xref: /openbmc/linux/arch/x86/boot/compressed/head_64.S (revision 9257bd80b917cc7908abd27ed5a5211964563f62)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38#include "pgtable.h"
39
40/*
41 * Locally defined symbols should be marked hidden:
42 */
43	.hidden _bss
44	.hidden _ebss
45	.hidden _end
46
47	__HEAD
48
49/*
50 * This macro gives the relative virtual address of X, i.e. the offset of X
51 * from startup_32. This is the same as the link-time virtual address of X,
52 * since startup_32 is at 0, but defining it this way tells the
53 * assembler/linker that we do not want the actual run-time address of X. This
54 * prevents the linker from trying to create unwanted run-time relocation
55 * entries for the reference when the compressed kernel is linked as PIE.
56 *
57 * A reference X(%reg) will result in the link-time VA of X being stored with
58 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
59 * adds the 64-bit base address where the kernel is loaded.
60 *
61 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
62 * and no run-time relocation.
63 *
64 * The macro should be used as a displacement with a base register containing
65 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
66 * [$ rva(X)].
67 *
68 * This macro can only be used from within the .head.text section, since the
69 * expression requires startup_32 to be in the same section as the code being
70 * assembled.
71 */
72#define rva(X) ((X) - startup_32)
73
74	.code32
75SYM_FUNC_START(startup_32)
76	/*
77	 * 32bit entry is 0 and it is ABI so immutable!
78	 * If we come here directly from a bootloader,
79	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
80	 * all need to be under the 4G limit.
81	 */
82	cld
83	cli
84
85/*
86 * Calculate the delta between where we were compiled to run
87 * at and where we were actually loaded at.  This can only be done
88 * with a short local call on x86.  Nothing  else will tell us what
89 * address we are running at.  The reserved chunk of the real-mode
90 * data at 0x1e4 (defined as a scratch field) are used as the stack
91 * for this calculation. Only 4 bytes are needed.
92 */
93	leal	(BP_scratch+4)(%esi), %esp
94	call	1f
951:	popl	%ebp
96	subl	$ rva(1b), %ebp
97
98	/* Load new GDT with the 64bit segments using 32bit descriptor */
99	leal	rva(gdt)(%ebp), %eax
100	movl	%eax, 2(%eax)
101	lgdt	(%eax)
102
103	/* Load segment registers with our descriptors */
104	movl	$__BOOT_DS, %eax
105	movl	%eax, %ds
106	movl	%eax, %es
107	movl	%eax, %fs
108	movl	%eax, %gs
109	movl	%eax, %ss
110
111	/* Setup a stack and load CS from current GDT */
112	leal	rva(boot_stack_end)(%ebp), %esp
113
114	pushl	$__KERNEL32_CS
115	leal	rva(1f)(%ebp), %eax
116	pushl	%eax
117	lretl
1181:
119
120	/* Setup Exception handling for SEV-ES */
121	call	startup32_load_idt
122
123	/* Make sure cpu supports long mode. */
124	call	verify_cpu
125	testl	%eax, %eax
126	jnz	.Lno_longmode
127
128/*
129 * Compute the delta between where we were compiled to run at
130 * and where the code will actually run at.
131 *
132 * %ebp contains the address we are loaded at by the boot loader and %ebx
133 * contains the address where we should move the kernel image temporarily
134 * for safe in-place decompression.
135 */
136
137#ifdef CONFIG_RELOCATABLE
138	movl	%ebp, %ebx
139
140#ifdef CONFIG_EFI_STUB
141/*
142 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
143 * offset to the start of the space allocated for the image. efi_pe_entry will
144 * set up image_offset to tell us where the image actually starts, so that we
145 * can use the full available buffer.
146 *	image_offset = startup_32 - image_base
147 * Otherwise image_offset will be zero and has no effect on the calculations.
148 */
149	subl    rva(image_offset)(%ebp), %ebx
150#endif
151
152	movl	BP_kernel_alignment(%esi), %eax
153	decl	%eax
154	addl	%eax, %ebx
155	notl	%eax
156	andl	%eax, %ebx
157	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
158	jae	1f
159#endif
160	movl	$LOAD_PHYSICAL_ADDR, %ebx
1611:
162
163	/* Target address to relocate to for decompression */
164	addl	BP_init_size(%esi), %ebx
165	subl	$ rva(_end), %ebx
166
167/*
168 * Prepare for entering 64 bit mode
169 */
170
171	/* Enable PAE mode */
172	movl	%cr4, %eax
173	orl	$X86_CR4_PAE, %eax
174	movl	%eax, %cr4
175
176 /*
177  * Build early 4G boot pagetable
178  */
179	/*
180	 * If SEV is active then set the encryption mask in the page tables.
181	 * This will insure that when the kernel is copied and decompressed
182	 * it will be done so encrypted.
183	 */
184	call	get_sev_encryption_bit
185	xorl	%edx, %edx
186#ifdef	CONFIG_AMD_MEM_ENCRYPT
187	testl	%eax, %eax
188	jz	1f
189	subl	$32, %eax	/* Encryption bit is always above bit 31 */
190	bts	%eax, %edx	/* Set encryption mask for page tables */
191	/*
192	 * Mark SEV as active in sev_status so that startup32_check_sev_cbit()
193	 * will do a check. The sev_status memory will be fully initialized
194	 * with the contents of MSR_AMD_SEV_STATUS later in
195	 * set_sev_encryption_mask(). For now it is sufficient to know that SEV
196	 * is active.
197	 */
198	movl	$1, rva(sev_status)(%ebp)
1991:
200#endif
201
202	/* Initialize Page tables to 0 */
203	leal	rva(pgtable)(%ebx), %edi
204	xorl	%eax, %eax
205	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
206	rep	stosl
207
208	/* Build Level 4 */
209	leal	rva(pgtable + 0)(%ebx), %edi
210	leal	0x1007 (%edi), %eax
211	movl	%eax, 0(%edi)
212	addl	%edx, 4(%edi)
213
214	/* Build Level 3 */
215	leal	rva(pgtable + 0x1000)(%ebx), %edi
216	leal	0x1007(%edi), %eax
217	movl	$4, %ecx
2181:	movl	%eax, 0x00(%edi)
219	addl	%edx, 0x04(%edi)
220	addl	$0x00001000, %eax
221	addl	$8, %edi
222	decl	%ecx
223	jnz	1b
224
225	/* Build Level 2 */
226	leal	rva(pgtable + 0x2000)(%ebx), %edi
227	movl	$0x00000183, %eax
228	movl	$2048, %ecx
2291:	movl	%eax, 0(%edi)
230	addl	%edx, 4(%edi)
231	addl	$0x00200000, %eax
232	addl	$8, %edi
233	decl	%ecx
234	jnz	1b
235
236	/* Enable the boot page tables */
237	leal	rva(pgtable)(%ebx), %eax
238	movl	%eax, %cr3
239
240	/* Enable Long mode in EFER (Extended Feature Enable Register) */
241	movl	$MSR_EFER, %ecx
242	rdmsr
243	btsl	$_EFER_LME, %eax
244	wrmsr
245
246	/* After gdt is loaded */
247	xorl	%eax, %eax
248	lldt	%ax
249	movl    $__BOOT_TSS, %eax
250	ltr	%ax
251
252	/*
253	 * Setup for the jump to 64bit mode
254	 *
255	 * When the jump is performed we will be in long mode but
256	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
257	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
258	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
259	 * We place all of the values on our mini stack so lret can
260	 * used to perform that far jump.
261	 */
262	leal	rva(startup_64)(%ebp), %eax
263#ifdef CONFIG_EFI_MIXED
264	movl	rva(efi32_boot_args)(%ebp), %edi
265	testl	%edi, %edi
266	jz	1f
267	leal	rva(efi64_stub_entry)(%ebp), %eax
268	movl	rva(efi32_boot_args+4)(%ebp), %esi
269	movl	rva(efi32_boot_args+8)(%ebp), %edx	// saved bootparams pointer
270	testl	%edx, %edx
271	jnz	1f
272	/*
273	 * efi_pe_entry uses MS calling convention, which requires 32 bytes of
274	 * shadow space on the stack even if all arguments are passed in
275	 * registers. We also need an additional 8 bytes for the space that
276	 * would be occupied by the return address, and this also results in
277	 * the correct stack alignment for entry.
278	 */
279	subl	$40, %esp
280	leal	rva(efi_pe_entry)(%ebp), %eax
281	movl	%edi, %ecx			// MS calling convention
282	movl	%esi, %edx
2831:
284#endif
285	/* Check if the C-bit position is correct when SEV is active */
286	call	startup32_check_sev_cbit
287
288	pushl	$__KERNEL_CS
289	pushl	%eax
290
291	/* Enter paged protected Mode, activating Long Mode */
292	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
293	movl	%eax, %cr0
294
295	/* Jump from 32bit compatibility mode into 64bit mode. */
296	lret
297SYM_FUNC_END(startup_32)
298
299#ifdef CONFIG_EFI_MIXED
300	.org 0x190
301SYM_FUNC_START(efi32_stub_entry)
302	add	$0x4, %esp		/* Discard return address */
303	popl	%ecx
304	popl	%edx
305	popl	%esi
306
307	call	1f
3081:	pop	%ebp
309	subl	$ rva(1b), %ebp
310
311	movl	%esi, rva(efi32_boot_args+8)(%ebp)
312SYM_INNER_LABEL(efi32_pe_stub_entry, SYM_L_LOCAL)
313	movl	%ecx, rva(efi32_boot_args)(%ebp)
314	movl	%edx, rva(efi32_boot_args+4)(%ebp)
315	movb	$0, rva(efi_is64)(%ebp)
316
317	/* Save firmware GDTR and code/data selectors */
318	sgdtl	rva(efi32_boot_gdt)(%ebp)
319	movw	%cs, rva(efi32_boot_cs)(%ebp)
320	movw	%ds, rva(efi32_boot_ds)(%ebp)
321
322	/* Disable paging */
323	movl	%cr0, %eax
324	btrl	$X86_CR0_PG_BIT, %eax
325	movl	%eax, %cr0
326
327	jmp	startup_32
328SYM_FUNC_END(efi32_stub_entry)
329#endif
330
331	.code64
332	.org 0x200
333SYM_CODE_START(startup_64)
334	/*
335	 * 64bit entry is 0x200 and it is ABI so immutable!
336	 * We come here either from startup_32 or directly from a
337	 * 64bit bootloader.
338	 * If we come here from a bootloader, kernel(text+data+bss+brk),
339	 * ramdisk, zero_page, command line could be above 4G.
340	 * We depend on an identity mapped page table being provided
341	 * that maps our entire kernel(text+data+bss+brk), zero page
342	 * and command line.
343	 */
344
345	cld
346	cli
347
348	/* Setup data segments. */
349	xorl	%eax, %eax
350	movl	%eax, %ds
351	movl	%eax, %es
352	movl	%eax, %ss
353	movl	%eax, %fs
354	movl	%eax, %gs
355
356	/*
357	 * Compute the decompressed kernel start address.  It is where
358	 * we were loaded at aligned to a 2M boundary. %rbp contains the
359	 * decompressed kernel start address.
360	 *
361	 * If it is a relocatable kernel then decompress and run the kernel
362	 * from load address aligned to 2MB addr, otherwise decompress and
363	 * run the kernel from LOAD_PHYSICAL_ADDR
364	 *
365	 * We cannot rely on the calculation done in 32-bit mode, since we
366	 * may have been invoked via the 64-bit entry point.
367	 */
368
369	/* Start with the delta to where the kernel will run at. */
370#ifdef CONFIG_RELOCATABLE
371	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
372
373#ifdef CONFIG_EFI_STUB
374/*
375 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
376 * offset to the start of the space allocated for the image. efi_pe_entry will
377 * set up image_offset to tell us where the image actually starts, so that we
378 * can use the full available buffer.
379 *	image_offset = startup_32 - image_base
380 * Otherwise image_offset will be zero and has no effect on the calculations.
381 */
382	movl    image_offset(%rip), %eax
383	subq	%rax, %rbp
384#endif
385
386	movl	BP_kernel_alignment(%rsi), %eax
387	decl	%eax
388	addq	%rax, %rbp
389	notq	%rax
390	andq	%rax, %rbp
391	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
392	jae	1f
393#endif
394	movq	$LOAD_PHYSICAL_ADDR, %rbp
3951:
396
397	/* Target address to relocate to for decompression */
398	movl	BP_init_size(%rsi), %ebx
399	subl	$ rva(_end), %ebx
400	addq	%rbp, %rbx
401
402	/* Set up the stack */
403	leaq	rva(boot_stack_end)(%rbx), %rsp
404
405	/*
406	 * At this point we are in long mode with 4-level paging enabled,
407	 * but we might want to enable 5-level paging or vice versa.
408	 *
409	 * The problem is that we cannot do it directly. Setting or clearing
410	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
411	 * long mode and paging first.
412	 *
413	 * We also need a trampoline in lower memory to switch over from
414	 * 4- to 5-level paging for cases when the bootloader puts the kernel
415	 * above 4G, but didn't enable 5-level paging for us.
416	 *
417	 * The same trampoline can be used to switch from 5- to 4-level paging
418	 * mode, like when starting 4-level paging kernel via kexec() when
419	 * original kernel worked in 5-level paging mode.
420	 *
421	 * For the trampoline, we need the top page table to reside in lower
422	 * memory as we don't have a way to load 64-bit values into CR3 in
423	 * 32-bit mode.
424	 *
425	 * We go though the trampoline even if we don't have to: if we're
426	 * already in a desired paging mode. This way the trampoline code gets
427	 * tested on every boot.
428	 */
429
430	/* Make sure we have GDT with 32-bit code segment */
431	leaq	gdt64(%rip), %rax
432	addq	%rax, 2(%rax)
433	lgdt	(%rax)
434
435	/* Reload CS so IRET returns to a CS actually in the GDT */
436	pushq	$__KERNEL_CS
437	leaq	.Lon_kernel_cs(%rip), %rax
438	pushq	%rax
439	lretq
440
441.Lon_kernel_cs:
442
443	pushq	%rsi
444	call	load_stage1_idt
445	popq	%rsi
446
447	/*
448	 * paging_prepare() sets up the trampoline and checks if we need to
449	 * enable 5-level paging.
450	 *
451	 * paging_prepare() returns a two-quadword structure which lands
452	 * into RDX:RAX:
453	 *   - Address of the trampoline is returned in RAX.
454	 *   - Non zero RDX means trampoline needs to enable 5-level
455	 *     paging.
456	 *
457	 * RSI holds real mode data and needs to be preserved across
458	 * this function call.
459	 */
460	pushq	%rsi
461	movq	%rsi, %rdi		/* real mode address */
462	call	paging_prepare
463	popq	%rsi
464
465	/* Save the trampoline address in RCX */
466	movq	%rax, %rcx
467
468	/*
469	 * Load the address of trampoline_return() into RDI.
470	 * It will be used by the trampoline to return to the main code.
471	 */
472	leaq	trampoline_return(%rip), %rdi
473
474	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
475	pushq	$__KERNEL32_CS
476	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
477	pushq	%rax
478	lretq
479trampoline_return:
480	/* Restore the stack, the 32-bit trampoline uses its own stack */
481	leaq	rva(boot_stack_end)(%rbx), %rsp
482
483	/*
484	 * cleanup_trampoline() would restore trampoline memory.
485	 *
486	 * RDI is address of the page table to use instead of page table
487	 * in trampoline memory (if required).
488	 *
489	 * RSI holds real mode data and needs to be preserved across
490	 * this function call.
491	 */
492	pushq	%rsi
493	leaq	rva(top_pgtable)(%rbx), %rdi
494	call	cleanup_trampoline
495	popq	%rsi
496
497	/* Zero EFLAGS */
498	pushq	$0
499	popfq
500
501/*
502 * Copy the compressed kernel to the end of our buffer
503 * where decompression in place becomes safe.
504 */
505	pushq	%rsi
506	leaq	(_bss-8)(%rip), %rsi
507	leaq	rva(_bss-8)(%rbx), %rdi
508	movl	$(_bss - startup_32), %ecx
509	shrl	$3, %ecx
510	std
511	rep	movsq
512	cld
513	popq	%rsi
514
515	/*
516	 * The GDT may get overwritten either during the copy we just did or
517	 * during extract_kernel below. To avoid any issues, repoint the GDTR
518	 * to the new copy of the GDT.
519	 */
520	leaq	rva(gdt64)(%rbx), %rax
521	leaq	rva(gdt)(%rbx), %rdx
522	movq	%rdx, 2(%rax)
523	lgdt	(%rax)
524
525/*
526 * Jump to the relocated address.
527 */
528	leaq	rva(.Lrelocated)(%rbx), %rax
529	jmp	*%rax
530SYM_CODE_END(startup_64)
531
532#ifdef CONFIG_EFI_STUB
533	.org 0x390
534SYM_FUNC_START(efi64_stub_entry)
535SYM_FUNC_START_ALIAS(efi_stub_entry)
536	and	$~0xf, %rsp			/* realign the stack */
537	movq	%rdx, %rbx			/* save boot_params pointer */
538	call	efi_main
539	movq	%rbx,%rsi
540	leaq	rva(startup_64)(%rax), %rax
541	jmp	*%rax
542SYM_FUNC_END(efi64_stub_entry)
543SYM_FUNC_END_ALIAS(efi_stub_entry)
544#endif
545
546	.text
547SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
548
549/*
550 * Clear BSS (stack is currently empty)
551 */
552	xorl	%eax, %eax
553	leaq    _bss(%rip), %rdi
554	leaq    _ebss(%rip), %rcx
555	subq	%rdi, %rcx
556	shrq	$3, %rcx
557	rep	stosq
558
559/*
560 * If running as an SEV guest, the encryption mask is required in the
561 * page-table setup code below. When the guest also has SEV-ES enabled
562 * set_sev_encryption_mask() will cause #VC exceptions, but the stage2
563 * handler can't map its GHCB because the page-table is not set up yet.
564 * So set up the encryption mask here while still on the stage1 #VC
565 * handler. Then load stage2 IDT and switch to the kernel's own
566 * page-table.
567 */
568	pushq	%rsi
569	call	set_sev_encryption_mask
570	call	load_stage2_idt
571
572	/* Pass boot_params to initialize_identity_maps() */
573	movq	(%rsp), %rdi
574	call	initialize_identity_maps
575	popq	%rsi
576
577/*
578 * Do the extraction, and jump to the new kernel..
579 */
580	pushq	%rsi			/* Save the real mode argument */
581	movq	%rsi, %rdi		/* real mode address */
582	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
583	leaq	input_data(%rip), %rdx  /* input_data */
584	movl	input_len(%rip), %ecx	/* input_len */
585	movq	%rbp, %r8		/* output target address */
586	movl	output_len(%rip), %r9d	/* decompressed length, end of relocs */
587	call	extract_kernel		/* returns kernel location in %rax */
588	popq	%rsi
589
590/*
591 * Jump to the decompressed kernel.
592 */
593	jmp	*%rax
594SYM_FUNC_END(.Lrelocated)
595
596	.code32
597/*
598 * This is the 32-bit trampoline that will be copied over to low memory.
599 *
600 * RDI contains the return address (might be above 4G).
601 * ECX contains the base address of the trampoline memory.
602 * Non zero RDX means trampoline needs to enable 5-level paging.
603 */
604SYM_CODE_START(trampoline_32bit_src)
605	/* Set up data and stack segments */
606	movl	$__KERNEL_DS, %eax
607	movl	%eax, %ds
608	movl	%eax, %ss
609
610	/* Set up new stack */
611	leal	TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
612
613	/* Disable paging */
614	movl	%cr0, %eax
615	btrl	$X86_CR0_PG_BIT, %eax
616	movl	%eax, %cr0
617
618	/* Check what paging mode we want to be in after the trampoline */
619	testl	%edx, %edx
620	jz	1f
621
622	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
623	movl	%cr4, %eax
624	testl	$X86_CR4_LA57, %eax
625	jnz	3f
626	jmp	2f
6271:
628	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
629	movl	%cr4, %eax
630	testl	$X86_CR4_LA57, %eax
631	jz	3f
6322:
633	/* Point CR3 to the trampoline's new top level page table */
634	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
635	movl	%eax, %cr3
6363:
637	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
638	pushl	%ecx
639	pushl	%edx
640	movl	$MSR_EFER, %ecx
641	rdmsr
642	btsl	$_EFER_LME, %eax
643	wrmsr
644	popl	%edx
645	popl	%ecx
646
647	/* Enable PAE and LA57 (if required) paging modes */
648	movl	$X86_CR4_PAE, %eax
649	testl	%edx, %edx
650	jz	1f
651	orl	$X86_CR4_LA57, %eax
6521:
653	movl	%eax, %cr4
654
655	/* Calculate address of paging_enabled() once we are executing in the trampoline */
656	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
657
658	/* Prepare the stack for far return to Long Mode */
659	pushl	$__KERNEL_CS
660	pushl	%eax
661
662	/* Enable paging again */
663	movl	$(X86_CR0_PG | X86_CR0_PE), %eax
664	movl	%eax, %cr0
665
666	lret
667SYM_CODE_END(trampoline_32bit_src)
668
669	.code64
670SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
671	/* Return from the trampoline */
672	jmp	*%rdi
673SYM_FUNC_END(.Lpaging_enabled)
674
675	/*
676         * The trampoline code has a size limit.
677         * Make sure we fail to compile if the trampoline code grows
678         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
679	 */
680	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
681
682	.code32
683SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
684	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
6851:
686	hlt
687	jmp     1b
688SYM_FUNC_END(.Lno_longmode)
689
690#include "../../kernel/verify_cpu.S"
691
692	.data
693SYM_DATA_START_LOCAL(gdt64)
694	.word	gdt_end - gdt - 1
695	.quad   gdt - gdt64
696SYM_DATA_END(gdt64)
697	.balign	8
698SYM_DATA_START_LOCAL(gdt)
699	.word	gdt_end - gdt - 1
700	.long	0
701	.word	0
702	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
703	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
704	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
705	.quad	0x0080890000000000	/* TS descriptor */
706	.quad   0x0000000000000000	/* TS continued */
707SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
708
709SYM_DATA_START(boot_idt_desc)
710	.word	boot_idt_end - boot_idt - 1
711	.quad	0
712SYM_DATA_END(boot_idt_desc)
713	.balign 8
714SYM_DATA_START(boot_idt)
715	.rept	BOOT_IDT_ENTRIES
716	.quad	0
717	.quad	0
718	.endr
719SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
720
721#ifdef CONFIG_AMD_MEM_ENCRYPT
722SYM_DATA_START(boot32_idt_desc)
723	.word   boot32_idt_end - boot32_idt - 1
724	.long   0
725SYM_DATA_END(boot32_idt_desc)
726	.balign 8
727SYM_DATA_START(boot32_idt)
728	.rept 32
729	.quad 0
730	.endr
731SYM_DATA_END_LABEL(boot32_idt, SYM_L_GLOBAL, boot32_idt_end)
732#endif
733
734#ifdef CONFIG_EFI_STUB
735SYM_DATA(image_offset, .long 0)
736#endif
737#ifdef CONFIG_EFI_MIXED
738SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0)
739SYM_DATA(efi_is64, .byte 1)
740
741#define ST32_boottime		60 // offsetof(efi_system_table_32_t, boottime)
742#define BS32_handle_protocol	88 // offsetof(efi_boot_services_32_t, handle_protocol)
743#define LI32_image_base		32 // offsetof(efi_loaded_image_32_t, image_base)
744
745	__HEAD
746	.code32
747SYM_FUNC_START(efi32_pe_entry)
748/*
749 * efi_status_t efi32_pe_entry(efi_handle_t image_handle,
750 *			       efi_system_table_32_t *sys_table)
751 */
752
753	pushl	%ebp
754	movl	%esp, %ebp
755	pushl	%eax				// dummy push to allocate loaded_image
756
757	pushl	%ebx				// save callee-save registers
758	pushl	%edi
759
760	call	verify_cpu			// check for long mode support
761	testl	%eax, %eax
762	movl	$0x80000003, %eax		// EFI_UNSUPPORTED
763	jnz	2f
764
765	call	1f
7661:	pop	%ebx
767	subl	$ rva(1b), %ebx
768
769	/* Get the loaded image protocol pointer from the image handle */
770	leal	-4(%ebp), %eax
771	pushl	%eax				// &loaded_image
772	leal	rva(loaded_image_proto)(%ebx), %eax
773	pushl	%eax				// pass the GUID address
774	pushl	8(%ebp)				// pass the image handle
775
776	/*
777	 * Note the alignment of the stack frame.
778	 *   sys_table
779	 *   handle             <-- 16-byte aligned on entry by ABI
780	 *   return address
781	 *   frame pointer
782	 *   loaded_image       <-- local variable
783	 *   saved %ebx		<-- 16-byte aligned here
784	 *   saved %edi
785	 *   &loaded_image
786	 *   &loaded_image_proto
787	 *   handle             <-- 16-byte aligned for call to handle_protocol
788	 */
789
790	movl	12(%ebp), %eax			// sys_table
791	movl	ST32_boottime(%eax), %eax	// sys_table->boottime
792	call	*BS32_handle_protocol(%eax)	// sys_table->boottime->handle_protocol
793	addl	$12, %esp			// restore argument space
794	testl	%eax, %eax
795	jnz	2f
796
797	movl	8(%ebp), %ecx			// image_handle
798	movl	12(%ebp), %edx			// sys_table
799	movl	-4(%ebp), %esi			// loaded_image
800	movl	LI32_image_base(%esi), %esi	// loaded_image->image_base
801	movl	%ebx, %ebp			// startup_32 for efi32_pe_stub_entry
802	/*
803	 * We need to set the image_offset variable here since startup_32() will
804	 * use it before we get to the 64-bit efi_pe_entry() in C code.
805	 */
806	subl	%esi, %ebx
807	movl	%ebx, rva(image_offset)(%ebp)	// save image_offset
808	jmp	efi32_pe_stub_entry
809
8102:	popl	%edi				// restore callee-save registers
811	popl	%ebx
812	leave
813	ret
814SYM_FUNC_END(efi32_pe_entry)
815
816	.section ".rodata"
817	/* EFI loaded image protocol GUID */
818	.balign 4
819SYM_DATA_START_LOCAL(loaded_image_proto)
820	.long	0x5b1b31a1
821	.word	0x9562, 0x11d2
822	.byte	0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
823SYM_DATA_END(loaded_image_proto)
824#endif
825
826#ifdef CONFIG_AMD_MEM_ENCRYPT
827	__HEAD
828	.code32
829/*
830 * Write an IDT entry into boot32_idt
831 *
832 * Parameters:
833 *
834 * %eax:	Handler address
835 * %edx:	Vector number
836 *
837 * Physical offset is expected in %ebp
838 */
839SYM_FUNC_START(startup32_set_idt_entry)
840	push    %ebx
841	push    %ecx
842
843	/* IDT entry address to %ebx */
844	leal    rva(boot32_idt)(%ebp), %ebx
845	shl	$3, %edx
846	addl    %edx, %ebx
847
848	/* Build IDT entry, lower 4 bytes */
849	movl    %eax, %edx
850	andl    $0x0000ffff, %edx	# Target code segment offset [15:0]
851	movl    $__KERNEL32_CS, %ecx	# Target code segment selector
852	shl     $16, %ecx
853	orl     %ecx, %edx
854
855	/* Store lower 4 bytes to IDT */
856	movl    %edx, (%ebx)
857
858	/* Build IDT entry, upper 4 bytes */
859	movl    %eax, %edx
860	andl    $0xffff0000, %edx	# Target code segment offset [31:16]
861	orl     $0x00008e00, %edx	# Present, Type 32-bit Interrupt Gate
862
863	/* Store upper 4 bytes to IDT */
864	movl    %edx, 4(%ebx)
865
866	pop     %ecx
867	pop     %ebx
868	ret
869SYM_FUNC_END(startup32_set_idt_entry)
870#endif
871
872SYM_FUNC_START(startup32_load_idt)
873#ifdef CONFIG_AMD_MEM_ENCRYPT
874	/* #VC handler */
875	leal    rva(startup32_vc_handler)(%ebp), %eax
876	movl    $X86_TRAP_VC, %edx
877	call    startup32_set_idt_entry
878
879	/* Load IDT */
880	leal	rva(boot32_idt)(%ebp), %eax
881	movl	%eax, rva(boot32_idt_desc+2)(%ebp)
882	lidt    rva(boot32_idt_desc)(%ebp)
883#endif
884	ret
885SYM_FUNC_END(startup32_load_idt)
886
887/*
888 * Check for the correct C-bit position when the startup_32 boot-path is used.
889 *
890 * The check makes use of the fact that all memory is encrypted when paging is
891 * disabled. The function creates 64 bits of random data using the RDRAND
892 * instruction. RDRAND is mandatory for SEV guests, so always available. If the
893 * hypervisor violates that the kernel will crash right here.
894 *
895 * The 64 bits of random data are stored to a memory location and at the same
896 * time kept in the %eax and %ebx registers. Since encryption is always active
897 * when paging is off the random data will be stored encrypted in main memory.
898 *
899 * Then paging is enabled. When the C-bit position is correct all memory is
900 * still mapped encrypted and comparing the register values with memory will
901 * succeed. An incorrect C-bit position will map all memory unencrypted, so that
902 * the compare will use the encrypted random data and fail.
903 */
904SYM_FUNC_START(startup32_check_sev_cbit)
905#ifdef CONFIG_AMD_MEM_ENCRYPT
906	pushl	%eax
907	pushl	%ebx
908	pushl	%ecx
909	pushl	%edx
910
911	/* Check for non-zero sev_status */
912	movl	rva(sev_status)(%ebp), %eax
913	testl	%eax, %eax
914	jz	4f
915
916	/*
917	 * Get two 32-bit random values - Don't bail out if RDRAND fails
918	 * because it is better to prevent forward progress if no random value
919	 * can be gathered.
920	 */
9211:	rdrand	%eax
922	jnc	1b
9232:	rdrand	%ebx
924	jnc	2b
925
926	/* Store to memory and keep it in the registers */
927	movl	%eax, rva(sev_check_data)(%ebp)
928	movl	%ebx, rva(sev_check_data+4)(%ebp)
929
930	/* Enable paging to see if encryption is active */
931	movl	%cr0, %edx			 /* Backup %cr0 in %edx */
932	movl	$(X86_CR0_PG | X86_CR0_PE), %ecx /* Enable Paging and Protected mode */
933	movl	%ecx, %cr0
934
935	cmpl	%eax, rva(sev_check_data)(%ebp)
936	jne	3f
937	cmpl	%ebx, rva(sev_check_data+4)(%ebp)
938	jne	3f
939
940	movl	%edx, %cr0	/* Restore previous %cr0 */
941
942	jmp	4f
943
9443:	/* Check failed - hlt the machine */
945	hlt
946	jmp	3b
947
9484:
949	popl	%edx
950	popl	%ecx
951	popl	%ebx
952	popl	%eax
953#endif
954	ret
955SYM_FUNC_END(startup32_check_sev_cbit)
956
957/*
958 * Stack and heap for uncompression
959 */
960	.bss
961	.balign 4
962SYM_DATA_LOCAL(boot_heap,	.fill BOOT_HEAP_SIZE, 1, 0)
963
964SYM_DATA_START_LOCAL(boot_stack)
965	.fill BOOT_STACK_SIZE, 1, 0
966	.balign 16
967SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
968
969/*
970 * Space for page tables (not in .bss so not zeroed)
971 */
972	.section ".pgtable","aw",@nobits
973	.balign 4096
974SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
975
976/*
977 * The page table is going to be used instead of page table in the trampoline
978 * memory.
979 */
980SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)
981