cc_info;
562 
563 	cc_info = find_cc_blob_efi(bp);
564 	if (cc_info)
565 		goto found_cc_info;
566 
567 	cc_info = find_cc_blob_setup_data(bp);
568 	if (!cc_info)
569 		return NULL;
570 
571 found_cc_info:
572 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
573 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
574 
575 	return cc_info;
576 }
577 
578 /*
579  * Indicate SNP based on presence of SNP-specific CC blob. Subsequent checks
580  * will verify the SNP CPUID/MSR bits.
581  */
582 bool snp_init(struct boot_params *bp)
583 {
584 	struct cc_blob_sev_info *cc_info;
585 
586 	if (!bp)
587 		return false;
588 
589 	cc_info = find_cc_blob(bp);
590 	if (!cc_info)
591 		return false;
592 
593 	/*
594 	 * If a SNP-specific Confidential Computing blob is present, then
595 	 * firmware/bootloader have indicated SNP support. Verifying this
596 	 * involves CPUID checks which will be more reliable if the SNP
597 	 * CPUID table is used. See comments over snp_setup_cpuid_table() for
598 	 * more details.
599 	 */
600 	setup_cpuid_table(cc_info);
601 
602 	/*
603 	 * Pass run-time kernel a pointer to CC info via boot_params so EFI
604 	 * config table doesn't need to be searched again during early startup
605 	 * phase.
606 	 */
607 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
608 
609 	return true;
610 }
611 
612 void sev_prep_identity_maps(unsigned long top_level_pgt)
613 {
614 	/*
615 	 * The Confidential Computing blob is used very early in uncompressed
616 	 * kernel to find the in-memory CPUID table to handle CPUID
617 	 * instructions. Make sure an identity-mapping exists so it can be
618 	 * accessed after switchover.
619 	 */
620 	if (sev_snp_enabled()) {
621 		unsigned long cc_info_pa = boot_params->cc_blob_address;
622 		struct cc_blob_sev_info *cc_info;
623 
624 		kernel_add_identity_map(cc_info_pa, cc_info_pa + sizeof(*cc_info));
625 
626 		cc_info = (struct cc_blob_sev_info *)cc_info_pa;
627 		kernel_add_identity_map(cc_info->cpuid_phys, cc_info->cpuid_phys + cc_info->cpuid_len);
628 	}
629 
630 	sev_verify_cbit(top_level_pgt);
631 }
632