1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 #include "misc.h" 23 #include "error.h" 24 #include "../string.h" 25 #include "efi.h" 26 27 #include <generated/compile.h> 28 #include <linux/module.h> 29 #include <linux/uts.h> 30 #include <linux/utsname.h> 31 #include <linux/ctype.h> 32 #include <generated/utsversion.h> 33 #include <generated/utsrelease.h> 34 35 #define _SETUP 36 #include <asm/setup.h> /* For COMMAND_LINE_SIZE */ 37 #undef _SETUP 38 39 extern unsigned long get_cmd_line_ptr(void); 40 41 /* Simplified build-specific string for starting entropy. */ 42 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 43 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 44 45 static unsigned long rotate_xor(unsigned long hash, const void *area, 46 size_t size) 47 { 48 size_t i; 49 unsigned long *ptr = (unsigned long *)area; 50 51 for (i = 0; i < size / sizeof(hash); i++) { 52 /* Rotate by odd number of bits and XOR. */ 53 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 54 hash ^= ptr[i]; 55 } 56 57 return hash; 58 } 59 60 /* Attempt to create a simple but unpredictable starting entropy. */ 61 static unsigned long get_boot_seed(void) 62 { 63 unsigned long hash = 0; 64 65 hash = rotate_xor(hash, build_str, sizeof(build_str)); 66 hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); 67 68 return hash; 69 } 70 71 #define KASLR_COMPRESSED_BOOT 72 #include "../../lib/kaslr.c" 73 74 75 /* Only supporting at most 4 unusable memmap regions with kaslr */ 76 #define MAX_MEMMAP_REGIONS 4 77 78 static bool memmap_too_large; 79 80 81 /* 82 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit. 83 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options. 84 */ 85 static u64 mem_limit; 86 87 /* Number of immovable memory regions */ 88 static int num_immovable_mem; 89 90 enum mem_avoid_index { 91 MEM_AVOID_ZO_RANGE = 0, 92 MEM_AVOID_INITRD, 93 MEM_AVOID_CMDLINE, 94 MEM_AVOID_BOOTPARAMS, 95 MEM_AVOID_MEMMAP_BEGIN, 96 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 97 MEM_AVOID_MAX, 98 }; 99 100 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 101 102 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 103 { 104 /* Item one is entirely before item two. */ 105 if (one->start + one->size <= two->start) 106 return false; 107 /* Item one is entirely after item two. */ 108 if (one->start >= two->start + two->size) 109 return false; 110 return true; 111 } 112 113 char *skip_spaces(const char *str) 114 { 115 while (isspace(*str)) 116 ++str; 117 return (char *)str; 118 } 119 #include "../../../../lib/ctype.c" 120 #include "../../../../lib/cmdline.c" 121 122 enum parse_mode { 123 PARSE_MEMMAP, 124 PARSE_EFI, 125 }; 126 127 static int 128 parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode) 129 { 130 char *oldp; 131 132 if (!p) 133 return -EINVAL; 134 135 /* We don't care about this option here */ 136 if (!strncmp(p, "exactmap", 8)) 137 return -EINVAL; 138 139 oldp = p; 140 *size = memparse(p, &p); 141 if (p == oldp) 142 return -EINVAL; 143 144 switch (*p) { 145 case '#': 146 case '$': 147 case '!': 148 *start = memparse(p + 1, &p); 149 return 0; 150 case '@': 151 if (mode == PARSE_MEMMAP) { 152 /* 153 * memmap=nn@ss specifies usable region, should 154 * be skipped 155 */ 156 *size = 0; 157 } else { 158 u64 flags; 159 160 /* 161 * efi_fake_mem=nn@ss:attr the attr specifies 162 * flags that might imply a soft-reservation. 163 */ 164 *start = memparse(p + 1, &p); 165 if (p && *p == ':') { 166 p++; 167 if (kstrtoull(p, 0, &flags) < 0) 168 *size = 0; 169 else if (flags & EFI_MEMORY_SP) 170 return 0; 171 } 172 *size = 0; 173 } 174 fallthrough; 175 default: 176 /* 177 * If w/o offset, only size specified, memmap=nn[KMG] has the 178 * same behaviour as mem=nn[KMG]. It limits the max address 179 * system can use. Region above the limit should be avoided. 180 */ 181 *start = 0; 182 return 0; 183 } 184 185 return -EINVAL; 186 } 187 188 static void mem_avoid_memmap(enum parse_mode mode, char *str) 189 { 190 static int i; 191 192 if (i >= MAX_MEMMAP_REGIONS) 193 return; 194 195 while (str && (i < MAX_MEMMAP_REGIONS)) { 196 int rc; 197 u64 start, size; 198 char *k = strchr(str, ','); 199 200 if (k) 201 *k++ = 0; 202 203 rc = parse_memmap(str, &start, &size, mode); 204 if (rc < 0) 205 break; 206 str = k; 207 208 if (start == 0) { 209 /* Store the specified memory limit if size > 0 */ 210 if (size > 0 && size < mem_limit) 211 mem_limit = size; 212 213 continue; 214 } 215 216 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 217 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 218 i++; 219 } 220 221 /* More than 4 memmaps, fail kaslr */ 222 if ((i >= MAX_MEMMAP_REGIONS) && str) 223 memmap_too_large = true; 224 } 225 226 /* Store the number of 1GB huge pages which users specified: */ 227 static unsigned long max_gb_huge_pages; 228 229 static void parse_gb_huge_pages(char *param, char *val) 230 { 231 static bool gbpage_sz; 232 char *p; 233 234 if (!strcmp(param, "hugepagesz")) { 235 p = val; 236 if (memparse(p, &p) != PUD_SIZE) { 237 gbpage_sz = false; 238 return; 239 } 240 241 if (gbpage_sz) 242 warn("Repeatedly set hugeTLB page size of 1G!\n"); 243 gbpage_sz = true; 244 return; 245 } 246 247 if (!strcmp(param, "hugepages") && gbpage_sz) { 248 p = val; 249 max_gb_huge_pages = simple_strtoull(p, &p, 0); 250 return; 251 } 252 } 253 254 static void handle_mem_options(void) 255 { 256 char *args = (char *)get_cmd_line_ptr(); 257 size_t len; 258 char *tmp_cmdline; 259 char *param, *val; 260 u64 mem_size; 261 262 if (!args) 263 return; 264 265 len = strnlen(args, COMMAND_LINE_SIZE-1); 266 tmp_cmdline = malloc(len + 1); 267 if (!tmp_cmdline) 268 error("Failed to allocate space for tmp_cmdline"); 269 270 memcpy(tmp_cmdline, args, len); 271 tmp_cmdline[len] = 0; 272 args = tmp_cmdline; 273 274 /* Chew leading spaces */ 275 args = skip_spaces(args); 276 277 while (*args) { 278 args = next_arg(args, ¶m, &val); 279 /* Stop at -- */ 280 if (!val && strcmp(param, "--") == 0) 281 break; 282 283 if (!strcmp(param, "memmap")) { 284 mem_avoid_memmap(PARSE_MEMMAP, val); 285 } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) { 286 parse_gb_huge_pages(param, val); 287 } else if (!strcmp(param, "mem")) { 288 char *p = val; 289 290 if (!strcmp(p, "nopentium")) 291 continue; 292 mem_size = memparse(p, &p); 293 if (mem_size == 0) 294 break; 295 296 if (mem_size < mem_limit) 297 mem_limit = mem_size; 298 } else if (!strcmp(param, "efi_fake_mem")) { 299 mem_avoid_memmap(PARSE_EFI, val); 300 } 301 } 302 303 free(tmp_cmdline); 304 return; 305 } 306 307 /* 308 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM) 309 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit. 310 * 311 * The mem_avoid array is used to store the ranges that need to be avoided 312 * when KASLR searches for an appropriate random address. We must avoid any 313 * regions that are unsafe to overlap with during decompression, and other 314 * things like the initrd, cmdline and boot_params. This comment seeks to 315 * explain mem_avoid as clearly as possible since incorrect mem_avoid 316 * memory ranges lead to really hard to debug boot failures. 317 * 318 * The initrd, cmdline, and boot_params are trivial to identify for 319 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 320 * MEM_AVOID_BOOTPARAMS respectively below. 321 * 322 * What is not obvious how to avoid is the range of memory that is used 323 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 324 * the compressed kernel (ZO) and its run space, which is used to extract 325 * the uncompressed kernel (VO) and relocs. 326 * 327 * ZO's full run size sits against the end of the decompression buffer, so 328 * we can calculate where text, data, bss, etc of ZO are positioned more 329 * easily. 330 * 331 * For additional background, the decompression calculations can be found 332 * in header.S, and the memory diagram is based on the one found in misc.c. 333 * 334 * The following conditions are already enforced by the image layouts and 335 * associated code: 336 * - input + input_size >= output + output_size 337 * - kernel_total_size <= init_size 338 * - kernel_total_size <= output_size (see Note below) 339 * - output + init_size >= output + output_size 340 * 341 * (Note that kernel_total_size and output_size have no fundamental 342 * relationship, but output_size is passed to choose_random_location 343 * as a maximum of the two. The diagram is showing a case where 344 * kernel_total_size is larger than output_size, but this case is 345 * handled by bumping output_size.) 346 * 347 * The above conditions can be illustrated by a diagram: 348 * 349 * 0 output input input+input_size output+init_size 350 * | | | | | 351 * | | | | | 352 * |-----|--------|--------|--------------|-----------|--|-------------| 353 * | | | 354 * | | | 355 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 356 * 357 * [output, output+init_size) is the entire memory range used for 358 * extracting the compressed image. 359 * 360 * [output, output+kernel_total_size) is the range needed for the 361 * uncompressed kernel (VO) and its run size (bss, brk, etc). 362 * 363 * [output, output+output_size) is VO plus relocs (i.e. the entire 364 * uncompressed payload contained by ZO). This is the area of the buffer 365 * written to during decompression. 366 * 367 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 368 * range of the copied ZO and decompression code. (i.e. the range 369 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 370 * 371 * [input, input+input_size) is the original copied compressed image (ZO) 372 * (i.e. it does not include its run size). This range must be avoided 373 * because it contains the data used for decompression. 374 * 375 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 376 * range includes ZO's heap and stack, and must be avoided since it 377 * performs the decompression. 378 * 379 * Since the above two ranges need to be avoided and they are adjacent, 380 * they can be merged, resulting in: [input, output+init_size) which 381 * becomes the MEM_AVOID_ZO_RANGE below. 382 */ 383 static void mem_avoid_init(unsigned long input, unsigned long input_size, 384 unsigned long output) 385 { 386 unsigned long init_size = boot_params->hdr.init_size; 387 u64 initrd_start, initrd_size; 388 unsigned long cmd_line, cmd_line_size; 389 390 /* 391 * Avoid the region that is unsafe to overlap during 392 * decompression. 393 */ 394 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 395 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 396 397 /* Avoid initrd. */ 398 initrd_start = (u64)boot_params->ext_ramdisk_image << 32; 399 initrd_start |= boot_params->hdr.ramdisk_image; 400 initrd_size = (u64)boot_params->ext_ramdisk_size << 32; 401 initrd_size |= boot_params->hdr.ramdisk_size; 402 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 403 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 404 /* No need to set mapping for initrd, it will be handled in VO. */ 405 406 /* Avoid kernel command line. */ 407 cmd_line = get_cmd_line_ptr(); 408 /* Calculate size of cmd_line. */ 409 if (cmd_line) { 410 cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1; 411 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 412 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 413 } 414 415 /* Avoid boot parameters. */ 416 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; 417 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); 418 419 /* We don't need to set a mapping for setup_data. */ 420 421 /* Mark the memmap regions we need to avoid */ 422 handle_mem_options(); 423 424 /* Enumerate the immovable memory regions */ 425 num_immovable_mem = count_immovable_mem_regions(); 426 } 427 428 /* 429 * Does this memory vector overlap a known avoided area? If so, record the 430 * overlap region with the lowest address. 431 */ 432 static bool mem_avoid_overlap(struct mem_vector *img, 433 struct mem_vector *overlap) 434 { 435 int i; 436 struct setup_data *ptr; 437 u64 earliest = img->start + img->size; 438 bool is_overlapping = false; 439 440 for (i = 0; i < MEM_AVOID_MAX; i++) { 441 if (mem_overlaps(img, &mem_avoid[i]) && 442 mem_avoid[i].start < earliest) { 443 *overlap = mem_avoid[i]; 444 earliest = overlap->start; 445 is_overlapping = true; 446 } 447 } 448 449 /* Avoid all entries in the setup_data linked list. */ 450 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 451 while (ptr) { 452 struct mem_vector avoid; 453 454 avoid.start = (unsigned long)ptr; 455 avoid.size = sizeof(*ptr) + ptr->len; 456 457 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 458 *overlap = avoid; 459 earliest = overlap->start; 460 is_overlapping = true; 461 } 462 463 if (ptr->type == SETUP_INDIRECT && 464 ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) { 465 avoid.start = ((struct setup_indirect *)ptr->data)->addr; 466 avoid.size = ((struct setup_indirect *)ptr->data)->len; 467 468 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 469 *overlap = avoid; 470 earliest = overlap->start; 471 is_overlapping = true; 472 } 473 } 474 475 ptr = (struct setup_data *)(unsigned long)ptr->next; 476 } 477 478 return is_overlapping; 479 } 480 481 struct slot_area { 482 u64 addr; 483 unsigned long num; 484 }; 485 486 #define MAX_SLOT_AREA 100 487 488 static struct slot_area slot_areas[MAX_SLOT_AREA]; 489 static unsigned int slot_area_index; 490 static unsigned long slot_max; 491 492 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 493 { 494 struct slot_area slot_area; 495 496 if (slot_area_index == MAX_SLOT_AREA) 497 return; 498 499 slot_area.addr = region->start; 500 slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN; 501 502 slot_areas[slot_area_index++] = slot_area; 503 slot_max += slot_area.num; 504 } 505 506 /* 507 * Skip as many 1GB huge pages as possible in the passed region 508 * according to the number which users specified: 509 */ 510 static void 511 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) 512 { 513 u64 pud_start, pud_end; 514 unsigned long gb_huge_pages; 515 struct mem_vector tmp; 516 517 if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) { 518 store_slot_info(region, image_size); 519 return; 520 } 521 522 /* Are there any 1GB pages in the region? */ 523 pud_start = ALIGN(region->start, PUD_SIZE); 524 pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE); 525 526 /* No good 1GB huge pages found: */ 527 if (pud_start >= pud_end) { 528 store_slot_info(region, image_size); 529 return; 530 } 531 532 /* Check if the head part of the region is usable. */ 533 if (pud_start >= region->start + image_size) { 534 tmp.start = region->start; 535 tmp.size = pud_start - region->start; 536 store_slot_info(&tmp, image_size); 537 } 538 539 /* Skip the good 1GB pages. */ 540 gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT; 541 if (gb_huge_pages > max_gb_huge_pages) { 542 pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT); 543 max_gb_huge_pages = 0; 544 } else { 545 max_gb_huge_pages -= gb_huge_pages; 546 } 547 548 /* Check if the tail part of the region is usable. */ 549 if (region->start + region->size >= pud_end + image_size) { 550 tmp.start = pud_end; 551 tmp.size = region->start + region->size - pud_end; 552 store_slot_info(&tmp, image_size); 553 } 554 } 555 556 static u64 slots_fetch_random(void) 557 { 558 unsigned long slot; 559 unsigned int i; 560 561 /* Handle case of no slots stored. */ 562 if (slot_max == 0) 563 return 0; 564 565 slot = kaslr_get_random_long("Physical") % slot_max; 566 567 for (i = 0; i < slot_area_index; i++) { 568 if (slot >= slot_areas[i].num) { 569 slot -= slot_areas[i].num; 570 continue; 571 } 572 return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN); 573 } 574 575 if (i == slot_area_index) 576 debug_putstr("slots_fetch_random() failed!?\n"); 577 return 0; 578 } 579 580 static void __process_mem_region(struct mem_vector *entry, 581 unsigned long minimum, 582 unsigned long image_size) 583 { 584 struct mem_vector region, overlap; 585 u64 region_end; 586 587 /* Enforce minimum and memory limit. */ 588 region.start = max_t(u64, entry->start, minimum); 589 region_end = min(entry->start + entry->size, mem_limit); 590 591 /* Give up if slot area array is full. */ 592 while (slot_area_index < MAX_SLOT_AREA) { 593 /* Potentially raise address to meet alignment needs. */ 594 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 595 596 /* Did we raise the address above the passed in memory entry? */ 597 if (region.start > region_end) 598 return; 599 600 /* Reduce size by any delta from the original address. */ 601 region.size = region_end - region.start; 602 603 /* Return if region can't contain decompressed kernel */ 604 if (region.size < image_size) 605 return; 606 607 /* If nothing overlaps, store the region and return. */ 608 if (!mem_avoid_overlap(®ion, &overlap)) { 609 process_gb_huge_pages(®ion, image_size); 610 return; 611 } 612 613 /* Store beginning of region if holds at least image_size. */ 614 if (overlap.start >= region.start + image_size) { 615 region.size = overlap.start - region.start; 616 process_gb_huge_pages(®ion, image_size); 617 } 618 619 /* Clip off the overlapping region and start over. */ 620 region.start = overlap.start + overlap.size; 621 } 622 } 623 624 static bool process_mem_region(struct mem_vector *region, 625 unsigned long minimum, 626 unsigned long image_size) 627 { 628 int i; 629 /* 630 * If no immovable memory found, or MEMORY_HOTREMOVE disabled, 631 * use @region directly. 632 */ 633 if (!num_immovable_mem) { 634 __process_mem_region(region, minimum, image_size); 635 636 if (slot_area_index == MAX_SLOT_AREA) { 637 debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n"); 638 return true; 639 } 640 return false; 641 } 642 643 #if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI) 644 /* 645 * If immovable memory found, filter the intersection between 646 * immovable memory and @region. 647 */ 648 for (i = 0; i < num_immovable_mem; i++) { 649 u64 start, end, entry_end, region_end; 650 struct mem_vector entry; 651 652 if (!mem_overlaps(region, &immovable_mem[i])) 653 continue; 654 655 start = immovable_mem[i].start; 656 end = start + immovable_mem[i].size; 657 region_end = region->start + region->size; 658 659 entry.start = clamp(region->start, start, end); 660 entry_end = clamp(region_end, start, end); 661 entry.size = entry_end - entry.start; 662 663 __process_mem_region(&entry, minimum, image_size); 664 665 if (slot_area_index == MAX_SLOT_AREA) { 666 debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n"); 667 return true; 668 } 669 } 670 #endif 671 return false; 672 } 673 674 #ifdef CONFIG_EFI 675 676 /* 677 * Only EFI_CONVENTIONAL_MEMORY and EFI_UNACCEPTED_MEMORY (if supported) are 678 * guaranteed to be free. 679 * 680 * Pick free memory more conservatively than the EFI spec allows: according to 681 * the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also free memory and thus 682 * available to place the kernel image into, but in practice there's firmware 683 * where using that memory leads to crashes. Buggy vendor EFI code registers 684 * for an event that triggers on SetVirtualAddressMap(). The handler assumes 685 * that EFI_BOOT_SERVICES_DATA memory has not been touched by loader yet, which 686 * is probably true for Windows. 687 * 688 * Preserve EFI_BOOT_SERVICES_* regions until after SetVirtualAddressMap(). 689 */ 690 static inline bool memory_type_is_free(efi_memory_desc_t *md) 691 { 692 if (md->type == EFI_CONVENTIONAL_MEMORY) 693 return true; 694 695 if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && 696 md->type == EFI_UNACCEPTED_MEMORY) 697 return true; 698 699 return false; 700 } 701 702 /* 703 * Returns true if we processed the EFI memmap, which we prefer over the E820 704 * table if it is available. 705 */ 706 static bool 707 process_efi_entries(unsigned long minimum, unsigned long image_size) 708 { 709 struct efi_info *e = &boot_params->efi_info; 710 bool efi_mirror_found = false; 711 struct mem_vector region; 712 efi_memory_desc_t *md; 713 unsigned long pmap; 714 char *signature; 715 u32 nr_desc; 716 int i; 717 718 signature = (char *)&e->efi_loader_signature; 719 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 720 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 721 return false; 722 723 #ifdef CONFIG_X86_32 724 /* Can't handle data above 4GB at this time */ 725 if (e->efi_memmap_hi) { 726 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 727 return false; 728 } 729 pmap = e->efi_memmap; 730 #else 731 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 732 #endif 733 734 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 735 for (i = 0; i < nr_desc; i++) { 736 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 737 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 738 efi_mirror_found = true; 739 break; 740 } 741 } 742 743 for (i = 0; i < nr_desc; i++) { 744 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 745 746 if (!memory_type_is_free(md)) 747 continue; 748 749 if (efi_soft_reserve_enabled() && 750 (md->attribute & EFI_MEMORY_SP)) 751 continue; 752 753 if (efi_mirror_found && 754 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 755 continue; 756 757 region.start = md->phys_addr; 758 region.size = md->num_pages << EFI_PAGE_SHIFT; 759 if (process_mem_region(®ion, minimum, image_size)) 760 break; 761 } 762 return true; 763 } 764 #else 765 static inline bool 766 process_efi_entries(unsigned long minimum, unsigned long image_size) 767 { 768 return false; 769 } 770 #endif 771 772 static void process_e820_entries(unsigned long minimum, 773 unsigned long image_size) 774 { 775 int i; 776 struct mem_vector region; 777 struct boot_e820_entry *entry; 778 779 /* Verify potential e820 positions, appending to slots list. */ 780 for (i = 0; i < boot_params->e820_entries; i++) { 781 entry = &boot_params->e820_table[i]; 782 /* Skip non-RAM entries. */ 783 if (entry->type != E820_TYPE_RAM) 784 continue; 785 region.start = entry->addr; 786 region.size = entry->size; 787 if (process_mem_region(®ion, minimum, image_size)) 788 break; 789 } 790 } 791 792 static unsigned long find_random_phys_addr(unsigned long minimum, 793 unsigned long image_size) 794 { 795 u64 phys_addr; 796 797 /* Bail out early if it's impossible to succeed. */ 798 if (minimum + image_size > mem_limit) 799 return 0; 800 801 /* Check if we had too many memmaps. */ 802 if (memmap_too_large) { 803 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 804 return 0; 805 } 806 807 if (!process_efi_entries(minimum, image_size)) 808 process_e820_entries(minimum, image_size); 809 810 phys_addr = slots_fetch_random(); 811 812 /* Perform a final check to make sure the address is in range. */ 813 if (phys_addr < minimum || phys_addr + image_size > mem_limit) { 814 warn("Invalid physical address chosen!\n"); 815 return 0; 816 } 817 818 return (unsigned long)phys_addr; 819 } 820 821 static unsigned long find_random_virt_addr(unsigned long minimum, 822 unsigned long image_size) 823 { 824 unsigned long slots, random_addr; 825 826 /* 827 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 828 * that can hold image_size within the range of minimum to 829 * KERNEL_IMAGE_SIZE? 830 */ 831 slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN; 832 833 random_addr = kaslr_get_random_long("Virtual") % slots; 834 835 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 836 } 837 838 /* 839 * Since this function examines addresses much more numerically, 840 * it takes the input and output pointers as 'unsigned long'. 841 */ 842 void choose_random_location(unsigned long input, 843 unsigned long input_size, 844 unsigned long *output, 845 unsigned long output_size, 846 unsigned long *virt_addr) 847 { 848 unsigned long random_addr, min_addr; 849 850 if (cmdline_find_option_bool("nokaslr")) { 851 warn("KASLR disabled: 'nokaslr' on cmdline."); 852 return; 853 } 854 855 boot_params->hdr.loadflags |= KASLR_FLAG; 856 857 if (IS_ENABLED(CONFIG_X86_32)) 858 mem_limit = KERNEL_IMAGE_SIZE; 859 else 860 mem_limit = MAXMEM; 861 862 /* Record the various known unsafe memory ranges. */ 863 mem_avoid_init(input, input_size, *output); 864 865 /* 866 * Low end of the randomization range should be the 867 * smaller of 512M or the initial kernel image 868 * location: 869 */ 870 min_addr = min(*output, 512UL << 20); 871 /* Make sure minimum is aligned. */ 872 min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN); 873 874 /* Walk available memory entries to find a random address. */ 875 random_addr = find_random_phys_addr(min_addr, output_size); 876 if (!random_addr) { 877 warn("Physical KASLR disabled: no suitable memory region!"); 878 } else { 879 /* Update the new physical address location. */ 880 if (*output != random_addr) 881 *output = random_addr; 882 } 883 884 885 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 886 if (IS_ENABLED(CONFIG_X86_64)) 887 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 888 *virt_addr = random_addr; 889 } 890