1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kaslr.c 4 * 5 * This contains the routines needed to generate a reasonable level of 6 * entropy to choose a randomized kernel base address offset in support 7 * of Kernel Address Space Layout Randomization (KASLR). Additionally 8 * handles walking the physical memory maps (and tracking memory regions 9 * to avoid) in order to select a physical memory location that can 10 * contain the entire properly aligned running kernel image. 11 * 12 */ 13 14 /* 15 * isspace() in linux/ctype.h is expected by next_args() to filter 16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h, 17 * since isdigit() is implemented in both of them. Hence disable it 18 * here. 19 */ 20 #define BOOT_CTYPE_H 21 22 /* 23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h. 24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL 25 * which is meaningless and will cause compiling error in some cases. 26 */ 27 #define __DISABLE_EXPORTS 28 29 #include "misc.h" 30 #include "error.h" 31 #include "../string.h" 32 33 #include <generated/compile.h> 34 #include <linux/module.h> 35 #include <linux/uts.h> 36 #include <linux/utsname.h> 37 #include <linux/ctype.h> 38 #include <linux/efi.h> 39 #include <generated/utsrelease.h> 40 #include <asm/efi.h> 41 42 /* Macros used by the included decompressor code below. */ 43 #define STATIC 44 #include <linux/decompress/mm.h> 45 46 #ifdef CONFIG_X86_5LEVEL 47 unsigned int __pgtable_l5_enabled; 48 unsigned int pgdir_shift __ro_after_init = 39; 49 unsigned int ptrs_per_p4d __ro_after_init = 1; 50 #endif 51 52 extern unsigned long get_cmd_line_ptr(void); 53 54 /* Used by PAGE_KERN* macros: */ 55 pteval_t __default_kernel_pte_mask __read_mostly = ~0; 56 57 /* Simplified build-specific string for starting entropy. */ 58 static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" 59 LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; 60 61 static unsigned long rotate_xor(unsigned long hash, const void *area, 62 size_t size) 63 { 64 size_t i; 65 unsigned long *ptr = (unsigned long *)area; 66 67 for (i = 0; i < size / sizeof(hash); i++) { 68 /* Rotate by odd number of bits and XOR. */ 69 hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); 70 hash ^= ptr[i]; 71 } 72 73 return hash; 74 } 75 76 /* Attempt to create a simple but unpredictable starting entropy. */ 77 static unsigned long get_boot_seed(void) 78 { 79 unsigned long hash = 0; 80 81 hash = rotate_xor(hash, build_str, sizeof(build_str)); 82 hash = rotate_xor(hash, boot_params, sizeof(*boot_params)); 83 84 return hash; 85 } 86 87 #define KASLR_COMPRESSED_BOOT 88 #include "../../lib/kaslr.c" 89 90 struct mem_vector { 91 unsigned long long start; 92 unsigned long long size; 93 }; 94 95 /* Only supporting at most 4 unusable memmap regions with kaslr */ 96 #define MAX_MEMMAP_REGIONS 4 97 98 static bool memmap_too_large; 99 100 101 /* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */ 102 static unsigned long long mem_limit = ULLONG_MAX; 103 104 105 enum mem_avoid_index { 106 MEM_AVOID_ZO_RANGE = 0, 107 MEM_AVOID_INITRD, 108 MEM_AVOID_CMDLINE, 109 MEM_AVOID_BOOTPARAMS, 110 MEM_AVOID_MEMMAP_BEGIN, 111 MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1, 112 MEM_AVOID_MAX, 113 }; 114 115 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; 116 117 static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) 118 { 119 /* Item one is entirely before item two. */ 120 if (one->start + one->size <= two->start) 121 return false; 122 /* Item one is entirely after item two. */ 123 if (one->start >= two->start + two->size) 124 return false; 125 return true; 126 } 127 128 char *skip_spaces(const char *str) 129 { 130 while (isspace(*str)) 131 ++str; 132 return (char *)str; 133 } 134 #include "../../../../lib/ctype.c" 135 #include "../../../../lib/cmdline.c" 136 137 static int 138 parse_memmap(char *p, unsigned long long *start, unsigned long long *size) 139 { 140 char *oldp; 141 142 if (!p) 143 return -EINVAL; 144 145 /* We don't care about this option here */ 146 if (!strncmp(p, "exactmap", 8)) 147 return -EINVAL; 148 149 oldp = p; 150 *size = memparse(p, &p); 151 if (p == oldp) 152 return -EINVAL; 153 154 switch (*p) { 155 case '#': 156 case '$': 157 case '!': 158 *start = memparse(p + 1, &p); 159 return 0; 160 case '@': 161 /* memmap=nn@ss specifies usable region, should be skipped */ 162 *size = 0; 163 /* Fall through */ 164 default: 165 /* 166 * If w/o offset, only size specified, memmap=nn[KMG] has the 167 * same behaviour as mem=nn[KMG]. It limits the max address 168 * system can use. Region above the limit should be avoided. 169 */ 170 *start = 0; 171 return 0; 172 } 173 174 return -EINVAL; 175 } 176 177 static void mem_avoid_memmap(char *str) 178 { 179 static int i; 180 181 if (i >= MAX_MEMMAP_REGIONS) 182 return; 183 184 while (str && (i < MAX_MEMMAP_REGIONS)) { 185 int rc; 186 unsigned long long start, size; 187 char *k = strchr(str, ','); 188 189 if (k) 190 *k++ = 0; 191 192 rc = parse_memmap(str, &start, &size); 193 if (rc < 0) 194 break; 195 str = k; 196 197 if (start == 0) { 198 /* Store the specified memory limit if size > 0 */ 199 if (size > 0) 200 mem_limit = size; 201 202 continue; 203 } 204 205 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start; 206 mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size; 207 i++; 208 } 209 210 /* More than 4 memmaps, fail kaslr */ 211 if ((i >= MAX_MEMMAP_REGIONS) && str) 212 memmap_too_large = true; 213 } 214 215 /* Store the number of 1GB huge pages which users specified: */ 216 static unsigned long max_gb_huge_pages; 217 218 static void parse_gb_huge_pages(char *param, char *val) 219 { 220 static bool gbpage_sz; 221 char *p; 222 223 if (!strcmp(param, "hugepagesz")) { 224 p = val; 225 if (memparse(p, &p) != PUD_SIZE) { 226 gbpage_sz = false; 227 return; 228 } 229 230 if (gbpage_sz) 231 warn("Repeatedly set hugeTLB page size of 1G!\n"); 232 gbpage_sz = true; 233 return; 234 } 235 236 if (!strcmp(param, "hugepages") && gbpage_sz) { 237 p = val; 238 max_gb_huge_pages = simple_strtoull(p, &p, 0); 239 return; 240 } 241 } 242 243 244 static void handle_mem_options(void) 245 { 246 char *args = (char *)get_cmd_line_ptr(); 247 size_t len = strlen((char *)args); 248 char *tmp_cmdline; 249 char *param, *val; 250 u64 mem_size; 251 252 if (!strstr(args, "memmap=") && !strstr(args, "mem=") && 253 !strstr(args, "hugepages")) 254 return; 255 256 tmp_cmdline = malloc(len + 1); 257 if (!tmp_cmdline) 258 error("Failed to allocate space for tmp_cmdline"); 259 260 memcpy(tmp_cmdline, args, len); 261 tmp_cmdline[len] = 0; 262 args = tmp_cmdline; 263 264 /* Chew leading spaces */ 265 args = skip_spaces(args); 266 267 while (*args) { 268 args = next_arg(args, ¶m, &val); 269 /* Stop at -- */ 270 if (!val && strcmp(param, "--") == 0) { 271 warn("Only '--' specified in cmdline"); 272 goto out; 273 } 274 275 if (!strcmp(param, "memmap")) { 276 mem_avoid_memmap(val); 277 } else if (strstr(param, "hugepages")) { 278 parse_gb_huge_pages(param, val); 279 } else if (!strcmp(param, "mem")) { 280 char *p = val; 281 282 if (!strcmp(p, "nopentium")) 283 continue; 284 mem_size = memparse(p, &p); 285 if (mem_size == 0) 286 goto out; 287 288 mem_limit = mem_size; 289 } 290 } 291 292 out: 293 free(tmp_cmdline); 294 return; 295 } 296 297 /* 298 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T). 299 * The mem_avoid array is used to store the ranges that need to be avoided 300 * when KASLR searches for an appropriate random address. We must avoid any 301 * regions that are unsafe to overlap with during decompression, and other 302 * things like the initrd, cmdline and boot_params. This comment seeks to 303 * explain mem_avoid as clearly as possible since incorrect mem_avoid 304 * memory ranges lead to really hard to debug boot failures. 305 * 306 * The initrd, cmdline, and boot_params are trivial to identify for 307 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and 308 * MEM_AVOID_BOOTPARAMS respectively below. 309 * 310 * What is not obvious how to avoid is the range of memory that is used 311 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover 312 * the compressed kernel (ZO) and its run space, which is used to extract 313 * the uncompressed kernel (VO) and relocs. 314 * 315 * ZO's full run size sits against the end of the decompression buffer, so 316 * we can calculate where text, data, bss, etc of ZO are positioned more 317 * easily. 318 * 319 * For additional background, the decompression calculations can be found 320 * in header.S, and the memory diagram is based on the one found in misc.c. 321 * 322 * The following conditions are already enforced by the image layouts and 323 * associated code: 324 * - input + input_size >= output + output_size 325 * - kernel_total_size <= init_size 326 * - kernel_total_size <= output_size (see Note below) 327 * - output + init_size >= output + output_size 328 * 329 * (Note that kernel_total_size and output_size have no fundamental 330 * relationship, but output_size is passed to choose_random_location 331 * as a maximum of the two. The diagram is showing a case where 332 * kernel_total_size is larger than output_size, but this case is 333 * handled by bumping output_size.) 334 * 335 * The above conditions can be illustrated by a diagram: 336 * 337 * 0 output input input+input_size output+init_size 338 * | | | | | 339 * | | | | | 340 * |-----|--------|--------|--------------|-----------|--|-------------| 341 * | | | 342 * | | | 343 * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size 344 * 345 * [output, output+init_size) is the entire memory range used for 346 * extracting the compressed image. 347 * 348 * [output, output+kernel_total_size) is the range needed for the 349 * uncompressed kernel (VO) and its run size (bss, brk, etc). 350 * 351 * [output, output+output_size) is VO plus relocs (i.e. the entire 352 * uncompressed payload contained by ZO). This is the area of the buffer 353 * written to during decompression. 354 * 355 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case 356 * range of the copied ZO and decompression code. (i.e. the range 357 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.) 358 * 359 * [input, input+input_size) is the original copied compressed image (ZO) 360 * (i.e. it does not include its run size). This range must be avoided 361 * because it contains the data used for decompression. 362 * 363 * [input+input_size, output+init_size) is [_text, _end) for ZO. This 364 * range includes ZO's heap and stack, and must be avoided since it 365 * performs the decompression. 366 * 367 * Since the above two ranges need to be avoided and they are adjacent, 368 * they can be merged, resulting in: [input, output+init_size) which 369 * becomes the MEM_AVOID_ZO_RANGE below. 370 */ 371 static void mem_avoid_init(unsigned long input, unsigned long input_size, 372 unsigned long output) 373 { 374 unsigned long init_size = boot_params->hdr.init_size; 375 u64 initrd_start, initrd_size; 376 u64 cmd_line, cmd_line_size; 377 char *ptr; 378 379 /* 380 * Avoid the region that is unsafe to overlap during 381 * decompression. 382 */ 383 mem_avoid[MEM_AVOID_ZO_RANGE].start = input; 384 mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input; 385 add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start, 386 mem_avoid[MEM_AVOID_ZO_RANGE].size); 387 388 /* Avoid initrd. */ 389 initrd_start = (u64)boot_params->ext_ramdisk_image << 32; 390 initrd_start |= boot_params->hdr.ramdisk_image; 391 initrd_size = (u64)boot_params->ext_ramdisk_size << 32; 392 initrd_size |= boot_params->hdr.ramdisk_size; 393 mem_avoid[MEM_AVOID_INITRD].start = initrd_start; 394 mem_avoid[MEM_AVOID_INITRD].size = initrd_size; 395 /* No need to set mapping for initrd, it will be handled in VO. */ 396 397 /* Avoid kernel command line. */ 398 cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32; 399 cmd_line |= boot_params->hdr.cmd_line_ptr; 400 /* Calculate size of cmd_line. */ 401 ptr = (char *)(unsigned long)cmd_line; 402 for (cmd_line_size = 0; ptr[cmd_line_size++];) 403 ; 404 mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line; 405 mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size; 406 add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start, 407 mem_avoid[MEM_AVOID_CMDLINE].size); 408 409 /* Avoid boot parameters. */ 410 mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params; 411 mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params); 412 add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start, 413 mem_avoid[MEM_AVOID_BOOTPARAMS].size); 414 415 /* We don't need to set a mapping for setup_data. */ 416 417 /* Mark the memmap regions we need to avoid */ 418 handle_mem_options(); 419 420 #ifdef CONFIG_X86_VERBOSE_BOOTUP 421 /* Make sure video RAM can be used. */ 422 add_identity_map(0, PMD_SIZE); 423 #endif 424 } 425 426 /* 427 * Does this memory vector overlap a known avoided area? If so, record the 428 * overlap region with the lowest address. 429 */ 430 static bool mem_avoid_overlap(struct mem_vector *img, 431 struct mem_vector *overlap) 432 { 433 int i; 434 struct setup_data *ptr; 435 unsigned long earliest = img->start + img->size; 436 bool is_overlapping = false; 437 438 for (i = 0; i < MEM_AVOID_MAX; i++) { 439 if (mem_overlaps(img, &mem_avoid[i]) && 440 mem_avoid[i].start < earliest) { 441 *overlap = mem_avoid[i]; 442 earliest = overlap->start; 443 is_overlapping = true; 444 } 445 } 446 447 /* Avoid all entries in the setup_data linked list. */ 448 ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; 449 while (ptr) { 450 struct mem_vector avoid; 451 452 avoid.start = (unsigned long)ptr; 453 avoid.size = sizeof(*ptr) + ptr->len; 454 455 if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) { 456 *overlap = avoid; 457 earliest = overlap->start; 458 is_overlapping = true; 459 } 460 461 ptr = (struct setup_data *)(unsigned long)ptr->next; 462 } 463 464 return is_overlapping; 465 } 466 467 struct slot_area { 468 unsigned long addr; 469 int num; 470 }; 471 472 #define MAX_SLOT_AREA 100 473 474 static struct slot_area slot_areas[MAX_SLOT_AREA]; 475 476 static unsigned long slot_max; 477 478 static unsigned long slot_area_index; 479 480 static void store_slot_info(struct mem_vector *region, unsigned long image_size) 481 { 482 struct slot_area slot_area; 483 484 if (slot_area_index == MAX_SLOT_AREA) 485 return; 486 487 slot_area.addr = region->start; 488 slot_area.num = (region->size - image_size) / 489 CONFIG_PHYSICAL_ALIGN + 1; 490 491 if (slot_area.num > 0) { 492 slot_areas[slot_area_index++] = slot_area; 493 slot_max += slot_area.num; 494 } 495 } 496 497 /* 498 * Skip as many 1GB huge pages as possible in the passed region 499 * according to the number which users specified: 500 */ 501 static void 502 process_gb_huge_pages(struct mem_vector *region, unsigned long image_size) 503 { 504 unsigned long addr, size = 0; 505 struct mem_vector tmp; 506 int i = 0; 507 508 if (!max_gb_huge_pages) { 509 store_slot_info(region, image_size); 510 return; 511 } 512 513 addr = ALIGN(region->start, PUD_SIZE); 514 /* Did we raise the address above the passed in memory entry? */ 515 if (addr < region->start + region->size) 516 size = region->size - (addr - region->start); 517 518 /* Check how many 1GB huge pages can be filtered out: */ 519 while (size > PUD_SIZE && max_gb_huge_pages) { 520 size -= PUD_SIZE; 521 max_gb_huge_pages--; 522 i++; 523 } 524 525 /* No good 1GB huge pages found: */ 526 if (!i) { 527 store_slot_info(region, image_size); 528 return; 529 } 530 531 /* 532 * Skip those 'i'*1GB good huge pages, and continue checking and 533 * processing the remaining head or tail part of the passed region 534 * if available. 535 */ 536 537 if (addr >= region->start + image_size) { 538 tmp.start = region->start; 539 tmp.size = addr - region->start; 540 store_slot_info(&tmp, image_size); 541 } 542 543 size = region->size - (addr - region->start) - i * PUD_SIZE; 544 if (size >= image_size) { 545 tmp.start = addr + i * PUD_SIZE; 546 tmp.size = size; 547 store_slot_info(&tmp, image_size); 548 } 549 } 550 551 static unsigned long slots_fetch_random(void) 552 { 553 unsigned long slot; 554 int i; 555 556 /* Handle case of no slots stored. */ 557 if (slot_max == 0) 558 return 0; 559 560 slot = kaslr_get_random_long("Physical") % slot_max; 561 562 for (i = 0; i < slot_area_index; i++) { 563 if (slot >= slot_areas[i].num) { 564 slot -= slot_areas[i].num; 565 continue; 566 } 567 return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN; 568 } 569 570 if (i == slot_area_index) 571 debug_putstr("slots_fetch_random() failed!?\n"); 572 return 0; 573 } 574 575 static void process_mem_region(struct mem_vector *entry, 576 unsigned long minimum, 577 unsigned long image_size) 578 { 579 struct mem_vector region, overlap; 580 unsigned long start_orig, end; 581 struct mem_vector cur_entry; 582 583 /* On 32-bit, ignore entries entirely above our maximum. */ 584 if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE) 585 return; 586 587 /* Ignore entries entirely below our minimum. */ 588 if (entry->start + entry->size < minimum) 589 return; 590 591 /* Ignore entries above memory limit */ 592 end = min(entry->size + entry->start, mem_limit); 593 if (entry->start >= end) 594 return; 595 cur_entry.start = entry->start; 596 cur_entry.size = end - entry->start; 597 598 region.start = cur_entry.start; 599 region.size = cur_entry.size; 600 601 /* Give up if slot area array is full. */ 602 while (slot_area_index < MAX_SLOT_AREA) { 603 start_orig = region.start; 604 605 /* Potentially raise address to minimum location. */ 606 if (region.start < minimum) 607 region.start = minimum; 608 609 /* Potentially raise address to meet alignment needs. */ 610 region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); 611 612 /* Did we raise the address above the passed in memory entry? */ 613 if (region.start > cur_entry.start + cur_entry.size) 614 return; 615 616 /* Reduce size by any delta from the original address. */ 617 region.size -= region.start - start_orig; 618 619 /* On 32-bit, reduce region size to fit within max size. */ 620 if (IS_ENABLED(CONFIG_X86_32) && 621 region.start + region.size > KERNEL_IMAGE_SIZE) 622 region.size = KERNEL_IMAGE_SIZE - region.start; 623 624 /* Return if region can't contain decompressed kernel */ 625 if (region.size < image_size) 626 return; 627 628 /* If nothing overlaps, store the region and return. */ 629 if (!mem_avoid_overlap(®ion, &overlap)) { 630 process_gb_huge_pages(®ion, image_size); 631 return; 632 } 633 634 /* Store beginning of region if holds at least image_size. */ 635 if (overlap.start > region.start + image_size) { 636 struct mem_vector beginning; 637 638 beginning.start = region.start; 639 beginning.size = overlap.start - region.start; 640 process_gb_huge_pages(&beginning, image_size); 641 } 642 643 /* Return if overlap extends to or past end of region. */ 644 if (overlap.start + overlap.size >= region.start + region.size) 645 return; 646 647 /* Clip off the overlapping region and start over. */ 648 region.size -= overlap.start - region.start + overlap.size; 649 region.start = overlap.start + overlap.size; 650 } 651 } 652 653 #ifdef CONFIG_EFI 654 /* 655 * Returns true if mirror region found (and must have been processed 656 * for slots adding) 657 */ 658 static bool 659 process_efi_entries(unsigned long minimum, unsigned long image_size) 660 { 661 struct efi_info *e = &boot_params->efi_info; 662 bool efi_mirror_found = false; 663 struct mem_vector region; 664 efi_memory_desc_t *md; 665 unsigned long pmap; 666 char *signature; 667 u32 nr_desc; 668 int i; 669 670 signature = (char *)&e->efi_loader_signature; 671 if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) && 672 strncmp(signature, EFI64_LOADER_SIGNATURE, 4)) 673 return false; 674 675 #ifdef CONFIG_X86_32 676 /* Can't handle data above 4GB at this time */ 677 if (e->efi_memmap_hi) { 678 warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n"); 679 return false; 680 } 681 pmap = e->efi_memmap; 682 #else 683 pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32)); 684 #endif 685 686 nr_desc = e->efi_memmap_size / e->efi_memdesc_size; 687 for (i = 0; i < nr_desc; i++) { 688 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 689 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { 690 efi_mirror_found = true; 691 break; 692 } 693 } 694 695 for (i = 0; i < nr_desc; i++) { 696 md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i); 697 698 /* 699 * Here we are more conservative in picking free memory than 700 * the EFI spec allows: 701 * 702 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also 703 * free memory and thus available to place the kernel image into, 704 * but in practice there's firmware where using that memory leads 705 * to crashes. 706 * 707 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free. 708 */ 709 if (md->type != EFI_CONVENTIONAL_MEMORY) 710 continue; 711 712 if (efi_mirror_found && 713 !(md->attribute & EFI_MEMORY_MORE_RELIABLE)) 714 continue; 715 716 region.start = md->phys_addr; 717 region.size = md->num_pages << EFI_PAGE_SHIFT; 718 process_mem_region(®ion, minimum, image_size); 719 if (slot_area_index == MAX_SLOT_AREA) { 720 debug_putstr("Aborted EFI scan (slot_areas full)!\n"); 721 break; 722 } 723 } 724 return true; 725 } 726 #else 727 static inline bool 728 process_efi_entries(unsigned long minimum, unsigned long image_size) 729 { 730 return false; 731 } 732 #endif 733 734 static void process_e820_entries(unsigned long minimum, 735 unsigned long image_size) 736 { 737 int i; 738 struct mem_vector region; 739 struct boot_e820_entry *entry; 740 741 /* Verify potential e820 positions, appending to slots list. */ 742 for (i = 0; i < boot_params->e820_entries; i++) { 743 entry = &boot_params->e820_table[i]; 744 /* Skip non-RAM entries. */ 745 if (entry->type != E820_TYPE_RAM) 746 continue; 747 region.start = entry->addr; 748 region.size = entry->size; 749 process_mem_region(®ion, minimum, image_size); 750 if (slot_area_index == MAX_SLOT_AREA) { 751 debug_putstr("Aborted e820 scan (slot_areas full)!\n"); 752 break; 753 } 754 } 755 } 756 757 static unsigned long find_random_phys_addr(unsigned long minimum, 758 unsigned long image_size) 759 { 760 /* Check if we had too many memmaps. */ 761 if (memmap_too_large) { 762 debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n"); 763 return 0; 764 } 765 766 /* Make sure minimum is aligned. */ 767 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); 768 769 if (process_efi_entries(minimum, image_size)) 770 return slots_fetch_random(); 771 772 process_e820_entries(minimum, image_size); 773 return slots_fetch_random(); 774 } 775 776 static unsigned long find_random_virt_addr(unsigned long minimum, 777 unsigned long image_size) 778 { 779 unsigned long slots, random_addr; 780 781 /* Make sure minimum is aligned. */ 782 minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); 783 /* Align image_size for easy slot calculations. */ 784 image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN); 785 786 /* 787 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots 788 * that can hold image_size within the range of minimum to 789 * KERNEL_IMAGE_SIZE? 790 */ 791 slots = (KERNEL_IMAGE_SIZE - minimum - image_size) / 792 CONFIG_PHYSICAL_ALIGN + 1; 793 794 random_addr = kaslr_get_random_long("Virtual") % slots; 795 796 return random_addr * CONFIG_PHYSICAL_ALIGN + minimum; 797 } 798 799 /* 800 * Since this function examines addresses much more numerically, 801 * it takes the input and output pointers as 'unsigned long'. 802 */ 803 void choose_random_location(unsigned long input, 804 unsigned long input_size, 805 unsigned long *output, 806 unsigned long output_size, 807 unsigned long *virt_addr) 808 { 809 unsigned long random_addr, min_addr; 810 811 if (cmdline_find_option_bool("nokaslr")) { 812 warn("KASLR disabled: 'nokaslr' on cmdline."); 813 return; 814 } 815 816 #ifdef CONFIG_X86_5LEVEL 817 if (__read_cr4() & X86_CR4_LA57) { 818 __pgtable_l5_enabled = 1; 819 pgdir_shift = 48; 820 ptrs_per_p4d = 512; 821 } 822 #endif 823 824 boot_params->hdr.loadflags |= KASLR_FLAG; 825 826 /* Prepare to add new identity pagetables on demand. */ 827 initialize_identity_maps(); 828 829 /* Record the various known unsafe memory ranges. */ 830 mem_avoid_init(input, input_size, *output); 831 832 /* 833 * Low end of the randomization range should be the 834 * smaller of 512M or the initial kernel image 835 * location: 836 */ 837 min_addr = min(*output, 512UL << 20); 838 839 /* Walk available memory entries to find a random address. */ 840 random_addr = find_random_phys_addr(min_addr, output_size); 841 if (!random_addr) { 842 warn("Physical KASLR disabled: no suitable memory region!"); 843 } else { 844 /* Update the new physical address location. */ 845 if (*output != random_addr) { 846 add_identity_map(random_addr, output_size); 847 *output = random_addr; 848 } 849 850 /* 851 * This loads the identity mapping page table. 852 * This should only be done if a new physical address 853 * is found for the kernel, otherwise we should keep 854 * the old page table to make it be like the "nokaslr" 855 * case. 856 */ 857 finalize_identity_maps(); 858 } 859 860 861 /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */ 862 if (IS_ENABLED(CONFIG_X86_64)) 863 random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size); 864 *virt_addr = random_addr; 865 } 866