1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 /* 23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h. 24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL 25 * which is meaningless and will cause compiling error in some cases. 26 * So do not include linux/export.h and define EXPORT_SYMBOL(sym) 27 * as empty. 28 */ 29 #define _LINUX_EXPORT_H 30 #define EXPORT_SYMBOL(sym) 31 32 #include "misc.h" 33 #include "error.h" 34 #include "../string.h" 35 36 #include <generated/compile.h> 37 #include <linux/module.h> 38 #include <linux/uts.h> 39 #include <linux/utsname.h> 40 #include <linux/ctype.h> 41 #include <linux/efi.h> 42 #include <generated/utsrelease.h> 43 #include <asm/efi.h> 44 45 /* Macros used by the included decompressor code below. */ 46 #define STATIC 47 #include <linux/decompress/mm.h> 48 49 #ifdef CONFIG_X86_5LEVEL 50 unsigned int pgtable_l5_enabled __ro_after_init; 51 unsigned int pgdir_shift __ro_after_init = 39; 52 unsigned int ptrs_per_p4d __ro_after_init = 1; 53 #endif 54 55 extern unsigned long get_cmd_line_ptr(void); 56 57 /* Simplified build-specific string for starting entropy. */ 58 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 59 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 60 61 static unsigned long rotate_xor(unsigned long hash, const void *area, 62 size_t size) 63 { 64 size_t i; 65 unsigned long *ptr = (unsigned long *)area; 66 67 for (i = 0; i < size / sizeof(hash); i++) { 68 /* Rotate by odd number of bits and XOR. */ 69 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 70 hash ^= ptr[i]; 71 } 72 73 return hash; 74 } 75 76 /* Attempt to create a simple but unpredictable starting entropy. */ 77 static unsigned long get_boot_seed(void) 78 { 79 unsigned long hash = 0; 80 81 hash = rotate_xor(hash, build_str, sizeof(build_str)); 82 hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); 83 84 return hash; 85 } 86 87 #define KASLR_COMPRESSED_BOOT 88 #include "../../lib/kaslr.c" 89 90 struct mem_vector { 91 unsigned long long start; 92 unsigned long long size; 93 }; 94 95 /* Only supporting at most 4 unusable memmap regions with kaslr */ 96 #define MAX_MEMMAP_REGIONS 4 97 98 static bool memmap_too_large; 99 100 101 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */ 102 unsigned long long mem_limit = ULLONG_MAX; 103 104 105 enum mem_avoid_index { 106 MEM_AVOID_ZO_RANGE = 0, 107 MEM_AVOID_INITRD, 108 MEM_AVOID_CMDLINE, 109 MEM_AVOID_BOOTPARAMS, 110 MEM_AVOID_MEMMAP_BEGIN, 111 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 112 MEM_AVOID_MAX, 113 }; 114 115 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 116 117 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 118 { 119 /* Item one is entirely before item two. */ 120 if (one->start + one->size <= two->start) 121 return false; 122 /* Item one is entirely after item two. */ 123 if (one->start >= two->start + two->size) 124 return false; 125 return true; 126 } 127 128 char *skip_spaces(const char *str) 129 { 130 while (isspace(*str)) 131 ++str; 132 return (char *)str; 133 } 134 #include "../../../../lib/ctype.c" 135 #include "../../../../lib/cmdline.c" 136 137 static int 138 parse_memmap(char *p, unsigned long long *start, unsigned long long *size) 139 { 140 char *oldp; 141 142 if (!p) 143 return -EINVAL; 144 145 /* We don't care about this option here */ 146 if (!strncmp(p, "exactmap", 8)) 147 return -EINVAL; 148 149 oldp = p; 150 *size = memparse(p, &p); 151 if (p == oldp) 152 return -EINVAL; 153 154 switch (*p) { 155 case '#': 156 case '$': 157 case '!': 158 *start = memparse(p + 1, &p); 159 return 0; 160 case '@': 161 /* memmap=nn@ss specifies usable region, should be skipped */ 162 *size = 0; 163 /* Fall through */ 164 default: 165 /* 166 * If w/o offset, only size specified, memmap=nn[KMG] has the 167 * same behaviour as mem=nn[KMG]. It limits the max address 168 * system can use. Region above the limit should be avoided. 169 */ 170 *start = 0; 171 return 0; 172 } 173 174 return -EINVAL; 175 } 176 177 static void mem_avoid_memmap(char *str) 178 { 179 static int i; 180 181 if (i >= MAX_MEMMAP_REGIONS) 182 return; 183 184 while (str && (i < MAX_MEMMAP_REGIONS)) { 185 int rc; 186 unsigned long long start, size; 187 char *k = strchr(str, ','); 188 189 if (k) 190 *k++ = 0; 191 192 rc = parse_memmap(str, &start, &size); 193 if (rc < 0) 194 break; 195 str = k; 196 197 if (start == 0) { 198 /* Store the specified memory limit if size > 0 */ 199 if (size > 0) 200 mem_limit = size; 201 202 continue; 203 } 204 205 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 206 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 207 i++; 208 } 209 210 /* More than 4 memmaps, fail kaslr */ 211 if ((i >= MAX_MEMMAP_REGIONS) && str) 212 memmap_too_large = true; 213 } 214 215 static int handle_mem_memmap(void) 216 { 217 char *args = (char *)get_cmd_line_ptr(); 218 size_t len = strlen((char *)args); 219 char *tmp_cmdline; 220 char *param, *val; 221 u64 mem_size; 222 223 if (!strstr(args, "memmap=") && !strstr(args, "mem=")) 224 return 0; 225 226 tmp_cmdline = malloc(len + 1); 227 if (!tmp_cmdline) 228 error("Failed to allocate space for tmp_cmdline"); 229 230 memcpy(tmp_cmdline, args, len); 231 tmp_cmdline[len] = 0; 232 args = tmp_cmdline; 233 234 /* Chew leading spaces */ 235 args = skip_spaces(args); 236 237 while (*args) { 238 args = next_arg(args, ¶m, &val); 239 /* Stop at -- */ 240 if (!val && strcmp(param, "--") == 0) { 241 warn("Only '--' specified in cmdline"); 242 free(tmp_cmdline); 243 return -1; 244 } 245 246 if (!strcmp(param, "memmap")) { 247 mem_avoid_memmap(val); 248 } else if (!strcmp(param, "mem")) { 249 char *p = val; 250 251 if (!strcmp(p, "nopentium")) 252 continue; 253 mem_size = memparse(p, &p); 254 if (mem_size == 0) { 255 free(tmp_cmdline); 256 return -EINVAL; 257 } 258 mem_limit = mem_size; 259 } 260 } 261 262 free(tmp_cmdline); 263 return 0; 264 } 265 266 /* 267 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). 268 * The mem_avoid array is used to store the ranges that need to be avoided 269 * when KASLR searches for an appropriate random address. We must avoid any 270 * regions that are unsafe to overlap with during decompression, and other 271 * things like the initrd, cmdline and boot_params. This comment seeks to 272 * explain mem_avoid as clearly as possible since incorrect mem_avoid 273 * memory ranges lead to really hard to debug boot failures. 274 * 275 * The initrd, cmdline, and boot_params are trivial to identify for 276 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 277 * MEM_AVOID_BOOTPARAMS respectively below. 278 * 279 * What is not obvious how to avoid is the range of memory that is used 280 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 281 * the compressed kernel (ZO) and its run space, which is used to extract 282 * the uncompressed kernel (VO) and relocs. 283 * 284 * ZO's full run size sits against the end of the decompression buffer, so 285 * we can calculate where text, data, bss, etc of ZO are positioned more 286 * easily. 287 * 288 * For additional background, the decompression calculations can be found 289 * in header.S, and the memory diagram is based on the one found in misc.c. 290 * 291 * The following conditions are already enforced by the image layouts and 292 * associated code: 293 * - input + input_size >= output + output_size 294 * - kernel_total_size <= init_size 295 * - kernel_total_size <= output_size (see Note below) 296 * - output + init_size >= output + output_size 297 * 298 * (Note that kernel_total_size and output_size have no fundamental 299 * relationship, but output_size is passed to choose_random_location 300 * as a maximum of the two. The diagram is showing a case where 301 * kernel_total_size is larger than output_size, but this case is 302 * handled by bumping output_size.) 303 * 304 * The above conditions can be illustrated by a diagram: 305 * 306 * 0 output input input+input_size output+init_size 307 * | | | | | 308 * | | | | | 309 * |-----|--------|--------|--------------|-----------|--|-------------| 310 * | | | 311 * | | | 312 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 313 * 314 * [output, output+init_size) is the entire memory range used for 315 * extracting the compressed image. 316 * 317 * [output, output+kernel_total_size) is the range needed for the 318 * uncompressed kernel (VO) and its run size (bss, brk, etc). 319 * 320 * [output, output+output_size) is VO plus relocs (i.e. the entire 321 * uncompressed payload contained by ZO). This is the area of the buffer 322 * written to during decompression. 323 * 324 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 325 * range of the copied ZO and decompression code. (i.e. the range 326 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 327 * 328 * [input, input+input_size) is the original copied compressed image (ZO) 329 * (i.e. it does not include its run size). This range must be avoided 330 * because it contains the data used for decompression. 331 * 332 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 333 * range includes ZO's heap and stack, and must be avoided since it 334 * performs the decompression. 335 * 336 * Since the above two ranges need to be avoided and they are adjacent, 337 * they can be merged, resulting in: [input, output+init_size) which 338 * becomes the MEM_AVOID_ZO_RANGE below. 339 */ 340 static void mem_avoid_init(unsigned long input, unsigned long input_size, 341 unsigned long output) 342 { 343 unsigned long init_size = boot_params->hdr.init_size; 344 u64 initrd_start, initrd_size; 345 u64 cmd_line, cmd_line_size; 346 char *ptr; 347 348 /* 349 * Avoid the region that is unsafe to overlap during 350 * decompression. 351 */ 352 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 353 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 354 add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, 355 mem_avoid[MEM_AVOID_ZO_RANGE].size); 356 357 /* Avoid initrd. */ 358 initrd_start = (u64)boot_params->ext_ramdisk_image << 32; 359 initrd_start |= boot_params->hdr.ramdisk_image; 360 initrd_size = (u64)boot_params->ext_ramdisk_size << 32; 361 initrd_size |= boot_params->hdr.ramdisk_size; 362 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 363 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 364 /* No need to set mapping for initrd, it will be handled in VO. */ 365 366 /* Avoid kernel command line. */ 367 cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; 368 cmd_line |= boot_params->hdr.cmd_line_ptr; 369 /* Calculate size of cmd_line. */ 370 ptr = (char *)(unsigned long)cmd_line; 371 for (cmd_line_size = 0; ptr[cmd_line_size++];) 372 ; 373 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 374 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 375 add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, 376 mem_avoid[MEM_AVOID_CMDLINE].size); 377 378 /* Avoid boot parameters. */ 379 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; 380 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); 381 add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, 382 mem_avoid[MEM_AVOID_BOOTPARAMS].size); 383 384 /* We don't need to set a mapping for setup_data. */ 385 386 /* Mark the memmap regions we need to avoid */ 387 handle_mem_memmap(); 388 389 #ifdef CONFIG_X86_VERBOSE_BOOTUP 390 /* Make sure video RAM can be used. */ 391 add_identity_map(0, PMD_SIZE); 392 #endif 393 } 394 395 /* 396 * Does this memory vector overlap a known avoided area? If so, record the 397 * overlap region with the lowest address. 398 */ 399 static bool mem_avoid_overlap(struct mem_vector *img, 400 struct mem_vector *overlap) 401 { 402 int i; 403 struct setup_data *ptr; 404 unsigned long earliest = img->start + img->size; 405 bool is_overlapping = false; 406 407 for (i = 0; i < MEM_AVOID_MAX; i++) { 408 if (mem_overlaps(img, &mem_avoid[i]) && 409 mem_avoid[i].start < earliest) { 410 *overlap = mem_avoid[i]; 411 earliest = overlap->start; 412 is_overlapping = true; 413 } 414 } 415 416 /* Avoid all entries in the setup_data linked list. */ 417 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 418 while (ptr) { 419 struct mem_vector avoid; 420 421 avoid.start = (unsigned long)ptr; 422 avoid.size = sizeof(*ptr) + ptr->len; 423 424 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 425 *overlap = avoid; 426 earliest = overlap->start; 427 is_overlapping = true; 428 } 429 430 ptr = (struct setup_data *)(unsigned long)ptr->next; 431 } 432 433 return is_overlapping; 434 } 435 436 struct slot_area { 437 unsigned long addr; 438 int num; 439 }; 440 441 #define MAX_SLOT_AREA 100 442 443 static struct slot_area slot_areas[MAX_SLOT_AREA]; 444 445 static unsigned long slot_max; 446 447 static unsigned long slot_area_index; 448 449 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 450 { 451 struct slot_area slot_area; 452 453 if (slot_area_index == MAX_SLOT_AREA) 454 return; 455 456 slot_area.addr = region->start; 457 slot_area.num = (region->size - image_size) / 458 CONFIG_PHYSICAL_ALIGN + 1; 459 460 if (slot_area.num > 0) { 461 slot_areas[slot_area_index++] = slot_area; 462 slot_max += slot_area.num; 463 } 464 } 465 466 static unsigned long slots_fetch_random(void) 467 { 468 unsigned long slot; 469 int i; 470 471 /* Handle case of no slots stored. */ 472 if (slot_max == 0) 473 return 0; 474 475 slot = kaslr_get_random_long("Physical") % slot_max; 476 477 for (i = 0; i < slot_area_index; i++) { 478 if (slot >= slot_areas[i].num) { 479 slot -= slot_areas[i].num; 480 continue; 481 } 482 return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN; 483 } 484 485 if (i == slot_area_index) 486 debug_putstr("slots_fetch_random() failed!?\n"); 487 return 0; 488 } 489 490 static void process_mem_region(struct mem_vector *entry, 491 unsigned long minimum, 492 unsigned long image_size) 493 { 494 struct mem_vector region, overlap; 495 struct slot_area slot_area; 496 unsigned long start_orig, end; 497 struct mem_vector cur_entry; 498 499 /* On 32-bit, ignore entries entirely above our maximum. */ 500 if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE) 501 return; 502 503 /* Ignore entries entirely below our minimum. */ 504 if (entry->start + entry->size < minimum) 505 return; 506 507 /* Ignore entries above memory limit */ 508 end = min(entry->size + entry->start, mem_limit); 509 if (entry->start >= end) 510 return; 511 cur_entry.start = entry->start; 512 cur_entry.size = end - entry->start; 513 514 region.start = cur_entry.start; 515 region.size = cur_entry.size; 516 517 /* Give up if slot area array is full. */ 518 while (slot_area_index < MAX_SLOT_AREA) { 519 start_orig = region.start; 520 521 /* Potentially raise address to minimum location. */ 522 if (region.start < minimum) 523 region.start = minimum; 524 525 /* Potentially raise address to meet alignment needs. */ 526 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 527 528 /* Did we raise the address above the passed in memory entry? */ 529 if (region.start > cur_entry.start + cur_entry.size) 530 return; 531 532 /* Reduce size by any delta from the original address. */ 533 region.size -= region.start - start_orig; 534 535 /* On 32-bit, reduce region size to fit within max size. */ 536 if (IS_ENABLED(CONFIG_X86_32) && 537 region.start + region.size > KERNEL_IMAGE_SIZE) 538 region.size = KERNEL_IMAGE_SIZE - region.start; 539 540 /* Return if region can't contain decompressed kernel */ 541 if (region.size < image_size) 542 return; 543 544 /* If nothing overlaps, store the region and return. */ 545 if (!mem_avoid_overlap(®ion, &overlap)) { 546 store_slot_info(®ion, image_size); 547 return; 548 } 549 550 /* Store beginning of region if holds at least image_size. */ 551 if (overlap.start > region.start + image_size) { 552 struct mem_vector beginning; 553 554 beginning.start = region.start; 555 beginning.size = overlap.start - region.start; 556 store_slot_info(&beginning, image_size); 557 } 558 559 /* Return if overlap extends to or past end of region. */ 560 if (overlap.start + overlap.size >= region.start + region.size) 561 return; 562 563 /* Clip off the overlapping region and start over. */ 564 region.size -= overlap.start - region.start + overlap.size; 565 region.start = overlap.start + overlap.size; 566 } 567 } 568 569 #ifdef CONFIG_EFI 570 /* 571 * Returns true if mirror region found (and must have been processed 572 * for slots adding) 573 */ 574 static bool 575 process_efi_entries(unsigned long minimum, unsigned long image_size) 576 { 577 struct efi_info *e = &boot_params->efi_info; 578 bool efi_mirror_found = false; 579 struct mem_vector region; 580 efi_memory_desc_t *md; 581 unsigned long pmap; 582 char *signature; 583 u32 nr_desc; 584 int i; 585 586 signature = (char *)&e->efi_loader_signature; 587 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 588 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 589 return false; 590 591 #ifdef CONFIG_X86_32 592 /* Can't handle data above 4GB at this time */ 593 if (e->efi_memmap_hi) { 594 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 595 return false; 596 } 597 pmap = e->efi_memmap; 598 #else 599 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 600 #endif 601 602 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 603 for (i = 0; i < nr_desc; i++) { 604 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 605 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 606 efi_mirror_found = true; 607 break; 608 } 609 } 610 611 for (i = 0; i < nr_desc; i++) { 612 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 613 614 /* 615 * Here we are more conservative in picking free memory than 616 * the EFI spec allows: 617 * 618 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also 619 * free memory and thus available to place the kernel image into, 620 * but in practice there's firmware where using that memory leads 621 * to crashes. 622 * 623 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. 624 */ 625 if (md->type != EFI_CONVENTIONAL_MEMORY) 626 continue; 627 628 if (efi_mirror_found && 629 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 630 continue; 631 632 region.start = md->phys_addr; 633 region.size = md->num_pages << EFI_PAGE_SHIFT; 634 process_mem_region(®ion, minimum, image_size); 635 if (slot_area_index == MAX_SLOT_AREA) { 636 debug_putstr("Aborted EFI scan (slot_areas full)!\n"); 637 break; 638 } 639 } 640 return true; 641 } 642 #else 643 static inline bool 644 process_efi_entries(unsigned long minimum, unsigned long image_size) 645 { 646 return false; 647 } 648 #endif 649 650 static void process_e820_entries(unsigned long minimum, 651 unsigned long image_size) 652 { 653 int i; 654 struct mem_vector region; 655 struct boot_e820_entry *entry; 656 657 /* Verify potential e820 positions, appending to slots list. */ 658 for (i = 0; i < boot_params->e820_entries; i++) { 659 entry = &boot_params->e820_table[i]; 660 /* Skip non-RAM entries. */ 661 if (entry->type != E820_TYPE_RAM) 662 continue; 663 region.start = entry->addr; 664 region.size = entry->size; 665 process_mem_region(®ion, minimum, image_size); 666 if (slot_area_index == MAX_SLOT_AREA) { 667 debug_putstr("Aborted e820 scan (slot_areas full)!\n"); 668 break; 669 } 670 } 671 } 672 673 static unsigned long find_random_phys_addr(unsigned long minimum, 674 unsigned long image_size) 675 { 676 /* Check if we had too many memmaps. */ 677 if (memmap_too_large) { 678 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 679 return 0; 680 } 681 682 /* Make sure minimum is aligned. */ 683 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); 684 685 if (process_efi_entries(minimum, image_size)) 686 return slots_fetch_random(); 687 688 process_e820_entries(minimum, image_size); 689 return slots_fetch_random(); 690 } 691 692 static unsigned long find_random_virt_addr(unsigned long minimum, 693 unsigned long image_size) 694 { 695 unsigned long slots, random_addr; 696 697 /* Make sure minimum is aligned. */ 698 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); 699 /* Align image_size for easy slot calculations. */ 700 image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); 701 702 /* 703 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 704 * that can hold image_size within the range of minimum to 705 * KERNEL_IMAGE_SIZE? 706 */ 707 slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / 708 CONFIG_PHYSICAL_ALIGN + 1; 709 710 random_addr = kaslr_get_random_long("Virtual") % slots; 711 712 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 713 } 714 715 /* 716 * Since this function examines addresses much more numerically, 717 * it takes the input and output pointers as 'unsigned long'. 718 */ 719 void choose_random_location(unsigned long input, 720 unsigned long input_size, 721 unsigned long *output, 722 unsigned long output_size, 723 unsigned long *virt_addr) 724 { 725 unsigned long random_addr, min_addr; 726 727 if (cmdline_find_option_bool("nokaslr")) { 728 warn("KASLR disabled: 'nokaslr' on cmdline."); 729 return; 730 } 731 732 #ifdef CONFIG_X86_5LEVEL 733 if (__read_cr4() & X86_CR4_LA57) { 734 pgtable_l5_enabled = 1; 735 pgdir_shift = 48; 736 ptrs_per_p4d = 512; 737 } 738 #endif 739 740 boot_params->hdr.loadflags |= KASLR_FLAG; 741 742 /* Prepare to add new identity pagetables on demand. */ 743 initialize_identity_maps(); 744 745 /* Record the various known unsafe memory ranges. */ 746 mem_avoid_init(input, input_size, *output); 747 748 /* 749 * Low end of the randomization range should be the 750 * smaller of 512M or the initial kernel image 751 * location: 752 */ 753 min_addr = min(*output, 512UL << 20); 754 755 /* Walk available memory entries to find a random address. */ 756 random_addr = find_random_phys_addr(min_addr, output_size); 757 if (!random_addr) { 758 warn("Physical KASLR disabled: no suitable memory region!"); 759 } else { 760 /* Update the new physical address location. */ 761 if (*output != random_addr) { 762 add_identity_map(random_addr, output_size); 763 *output = random_addr; 764 } 765 766 /* 767 * This loads the identity mapping page table. 768 * This should only be done if a new physical address 769 * is found for the kernel, otherwise we should keep 770 * the old page table to make it be like the "nokaslr" 771 * case. 772 */ 773 finalize_identity_maps(); 774 } 775 776 777 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 778 if (IS_ENABLED(CONFIG_X86_64)) 779 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 780 *virt_addr = random_addr; 781 } 782