xref: /openbmc/linux/arch/x86/boot/compressed/head_64.S (revision ef4290e6)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38#include "pgtable.h"
39
40/*
41 * Fix alignment at 16 bytes. Following CONFIG_FUNCTION_ALIGNMENT will result
42 * in assembly errors due to trying to move .org backward due to the excessive
43 * alignment.
44 */
45#undef __ALIGN
46#define __ALIGN		.balign	16, 0x90
47
48/*
49 * Locally defined symbols should be marked hidden:
50 */
51	.hidden _bss
52	.hidden _ebss
53	.hidden _end
54
55	__HEAD
56
57/*
58 * This macro gives the relative virtual address of X, i.e. the offset of X
59 * from startup_32. This is the same as the link-time virtual address of X,
60 * since startup_32 is at 0, but defining it this way tells the
61 * assembler/linker that we do not want the actual run-time address of X. This
62 * prevents the linker from trying to create unwanted run-time relocation
63 * entries for the reference when the compressed kernel is linked as PIE.
64 *
65 * A reference X(%reg) will result in the link-time VA of X being stored with
66 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
67 * adds the 64-bit base address where the kernel is loaded.
68 *
69 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
70 * and no run-time relocation.
71 *
72 * The macro should be used as a displacement with a base register containing
73 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
74 * [$ rva(X)].
75 *
76 * This macro can only be used from within the .head.text section, since the
77 * expression requires startup_32 to be in the same section as the code being
78 * assembled.
79 */
80#define rva(X) ((X) - startup_32)
81
82	.code32
83SYM_FUNC_START(startup_32)
84	/*
85	 * 32bit entry is 0 and it is ABI so immutable!
86	 * If we come here directly from a bootloader,
87	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
88	 * all need to be under the 4G limit.
89	 */
90	cld
91	cli
92
93/*
94 * Calculate the delta between where we were compiled to run
95 * at and where we were actually loaded at.  This can only be done
96 * with a short local call on x86.  Nothing  else will tell us what
97 * address we are running at.  The reserved chunk of the real-mode
98 * data at 0x1e4 (defined as a scratch field) are used as the stack
99 * for this calculation. Only 4 bytes are needed.
100 */
101	leal	(BP_scratch+4)(%esi), %esp
102	call	1f
1031:	popl	%ebp
104	subl	$ rva(1b), %ebp
105
106	/* Load new GDT with the 64bit segments using 32bit descriptor */
107	leal	rva(gdt)(%ebp), %eax
108	movl	%eax, 2(%eax)
109	lgdt	(%eax)
110
111	/* Load segment registers with our descriptors */
112	movl	$__BOOT_DS, %eax
113	movl	%eax, %ds
114	movl	%eax, %es
115	movl	%eax, %fs
116	movl	%eax, %gs
117	movl	%eax, %ss
118
119	/* Setup a stack and load CS from current GDT */
120	leal	rva(boot_stack_end)(%ebp), %esp
121
122	pushl	$__KERNEL32_CS
123	leal	rva(1f)(%ebp), %eax
124	pushl	%eax
125	lretl
1261:
127
128	/* Setup Exception handling for SEV-ES */
129#ifdef CONFIG_AMD_MEM_ENCRYPT
130	call	startup32_load_idt
131#endif
132
133	/* Make sure cpu supports long mode. */
134	call	verify_cpu
135	testl	%eax, %eax
136	jnz	.Lno_longmode
137
138/*
139 * Compute the delta between where we were compiled to run at
140 * and where the code will actually run at.
141 *
142 * %ebp contains the address we are loaded at by the boot loader and %ebx
143 * contains the address where we should move the kernel image temporarily
144 * for safe in-place decompression.
145 */
146
147#ifdef CONFIG_RELOCATABLE
148	movl	%ebp, %ebx
149
150#ifdef CONFIG_EFI_STUB
151/*
152 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
153 * offset to the start of the space allocated for the image. efi_pe_entry will
154 * set up image_offset to tell us where the image actually starts, so that we
155 * can use the full available buffer.
156 *	image_offset = startup_32 - image_base
157 * Otherwise image_offset will be zero and has no effect on the calculations.
158 */
159	subl    rva(image_offset)(%ebp), %ebx
160#endif
161
162	movl	BP_kernel_alignment(%esi), %eax
163	decl	%eax
164	addl	%eax, %ebx
165	notl	%eax
166	andl	%eax, %ebx
167	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
168	jae	1f
169#endif
170	movl	$LOAD_PHYSICAL_ADDR, %ebx
1711:
172
173	/* Target address to relocate to for decompression */
174	addl	BP_init_size(%esi), %ebx
175	subl	$ rva(_end), %ebx
176
177/*
178 * Prepare for entering 64 bit mode
179 */
180
181	/* Enable PAE mode */
182	movl	%cr4, %eax
183	orl	$X86_CR4_PAE, %eax
184	movl	%eax, %cr4
185
186 /*
187  * Build early 4G boot pagetable
188  */
189	/*
190	 * If SEV is active then set the encryption mask in the page tables.
191	 * This will ensure that when the kernel is copied and decompressed
192	 * it will be done so encrypted.
193	 */
194	xorl	%edx, %edx
195#ifdef	CONFIG_AMD_MEM_ENCRYPT
196	call	get_sev_encryption_bit
197	xorl	%edx, %edx
198	testl	%eax, %eax
199	jz	1f
200	subl	$32, %eax	/* Encryption bit is always above bit 31 */
201	bts	%eax, %edx	/* Set encryption mask for page tables */
202	/*
203	 * Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
204	 * startup32_check_sev_cbit() will do a check. sev_enable() will
205	 * initialize sev_status with all the bits reported by
206	 * MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
207	 * needs to be set for now.
208	 */
209	movl	$1, rva(sev_status)(%ebp)
2101:
211#endif
212
213	/* Initialize Page tables to 0 */
214	leal	rva(pgtable)(%ebx), %edi
215	xorl	%eax, %eax
216	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
217	rep	stosl
218
219	/* Build Level 4 */
220	leal	rva(pgtable + 0)(%ebx), %edi
221	leal	0x1007 (%edi), %eax
222	movl	%eax, 0(%edi)
223	addl	%edx, 4(%edi)
224
225	/* Build Level 3 */
226	leal	rva(pgtable + 0x1000)(%ebx), %edi
227	leal	0x1007(%edi), %eax
228	movl	$4, %ecx
2291:	movl	%eax, 0x00(%edi)
230	addl	%edx, 0x04(%edi)
231	addl	$0x00001000, %eax
232	addl	$8, %edi
233	decl	%ecx
234	jnz	1b
235
236	/* Build Level 2 */
237	leal	rva(pgtable + 0x2000)(%ebx), %edi
238	movl	$0x00000183, %eax
239	movl	$2048, %ecx
2401:	movl	%eax, 0(%edi)
241	addl	%edx, 4(%edi)
242	addl	$0x00200000, %eax
243	addl	$8, %edi
244	decl	%ecx
245	jnz	1b
246
247	/* Enable the boot page tables */
248	leal	rva(pgtable)(%ebx), %eax
249	movl	%eax, %cr3
250
251	/* Enable Long mode in EFER (Extended Feature Enable Register) */
252	movl	$MSR_EFER, %ecx
253	rdmsr
254	btsl	$_EFER_LME, %eax
255	wrmsr
256
257	/* After gdt is loaded */
258	xorl	%eax, %eax
259	lldt	%ax
260	movl    $__BOOT_TSS, %eax
261	ltr	%ax
262
263#ifdef CONFIG_AMD_MEM_ENCRYPT
264	/* Check if the C-bit position is correct when SEV is active */
265	call	startup32_check_sev_cbit
266#endif
267
268	/*
269	 * Setup for the jump to 64bit mode
270	 *
271	 * When the jump is performed we will be in long mode but
272	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
273	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
274	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
275	 * We place all of the values on our mini stack so lret can
276	 * used to perform that far jump.
277	 */
278	leal	rva(startup_64)(%ebp), %eax
279#ifdef CONFIG_EFI_MIXED
280	cmpb	$1, rva(efi_is64)(%ebp)
281	je	1f
282	leal	rva(startup_64_mixed_mode)(%ebp), %eax
2831:
284#endif
285
286	pushl	$__KERNEL_CS
287	pushl	%eax
288
289	/* Enter paged protected Mode, activating Long Mode */
290	movl	$CR0_STATE, %eax
291	movl	%eax, %cr0
292
293	/* Jump from 32bit compatibility mode into 64bit mode. */
294	lret
295SYM_FUNC_END(startup_32)
296
297#if IS_ENABLED(CONFIG_EFI_MIXED) && IS_ENABLED(CONFIG_EFI_HANDOVER_PROTOCOL)
298	.org 0x190
299SYM_FUNC_START(efi32_stub_entry)
300	add	$0x4, %esp		/* Discard return address */
301	popl	%ecx
302	popl	%edx
303	popl	%esi
304	jmp	efi32_entry
305SYM_FUNC_END(efi32_stub_entry)
306#endif
307
308	.code64
309	.org 0x200
310SYM_CODE_START(startup_64)
311	/*
312	 * 64bit entry is 0x200 and it is ABI so immutable!
313	 * We come here either from startup_32 or directly from a
314	 * 64bit bootloader.
315	 * If we come here from a bootloader, kernel(text+data+bss+brk),
316	 * ramdisk, zero_page, command line could be above 4G.
317	 * We depend on an identity mapped page table being provided
318	 * that maps our entire kernel(text+data+bss+brk), zero page
319	 * and command line.
320	 */
321
322	cld
323	cli
324
325	/* Setup data segments. */
326	xorl	%eax, %eax
327	movl	%eax, %ds
328	movl	%eax, %es
329	movl	%eax, %ss
330	movl	%eax, %fs
331	movl	%eax, %gs
332
333	/*
334	 * Compute the decompressed kernel start address.  It is where
335	 * we were loaded at aligned to a 2M boundary. %rbp contains the
336	 * decompressed kernel start address.
337	 *
338	 * If it is a relocatable kernel then decompress and run the kernel
339	 * from load address aligned to 2MB addr, otherwise decompress and
340	 * run the kernel from LOAD_PHYSICAL_ADDR
341	 *
342	 * We cannot rely on the calculation done in 32-bit mode, since we
343	 * may have been invoked via the 64-bit entry point.
344	 */
345
346	/* Start with the delta to where the kernel will run at. */
347#ifdef CONFIG_RELOCATABLE
348	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
349
350#ifdef CONFIG_EFI_STUB
351/*
352 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
353 * offset to the start of the space allocated for the image. efi_pe_entry will
354 * set up image_offset to tell us where the image actually starts, so that we
355 * can use the full available buffer.
356 *	image_offset = startup_32 - image_base
357 * Otherwise image_offset will be zero and has no effect on the calculations.
358 */
359	movl    image_offset(%rip), %eax
360	subq	%rax, %rbp
361#endif
362
363	movl	BP_kernel_alignment(%rsi), %eax
364	decl	%eax
365	addq	%rax, %rbp
366	notq	%rax
367	andq	%rax, %rbp
368	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
369	jae	1f
370#endif
371	movq	$LOAD_PHYSICAL_ADDR, %rbp
3721:
373
374	/* Target address to relocate to for decompression */
375	movl	BP_init_size(%rsi), %ebx
376	subl	$ rva(_end), %ebx
377	addq	%rbp, %rbx
378
379	/* Set up the stack */
380	leaq	rva(boot_stack_end)(%rbx), %rsp
381
382	/*
383	 * At this point we are in long mode with 4-level paging enabled,
384	 * but we might want to enable 5-level paging or vice versa.
385	 *
386	 * The problem is that we cannot do it directly. Setting or clearing
387	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
388	 * long mode and paging first.
389	 *
390	 * We also need a trampoline in lower memory to switch over from
391	 * 4- to 5-level paging for cases when the bootloader puts the kernel
392	 * above 4G, but didn't enable 5-level paging for us.
393	 *
394	 * The same trampoline can be used to switch from 5- to 4-level paging
395	 * mode, like when starting 4-level paging kernel via kexec() when
396	 * original kernel worked in 5-level paging mode.
397	 *
398	 * For the trampoline, we need the top page table to reside in lower
399	 * memory as we don't have a way to load 64-bit values into CR3 in
400	 * 32-bit mode.
401	 *
402	 * We go though the trampoline even if we don't have to: if we're
403	 * already in a desired paging mode. This way the trampoline code gets
404	 * tested on every boot.
405	 */
406
407	/* Make sure we have GDT with 32-bit code segment */
408	leaq	gdt64(%rip), %rax
409	addq	%rax, 2(%rax)
410	lgdt	(%rax)
411
412	/* Reload CS so IRET returns to a CS actually in the GDT */
413	pushq	$__KERNEL_CS
414	leaq	.Lon_kernel_cs(%rip), %rax
415	pushq	%rax
416	lretq
417
418.Lon_kernel_cs:
419
420	pushq	%rsi
421	call	load_stage1_idt
422	popq	%rsi
423
424#ifdef CONFIG_AMD_MEM_ENCRYPT
425	/*
426	 * Now that the stage1 interrupt handlers are set up, #VC exceptions from
427	 * CPUID instructions can be properly handled for SEV-ES guests.
428	 *
429	 * For SEV-SNP, the CPUID table also needs to be set up in advance of any
430	 * CPUID instructions being issued, so go ahead and do that now via
431	 * sev_enable(), which will also handle the rest of the SEV-related
432	 * detection/setup to ensure that has been done in advance of any dependent
433	 * code.
434	 */
435	pushq	%rsi
436	movq	%rsi, %rdi		/* real mode address */
437	call	sev_enable
438	popq	%rsi
439#endif
440
441	/*
442	 * paging_prepare() sets up the trampoline and checks if we need to
443	 * enable 5-level paging.
444	 *
445	 * paging_prepare() returns a two-quadword structure which lands
446	 * into RDX:RAX:
447	 *   - Address of the trampoline is returned in RAX.
448	 *   - Non zero RDX means trampoline needs to enable 5-level
449	 *     paging.
450	 *
451	 * RSI holds real mode data and needs to be preserved across
452	 * this function call.
453	 */
454	pushq	%rsi
455	movq	%rsi, %rdi		/* real mode address */
456	call	paging_prepare
457	popq	%rsi
458
459	/* Save the trampoline address in RCX */
460	movq	%rax, %rcx
461
462	/*
463	 * Load the address of trampoline_return() into RDI.
464	 * It will be used by the trampoline to return to the main code.
465	 */
466	leaq	trampoline_return(%rip), %rdi
467
468	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
469	pushq	$__KERNEL32_CS
470	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
471	pushq	%rax
472	lretq
473trampoline_return:
474	/* Restore the stack, the 32-bit trampoline uses its own stack */
475	leaq	rva(boot_stack_end)(%rbx), %rsp
476
477	/*
478	 * cleanup_trampoline() would restore trampoline memory.
479	 *
480	 * RDI is address of the page table to use instead of page table
481	 * in trampoline memory (if required).
482	 *
483	 * RSI holds real mode data and needs to be preserved across
484	 * this function call.
485	 */
486	pushq	%rsi
487	leaq	rva(top_pgtable)(%rbx), %rdi
488	call	cleanup_trampoline
489	popq	%rsi
490
491	/* Zero EFLAGS */
492	pushq	$0
493	popfq
494
495/*
496 * Copy the compressed kernel to the end of our buffer
497 * where decompression in place becomes safe.
498 */
499	pushq	%rsi
500	leaq	(_bss-8)(%rip), %rsi
501	leaq	rva(_bss-8)(%rbx), %rdi
502	movl	$(_bss - startup_32), %ecx
503	shrl	$3, %ecx
504	std
505	rep	movsq
506	cld
507	popq	%rsi
508
509	/*
510	 * The GDT may get overwritten either during the copy we just did or
511	 * during extract_kernel below. To avoid any issues, repoint the GDTR
512	 * to the new copy of the GDT.
513	 */
514	leaq	rva(gdt64)(%rbx), %rax
515	leaq	rva(gdt)(%rbx), %rdx
516	movq	%rdx, 2(%rax)
517	lgdt	(%rax)
518
519/*
520 * Jump to the relocated address.
521 */
522	leaq	rva(.Lrelocated)(%rbx), %rax
523	jmp	*%rax
524SYM_CODE_END(startup_64)
525
526#ifdef CONFIG_EFI_STUB
527#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
528	.org 0x390
529#endif
530SYM_FUNC_START(efi64_stub_entry)
531	and	$~0xf, %rsp			/* realign the stack */
532	movq	%rdx, %rbx			/* save boot_params pointer */
533	call	efi_main
534	movq	%rbx,%rsi
535	leaq	rva(startup_64)(%rax), %rax
536	jmp	*%rax
537SYM_FUNC_END(efi64_stub_entry)
538SYM_FUNC_ALIAS(efi_stub_entry, efi64_stub_entry)
539#endif
540
541	.text
542SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
543
544/*
545 * Clear BSS (stack is currently empty)
546 */
547	xorl	%eax, %eax
548	leaq    _bss(%rip), %rdi
549	leaq    _ebss(%rip), %rcx
550	subq	%rdi, %rcx
551	shrq	$3, %rcx
552	rep	stosq
553
554	pushq	%rsi
555	call	load_stage2_idt
556
557	/* Pass boot_params to initialize_identity_maps() */
558	movq	(%rsp), %rdi
559	call	initialize_identity_maps
560	popq	%rsi
561
562/*
563 * Do the extraction, and jump to the new kernel..
564 */
565	pushq	%rsi			/* Save the real mode argument */
566	movq	%rsi, %rdi		/* real mode address */
567	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
568	leaq	input_data(%rip), %rdx  /* input_data */
569	movl	input_len(%rip), %ecx	/* input_len */
570	movq	%rbp, %r8		/* output target address */
571	movl	output_len(%rip), %r9d	/* decompressed length, end of relocs */
572	call	extract_kernel		/* returns kernel location in %rax */
573	popq	%rsi
574
575/*
576 * Jump to the decompressed kernel.
577 */
578	jmp	*%rax
579SYM_FUNC_END(.Lrelocated)
580
581	.code32
582/*
583 * This is the 32-bit trampoline that will be copied over to low memory.
584 *
585 * RDI contains the return address (might be above 4G).
586 * ECX contains the base address of the trampoline memory.
587 * Non zero RDX means trampoline needs to enable 5-level paging.
588 */
589SYM_CODE_START(trampoline_32bit_src)
590	/* Set up data and stack segments */
591	movl	$__KERNEL_DS, %eax
592	movl	%eax, %ds
593	movl	%eax, %ss
594
595	/* Set up new stack */
596	leal	TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
597
598	/* Disable paging */
599	movl	%cr0, %eax
600	btrl	$X86_CR0_PG_BIT, %eax
601	movl	%eax, %cr0
602
603	/* Check what paging mode we want to be in after the trampoline */
604	testl	%edx, %edx
605	jz	1f
606
607	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
608	movl	%cr4, %eax
609	testl	$X86_CR4_LA57, %eax
610	jnz	3f
611	jmp	2f
6121:
613	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
614	movl	%cr4, %eax
615	testl	$X86_CR4_LA57, %eax
616	jz	3f
6172:
618	/* Point CR3 to the trampoline's new top level page table */
619	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
620	movl	%eax, %cr3
6213:
622	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
623	pushl	%ecx
624	pushl	%edx
625	movl	$MSR_EFER, %ecx
626	rdmsr
627	btsl	$_EFER_LME, %eax
628	/* Avoid writing EFER if no change was made (for TDX guest) */
629	jc	1f
630	wrmsr
6311:	popl	%edx
632	popl	%ecx
633
634#ifdef CONFIG_X86_MCE
635	/*
636	 * Preserve CR4.MCE if the kernel will enable #MC support.
637	 * Clearing MCE may fault in some environments (that also force #MC
638	 * support). Any machine check that occurs before #MC support is fully
639	 * configured will crash the system regardless of the CR4.MCE value set
640	 * here.
641	 */
642	movl	%cr4, %eax
643	andl	$X86_CR4_MCE, %eax
644#else
645	movl	$0, %eax
646#endif
647
648	/* Enable PAE and LA57 (if required) paging modes */
649	orl	$X86_CR4_PAE, %eax
650	testl	%edx, %edx
651	jz	1f
652	orl	$X86_CR4_LA57, %eax
6531:
654	movl	%eax, %cr4
655
656	/* Calculate address of paging_enabled() once we are executing in the trampoline */
657	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
658
659	/* Prepare the stack for far return to Long Mode */
660	pushl	$__KERNEL_CS
661	pushl	%eax
662
663	/* Enable paging again. */
664	movl	%cr0, %eax
665	btsl	$X86_CR0_PG_BIT, %eax
666	movl	%eax, %cr0
667
668	lret
669SYM_CODE_END(trampoline_32bit_src)
670
671	.code64
672SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
673	/* Return from the trampoline */
674	jmp	*%rdi
675SYM_FUNC_END(.Lpaging_enabled)
676
677	/*
678         * The trampoline code has a size limit.
679         * Make sure we fail to compile if the trampoline code grows
680         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
681	 */
682	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
683
684	.code32
685SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
686	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
6871:
688	hlt
689	jmp     1b
690SYM_FUNC_END(.Lno_longmode)
691
692	.globl	verify_cpu
693#include "../../kernel/verify_cpu.S"
694
695	.data
696SYM_DATA_START_LOCAL(gdt64)
697	.word	gdt_end - gdt - 1
698	.quad   gdt - gdt64
699SYM_DATA_END(gdt64)
700	.balign	8
701SYM_DATA_START_LOCAL(gdt)
702	.word	gdt_end - gdt - 1
703	.long	0
704	.word	0
705	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
706	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
707	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
708	.quad	0x0080890000000000	/* TS descriptor */
709	.quad   0x0000000000000000	/* TS continued */
710SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
711
712SYM_DATA_START(boot_idt_desc)
713	.word	boot_idt_end - boot_idt - 1
714	.quad	0
715SYM_DATA_END(boot_idt_desc)
716	.balign 8
717SYM_DATA_START(boot_idt)
718	.rept	BOOT_IDT_ENTRIES
719	.quad	0
720	.quad	0
721	.endr
722SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
723
724/*
725 * Stack and heap for uncompression
726 */
727	.bss
728	.balign 4
729SYM_DATA_LOCAL(boot_heap,	.fill BOOT_HEAP_SIZE, 1, 0)
730
731SYM_DATA_START_LOCAL(boot_stack)
732	.fill BOOT_STACK_SIZE, 1, 0
733	.balign 16
734SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
735
736/*
737 * Space for page tables (not in .bss so not zeroed)
738 */
739	.section ".pgtable","aw",@nobits
740	.balign 4096
741SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
742
743/*
744 * The page table is going to be used instead of page table in the trampoline
745 * memory.
746 */
747SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)
748