xref: /openbmc/linux/arch/x86/boot/compressed/kaslr.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kaslr.c
4  *
5  * This contains the routines needed to generate a reasonable level of
6  * entropy to choose a randomized kernel base address offset in support
7  * of Kernel Address Space Layout Randomization (KASLR). Additionally
8  * handles walking the physical memory maps (and tracking memory regions
9  * to avoid) in order to select a physical memory location that can
10  * contain the entire properly aligned running kernel image.
11  *
12  */
13 
14 /*
15  * isspace() in linux/ctype.h is expected by next_args() to filter
16  * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
17  * since isdigit() is implemented in both of them. Hence disable it
18  * here.
19  */
20 #define BOOT_CTYPE_H
21 
22 /*
23  * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
24  * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
25  * which is meaningless and will cause compiling error in some cases.
26  * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
27  * as empty.
28  */
29 #define _LINUX_EXPORT_H
30 #define EXPORT_SYMBOL(sym)
31 
32 #include "misc.h"
33 #include "error.h"
34 #include "../string.h"
35 
36 #include <generated/compile.h>
37 #include <linux/module.h>
38 #include <linux/uts.h>
39 #include <linux/utsname.h>
40 #include <linux/ctype.h>
41 #include <linux/efi.h>
42 #include <generated/utsrelease.h>
43 #include <asm/efi.h>
44 
45 /* Macros used by the included decompressor code below. */
46 #define STATIC
47 #include <linux/decompress/mm.h>
48 
49 extern unsigned long get_cmd_line_ptr(void);
50 
51 /* Simplified build-specific string for starting entropy. */
52 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
53 		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
54 
55 static unsigned long rotate_xor(unsigned long hash, const void *area,
56 				size_t size)
57 {
58 	size_t i;
59 	unsigned long *ptr = (unsigned long *)area;
60 
61 	for (i = 0; i < size / sizeof(hash); i++) {
62 		/* Rotate by odd number of bits and XOR. */
63 		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
64 		hash ^= ptr[i];
65 	}
66 
67 	return hash;
68 }
69 
70 /* Attempt to create a simple but unpredictable starting entropy. */
71 static unsigned long get_boot_seed(void)
72 {
73 	unsigned long hash = 0;
74 
75 	hash = rotate_xor(hash, build_str, sizeof(build_str));
76 	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
77 
78 	return hash;
79 }
80 
81 #define KASLR_COMPRESSED_BOOT
82 #include "../../lib/kaslr.c"
83 
84 struct mem_vector {
85 	unsigned long long start;
86 	unsigned long long size;
87 };
88 
89 /* Only supporting at most 4 unusable memmap regions with kaslr */
90 #define MAX_MEMMAP_REGIONS	4
91 
92 static bool memmap_too_large;
93 
94 
95 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
96 unsigned long long mem_limit = ULLONG_MAX;
97 
98 
99 enum mem_avoid_index {
100 	MEM_AVOID_ZO_RANGE = 0,
101 	MEM_AVOID_INITRD,
102 	MEM_AVOID_CMDLINE,
103 	MEM_AVOID_BOOTPARAMS,
104 	MEM_AVOID_MEMMAP_BEGIN,
105 	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
106 	MEM_AVOID_MAX,
107 };
108 
109 static struct mem_vector mem_avoid[MEM_AVOID_MAX];
110 
111 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
112 {
113 	/* Item one is entirely before item two. */
114 	if (one->start + one->size <= two->start)
115 		return false;
116 	/* Item one is entirely after item two. */
117 	if (one->start >= two->start + two->size)
118 		return false;
119 	return true;
120 }
121 
122 char *skip_spaces(const char *str)
123 {
124 	while (isspace(*str))
125 		++str;
126 	return (char *)str;
127 }
128 #include "../../../../lib/ctype.c"
129 #include "../../../../lib/cmdline.c"
130 
131 static int
132 parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
133 {
134 	char *oldp;
135 
136 	if (!p)
137 		return -EINVAL;
138 
139 	/* We don't care about this option here */
140 	if (!strncmp(p, "exactmap", 8))
141 		return -EINVAL;
142 
143 	oldp = p;
144 	*size = memparse(p, &p);
145 	if (p == oldp)
146 		return -EINVAL;
147 
148 	switch (*p) {
149 	case '#':
150 	case '$':
151 	case '!':
152 		*start = memparse(p + 1, &p);
153 		return 0;
154 	case '@':
155 		/* memmap=nn@ss specifies usable region, should be skipped */
156 		*size = 0;
157 		/* Fall through */
158 	default:
159 		/*
160 		 * If w/o offset, only size specified, memmap=nn[KMG] has the
161 		 * same behaviour as mem=nn[KMG]. It limits the max address
162 		 * system can use. Region above the limit should be avoided.
163 		 */
164 		*start = 0;
165 		return 0;
166 	}
167 
168 	return -EINVAL;
169 }
170 
171 static void mem_avoid_memmap(char *str)
172 {
173 	static int i;
174 
175 	if (i >= MAX_MEMMAP_REGIONS)
176 		return;
177 
178 	while (str && (i < MAX_MEMMAP_REGIONS)) {
179 		int rc;
180 		unsigned long long start, size;
181 		char *k = strchr(str, ',');
182 
183 		if (k)
184 			*k++ = 0;
185 
186 		rc = parse_memmap(str, &start, &size);
187 		if (rc < 0)
188 			break;
189 		str = k;
190 
191 		if (start == 0) {
192 			/* Store the specified memory limit if size > 0 */
193 			if (size > 0)
194 				mem_limit = size;
195 
196 			continue;
197 		}
198 
199 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
200 		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
201 		i++;
202 	}
203 
204 	/* More than 4 memmaps, fail kaslr */
205 	if ((i >= MAX_MEMMAP_REGIONS) && str)
206 		memmap_too_large = true;
207 }
208 
209 static int handle_mem_memmap(void)
210 {
211 	char *args = (char *)get_cmd_line_ptr();
212 	size_t len = strlen((char *)args);
213 	char *tmp_cmdline;
214 	char *param, *val;
215 	u64 mem_size;
216 
217 	if (!strstr(args, "memmap=") && !strstr(args, "mem="))
218 		return 0;
219 
220 	tmp_cmdline = malloc(len + 1);
221 	if (!tmp_cmdline)
222 		error("Failed to allocate space for tmp_cmdline");
223 
224 	memcpy(tmp_cmdline, args, len);
225 	tmp_cmdline[len] = 0;
226 	args = tmp_cmdline;
227 
228 	/* Chew leading spaces */
229 	args = skip_spaces(args);
230 
231 	while (*args) {
232 		args = next_arg(args, &param, &val);
233 		/* Stop at -- */
234 		if (!val && strcmp(param, "--") == 0) {
235 			warn("Only '--' specified in cmdline");
236 			free(tmp_cmdline);
237 			return -1;
238 		}
239 
240 		if (!strcmp(param, "memmap")) {
241 			mem_avoid_memmap(val);
242 		} else if (!strcmp(param, "mem")) {
243 			char *p = val;
244 
245 			if (!strcmp(p, "nopentium"))
246 				continue;
247 			mem_size = memparse(p, &p);
248 			if (mem_size == 0) {
249 				free(tmp_cmdline);
250 				return -EINVAL;
251 			}
252 			mem_limit = mem_size;
253 		}
254 	}
255 
256 	free(tmp_cmdline);
257 	return 0;
258 }
259 
260 /*
261  * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
262  * The mem_avoid array is used to store the ranges that need to be avoided
263  * when KASLR searches for an appropriate random address. We must avoid any
264  * regions that are unsafe to overlap with during decompression, and other
265  * things like the initrd, cmdline and boot_params. This comment seeks to
266  * explain mem_avoid as clearly as possible since incorrect mem_avoid
267  * memory ranges lead to really hard to debug boot failures.
268  *
269  * The initrd, cmdline, and boot_params are trivial to identify for
270  * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
271  * MEM_AVOID_BOOTPARAMS respectively below.
272  *
273  * What is not obvious how to avoid is the range of memory that is used
274  * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
275  * the compressed kernel (ZO) and its run space, which is used to extract
276  * the uncompressed kernel (VO) and relocs.
277  *
278  * ZO's full run size sits against the end of the decompression buffer, so
279  * we can calculate where text, data, bss, etc of ZO are positioned more
280  * easily.
281  *
282  * For additional background, the decompression calculations can be found
283  * in header.S, and the memory diagram is based on the one found in misc.c.
284  *
285  * The following conditions are already enforced by the image layouts and
286  * associated code:
287  *  - input + input_size >= output + output_size
288  *  - kernel_total_size <= init_size
289  *  - kernel_total_size <= output_size (see Note below)
290  *  - output + init_size >= output + output_size
291  *
292  * (Note that kernel_total_size and output_size have no fundamental
293  * relationship, but output_size is passed to choose_random_location
294  * as a maximum of the two. The diagram is showing a case where
295  * kernel_total_size is larger than output_size, but this case is
296  * handled by bumping output_size.)
297  *
298  * The above conditions can be illustrated by a diagram:
299  *
300  * 0   output            input            input+input_size    output+init_size
301  * |     |                 |                             |             |
302  * |     |                 |                             |             |
303  * |-----|--------|--------|--------------|-----------|--|-------------|
304  *                |                       |           |
305  *                |                       |           |
306  * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
307  *
308  * [output, output+init_size) is the entire memory range used for
309  * extracting the compressed image.
310  *
311  * [output, output+kernel_total_size) is the range needed for the
312  * uncompressed kernel (VO) and its run size (bss, brk, etc).
313  *
314  * [output, output+output_size) is VO plus relocs (i.e. the entire
315  * uncompressed payload contained by ZO). This is the area of the buffer
316  * written to during decompression.
317  *
318  * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
319  * range of the copied ZO and decompression code. (i.e. the range
320  * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
321  *
322  * [input, input+input_size) is the original copied compressed image (ZO)
323  * (i.e. it does not include its run size). This range must be avoided
324  * because it contains the data used for decompression.
325  *
326  * [input+input_size, output+init_size) is [_text, _end) for ZO. This
327  * range includes ZO's heap and stack, and must be avoided since it
328  * performs the decompression.
329  *
330  * Since the above two ranges need to be avoided and they are adjacent,
331  * they can be merged, resulting in: [input, output+init_size) which
332  * becomes the MEM_AVOID_ZO_RANGE below.
333  */
334 static void mem_avoid_init(unsigned long input, unsigned long input_size,
335 			   unsigned long output)
336 {
337 	unsigned long init_size = boot_params->hdr.init_size;
338 	u64 initrd_start, initrd_size;
339 	u64 cmd_line, cmd_line_size;
340 	char *ptr;
341 
342 	/*
343 	 * Avoid the region that is unsafe to overlap during
344 	 * decompression.
345 	 */
346 	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
347 	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
348 	add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
349 			 mem_avoid[MEM_AVOID_ZO_RANGE].size);
350 
351 	/* Avoid initrd. */
352 	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
353 	initrd_start |= boot_params->hdr.ramdisk_image;
354 	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
355 	initrd_size |= boot_params->hdr.ramdisk_size;
356 	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
357 	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
358 	/* No need to set mapping for initrd, it will be handled in VO. */
359 
360 	/* Avoid kernel command line. */
361 	cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
362 	cmd_line |= boot_params->hdr.cmd_line_ptr;
363 	/* Calculate size of cmd_line. */
364 	ptr = (char *)(unsigned long)cmd_line;
365 	for (cmd_line_size = 0; ptr[cmd_line_size++];)
366 		;
367 	mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
368 	mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
369 	add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
370 			 mem_avoid[MEM_AVOID_CMDLINE].size);
371 
372 	/* Avoid boot parameters. */
373 	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
374 	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
375 	add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
376 			 mem_avoid[MEM_AVOID_BOOTPARAMS].size);
377 
378 	/* We don't need to set a mapping for setup_data. */
379 
380 	/* Mark the memmap regions we need to avoid */
381 	handle_mem_memmap();
382 
383 #ifdef CONFIG_X86_VERBOSE_BOOTUP
384 	/* Make sure video RAM can be used. */
385 	add_identity_map(0, PMD_SIZE);
386 #endif
387 }
388 
389 /*
390  * Does this memory vector overlap a known avoided area? If so, record the
391  * overlap region with the lowest address.
392  */
393 static bool mem_avoid_overlap(struct mem_vector *img,
394 			      struct mem_vector *overlap)
395 {
396 	int i;
397 	struct setup_data *ptr;
398 	unsigned long earliest = img->start + img->size;
399 	bool is_overlapping = false;
400 
401 	for (i = 0; i < MEM_AVOID_MAX; i++) {
402 		if (mem_overlaps(img, &mem_avoid[i]) &&
403 		    mem_avoid[i].start < earliest) {
404 			*overlap = mem_avoid[i];
405 			earliest = overlap->start;
406 			is_overlapping = true;
407 		}
408 	}
409 
410 	/* Avoid all entries in the setup_data linked list. */
411 	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
412 	while (ptr) {
413 		struct mem_vector avoid;
414 
415 		avoid.start = (unsigned long)ptr;
416 		avoid.size = sizeof(*ptr) + ptr->len;
417 
418 		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
419 			*overlap = avoid;
420 			earliest = overlap->start;
421 			is_overlapping = true;
422 		}
423 
424 		ptr = (struct setup_data *)(unsigned long)ptr->next;
425 	}
426 
427 	return is_overlapping;
428 }
429 
430 struct slot_area {
431 	unsigned long addr;
432 	int num;
433 };
434 
435 #define MAX_SLOT_AREA 100
436 
437 static struct slot_area slot_areas[MAX_SLOT_AREA];
438 
439 static unsigned long slot_max;
440 
441 static unsigned long slot_area_index;
442 
443 static void store_slot_info(struct mem_vector *region, unsigned long image_size)
444 {
445 	struct slot_area slot_area;
446 
447 	if (slot_area_index == MAX_SLOT_AREA)
448 		return;
449 
450 	slot_area.addr = region->start;
451 	slot_area.num = (region->size - image_size) /
452 			CONFIG_PHYSICAL_ALIGN + 1;
453 
454 	if (slot_area.num > 0) {
455 		slot_areas[slot_area_index++] = slot_area;
456 		slot_max += slot_area.num;
457 	}
458 }
459 
460 static unsigned long slots_fetch_random(void)
461 {
462 	unsigned long slot;
463 	int i;
464 
465 	/* Handle case of no slots stored. */
466 	if (slot_max == 0)
467 		return 0;
468 
469 	slot = kaslr_get_random_long("Physical") % slot_max;
470 
471 	for (i = 0; i < slot_area_index; i++) {
472 		if (slot >= slot_areas[i].num) {
473 			slot -= slot_areas[i].num;
474 			continue;
475 		}
476 		return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
477 	}
478 
479 	if (i == slot_area_index)
480 		debug_putstr("slots_fetch_random() failed!?\n");
481 	return 0;
482 }
483 
484 static void process_mem_region(struct mem_vector *entry,
485 			       unsigned long minimum,
486 			       unsigned long image_size)
487 {
488 	struct mem_vector region, overlap;
489 	struct slot_area slot_area;
490 	unsigned long start_orig, end;
491 	struct mem_vector cur_entry;
492 
493 	/* On 32-bit, ignore entries entirely above our maximum. */
494 	if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
495 		return;
496 
497 	/* Ignore entries entirely below our minimum. */
498 	if (entry->start + entry->size < minimum)
499 		return;
500 
501 	/* Ignore entries above memory limit */
502 	end = min(entry->size + entry->start, mem_limit);
503 	if (entry->start >= end)
504 		return;
505 	cur_entry.start = entry->start;
506 	cur_entry.size = end - entry->start;
507 
508 	region.start = cur_entry.start;
509 	region.size = cur_entry.size;
510 
511 	/* Give up if slot area array is full. */
512 	while (slot_area_index < MAX_SLOT_AREA) {
513 		start_orig = region.start;
514 
515 		/* Potentially raise address to minimum location. */
516 		if (region.start < minimum)
517 			region.start = minimum;
518 
519 		/* Potentially raise address to meet alignment needs. */
520 		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
521 
522 		/* Did we raise the address above the passed in memory entry? */
523 		if (region.start > cur_entry.start + cur_entry.size)
524 			return;
525 
526 		/* Reduce size by any delta from the original address. */
527 		region.size -= region.start - start_orig;
528 
529 		/* On 32-bit, reduce region size to fit within max size. */
530 		if (IS_ENABLED(CONFIG_X86_32) &&
531 		    region.start + region.size > KERNEL_IMAGE_SIZE)
532 			region.size = KERNEL_IMAGE_SIZE - region.start;
533 
534 		/* Return if region can't contain decompressed kernel */
535 		if (region.size < image_size)
536 			return;
537 
538 		/* If nothing overlaps, store the region and return. */
539 		if (!mem_avoid_overlap(&region, &overlap)) {
540 			store_slot_info(&region, image_size);
541 			return;
542 		}
543 
544 		/* Store beginning of region if holds at least image_size. */
545 		if (overlap.start > region.start + image_size) {
546 			struct mem_vector beginning;
547 
548 			beginning.start = region.start;
549 			beginning.size = overlap.start - region.start;
550 			store_slot_info(&beginning, image_size);
551 		}
552 
553 		/* Return if overlap extends to or past end of region. */
554 		if (overlap.start + overlap.size >= region.start + region.size)
555 			return;
556 
557 		/* Clip off the overlapping region and start over. */
558 		region.size -= overlap.start - region.start + overlap.size;
559 		region.start = overlap.start + overlap.size;
560 	}
561 }
562 
563 #ifdef CONFIG_EFI
564 /*
565  * Returns true if mirror region found (and must have been processed
566  * for slots adding)
567  */
568 static bool
569 process_efi_entries(unsigned long minimum, unsigned long image_size)
570 {
571 	struct efi_info *e = &boot_params->efi_info;
572 	bool efi_mirror_found = false;
573 	struct mem_vector region;
574 	efi_memory_desc_t *md;
575 	unsigned long pmap;
576 	char *signature;
577 	u32 nr_desc;
578 	int i;
579 
580 	signature = (char *)&e->efi_loader_signature;
581 	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
582 	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
583 		return false;
584 
585 #ifdef CONFIG_X86_32
586 	/* Can't handle data above 4GB at this time */
587 	if (e->efi_memmap_hi) {
588 		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
589 		return false;
590 	}
591 	pmap =  e->efi_memmap;
592 #else
593 	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
594 #endif
595 
596 	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
597 	for (i = 0; i < nr_desc; i++) {
598 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
599 		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
600 			efi_mirror_found = true;
601 			break;
602 		}
603 	}
604 
605 	for (i = 0; i < nr_desc; i++) {
606 		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
607 
608 		/*
609 		 * Here we are more conservative in picking free memory than
610 		 * the EFI spec allows:
611 		 *
612 		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
613 		 * free memory and thus available to place the kernel image into,
614 		 * but in practice there's firmware where using that memory leads
615 		 * to crashes.
616 		 *
617 		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
618 		 */
619 		if (md->type != EFI_CONVENTIONAL_MEMORY)
620 			continue;
621 
622 		if (efi_mirror_found &&
623 		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
624 			continue;
625 
626 		region.start = md->phys_addr;
627 		region.size = md->num_pages << EFI_PAGE_SHIFT;
628 		process_mem_region(&region, minimum, image_size);
629 		if (slot_area_index == MAX_SLOT_AREA) {
630 			debug_putstr("Aborted EFI scan (slot_areas full)!\n");
631 			break;
632 		}
633 	}
634 	return true;
635 }
636 #else
637 static inline bool
638 process_efi_entries(unsigned long minimum, unsigned long image_size)
639 {
640 	return false;
641 }
642 #endif
643 
644 static void process_e820_entries(unsigned long minimum,
645 				 unsigned long image_size)
646 {
647 	int i;
648 	struct mem_vector region;
649 	struct boot_e820_entry *entry;
650 
651 	/* Verify potential e820 positions, appending to slots list. */
652 	for (i = 0; i < boot_params->e820_entries; i++) {
653 		entry = &boot_params->e820_table[i];
654 		/* Skip non-RAM entries. */
655 		if (entry->type != E820_TYPE_RAM)
656 			continue;
657 		region.start = entry->addr;
658 		region.size = entry->size;
659 		process_mem_region(&region, minimum, image_size);
660 		if (slot_area_index == MAX_SLOT_AREA) {
661 			debug_putstr("Aborted e820 scan (slot_areas full)!\n");
662 			break;
663 		}
664 	}
665 }
666 
667 static unsigned long find_random_phys_addr(unsigned long minimum,
668 					   unsigned long image_size)
669 {
670 	/* Check if we had too many memmaps. */
671 	if (memmap_too_large) {
672 		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
673 		return 0;
674 	}
675 
676 	/* Make sure minimum is aligned. */
677 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
678 
679 	if (process_efi_entries(minimum, image_size))
680 		return slots_fetch_random();
681 
682 	process_e820_entries(minimum, image_size);
683 	return slots_fetch_random();
684 }
685 
686 static unsigned long find_random_virt_addr(unsigned long minimum,
687 					   unsigned long image_size)
688 {
689 	unsigned long slots, random_addr;
690 
691 	/* Make sure minimum is aligned. */
692 	minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
693 	/* Align image_size for easy slot calculations. */
694 	image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
695 
696 	/*
697 	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
698 	 * that can hold image_size within the range of minimum to
699 	 * KERNEL_IMAGE_SIZE?
700 	 */
701 	slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
702 		 CONFIG_PHYSICAL_ALIGN + 1;
703 
704 	random_addr = kaslr_get_random_long("Virtual") % slots;
705 
706 	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
707 }
708 
709 /*
710  * Since this function examines addresses much more numerically,
711  * it takes the input and output pointers as 'unsigned long'.
712  */
713 void choose_random_location(unsigned long input,
714 			    unsigned long input_size,
715 			    unsigned long *output,
716 			    unsigned long output_size,
717 			    unsigned long *virt_addr)
718 {
719 	unsigned long random_addr, min_addr;
720 
721 	if (cmdline_find_option_bool("nokaslr")) {
722 		warn("KASLR disabled: 'nokaslr' on cmdline.");
723 		return;
724 	}
725 
726 	boot_params->hdr.loadflags |= KASLR_FLAG;
727 
728 	/* Prepare to add new identity pagetables on demand. */
729 	initialize_identity_maps();
730 
731 	/* Record the various known unsafe memory ranges. */
732 	mem_avoid_init(input, input_size, *output);
733 
734 	/*
735 	 * Low end of the randomization range should be the
736 	 * smaller of 512M or the initial kernel image
737 	 * location:
738 	 */
739 	min_addr = min(*output, 512UL << 20);
740 
741 	/* Walk available memory entries to find a random address. */
742 	random_addr = find_random_phys_addr(min_addr, output_size);
743 	if (!random_addr) {
744 		warn("Physical KASLR disabled: no suitable memory region!");
745 	} else {
746 		/* Update the new physical address location. */
747 		if (*output != random_addr) {
748 			add_identity_map(random_addr, output_size);
749 			*output = random_addr;
750 		}
751 
752 		/*
753 		 * This loads the identity mapping page table.
754 		 * This should only be done if a new physical address
755 		 * is found for the kernel, otherwise we should keep
756 		 * the old page table to make it be like the "nokaslr"
757 		 * case.
758 		 */
759 		finalize_identity_maps();
760 	}
761 
762 
763 	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
764 	if (IS_ENABLED(CONFIG_X86_64))
765 		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
766 	*virt_addr = random_addr;
767 }
768