xref: /openbmc/linux/arch/x86/boot/compressed/head_64.S (revision 6562c9ac)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include <asm/desc_defs.h>
37#include <asm/trapnr.h>
38#include "pgtable.h"
39
40/*
41 * Locally defined symbols should be marked hidden:
42 */
43	.hidden _bss
44	.hidden _ebss
45	.hidden _end
46
47	__HEAD
48
49/*
50 * This macro gives the relative virtual address of X, i.e. the offset of X
51 * from startup_32. This is the same as the link-time virtual address of X,
52 * since startup_32 is at 0, but defining it this way tells the
53 * assembler/linker that we do not want the actual run-time address of X. This
54 * prevents the linker from trying to create unwanted run-time relocation
55 * entries for the reference when the compressed kernel is linked as PIE.
56 *
57 * A reference X(%reg) will result in the link-time VA of X being stored with
58 * the instruction, and a run-time R_X86_64_RELATIVE relocation entry that
59 * adds the 64-bit base address where the kernel is loaded.
60 *
61 * Replacing it with (X-startup_32)(%reg) results in the offset being stored,
62 * and no run-time relocation.
63 *
64 * The macro should be used as a displacement with a base register containing
65 * the run-time address of startup_32 [i.e. rva(X)(%reg)], or as an immediate
66 * [$ rva(X)].
67 *
68 * This macro can only be used from within the .head.text section, since the
69 * expression requires startup_32 to be in the same section as the code being
70 * assembled.
71 */
72#define rva(X) ((X) - startup_32)
73
74	.code32
75SYM_FUNC_START(startup_32)
76	/*
77	 * 32bit entry is 0 and it is ABI so immutable!
78	 * If we come here directly from a bootloader,
79	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
80	 * all need to be under the 4G limit.
81	 */
82	cld
83	cli
84
85/*
86 * Calculate the delta between where we were compiled to run
87 * at and where we were actually loaded at.  This can only be done
88 * with a short local call on x86.  Nothing  else will tell us what
89 * address we are running at.  The reserved chunk of the real-mode
90 * data at 0x1e4 (defined as a scratch field) are used as the stack
91 * for this calculation. Only 4 bytes are needed.
92 */
93	leal	(BP_scratch+4)(%esi), %esp
94	call	1f
951:	popl	%ebp
96	subl	$ rva(1b), %ebp
97
98	/* Load new GDT with the 64bit segments using 32bit descriptor */
99	leal	rva(gdt)(%ebp), %eax
100	movl	%eax, 2(%eax)
101	lgdt	(%eax)
102
103	/* Load segment registers with our descriptors */
104	movl	$__BOOT_DS, %eax
105	movl	%eax, %ds
106	movl	%eax, %es
107	movl	%eax, %fs
108	movl	%eax, %gs
109	movl	%eax, %ss
110
111	/* Setup a stack and load CS from current GDT */
112	leal	rva(boot_stack_end)(%ebp), %esp
113
114	pushl	$__KERNEL32_CS
115	leal	rva(1f)(%ebp), %eax
116	pushl	%eax
117	lretl
1181:
119
120	/* Setup Exception handling for SEV-ES */
121	call	startup32_load_idt
122
123	/* Make sure cpu supports long mode. */
124	call	verify_cpu
125	testl	%eax, %eax
126	jnz	.Lno_longmode
127
128/*
129 * Compute the delta between where we were compiled to run at
130 * and where the code will actually run at.
131 *
132 * %ebp contains the address we are loaded at by the boot loader and %ebx
133 * contains the address where we should move the kernel image temporarily
134 * for safe in-place decompression.
135 */
136
137#ifdef CONFIG_RELOCATABLE
138	movl	%ebp, %ebx
139
140#ifdef CONFIG_EFI_STUB
141/*
142 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
143 * offset to the start of the space allocated for the image. efi_pe_entry will
144 * set up image_offset to tell us where the image actually starts, so that we
145 * can use the full available buffer.
146 *	image_offset = startup_32 - image_base
147 * Otherwise image_offset will be zero and has no effect on the calculations.
148 */
149	subl    rva(image_offset)(%ebp), %ebx
150#endif
151
152	movl	BP_kernel_alignment(%esi), %eax
153	decl	%eax
154	addl	%eax, %ebx
155	notl	%eax
156	andl	%eax, %ebx
157	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
158	jae	1f
159#endif
160	movl	$LOAD_PHYSICAL_ADDR, %ebx
1611:
162
163	/* Target address to relocate to for decompression */
164	addl	BP_init_size(%esi), %ebx
165	subl	$ rva(_end), %ebx
166
167/*
168 * Prepare for entering 64 bit mode
169 */
170
171	/* Enable PAE mode */
172	movl	%cr4, %eax
173	orl	$X86_CR4_PAE, %eax
174	movl	%eax, %cr4
175
176 /*
177  * Build early 4G boot pagetable
178  */
179	/*
180	 * If SEV is active then set the encryption mask in the page tables.
181	 * This will insure that when the kernel is copied and decompressed
182	 * it will be done so encrypted.
183	 */
184	call	get_sev_encryption_bit
185	xorl	%edx, %edx
186#ifdef	CONFIG_AMD_MEM_ENCRYPT
187	testl	%eax, %eax
188	jz	1f
189	subl	$32, %eax	/* Encryption bit is always above bit 31 */
190	bts	%eax, %edx	/* Set encryption mask for page tables */
191	/*
192	 * Set MSR_AMD64_SEV_ENABLED_BIT in sev_status so that
193	 * startup32_check_sev_cbit() will do a check. sev_enable() will
194	 * initialize sev_status with all the bits reported by
195	 * MSR_AMD_SEV_STATUS later, but only MSR_AMD64_SEV_ENABLED_BIT
196	 * needs to be set for now.
197	 */
198	movl	$1, rva(sev_status)(%ebp)
1991:
200#endif
201
202	/* Initialize Page tables to 0 */
203	leal	rva(pgtable)(%ebx), %edi
204	xorl	%eax, %eax
205	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
206	rep	stosl
207
208	/* Build Level 4 */
209	leal	rva(pgtable + 0)(%ebx), %edi
210	leal	0x1007 (%edi), %eax
211	movl	%eax, 0(%edi)
212	addl	%edx, 4(%edi)
213
214	/* Build Level 3 */
215	leal	rva(pgtable + 0x1000)(%ebx), %edi
216	leal	0x1007(%edi), %eax
217	movl	$4, %ecx
2181:	movl	%eax, 0x00(%edi)
219	addl	%edx, 0x04(%edi)
220	addl	$0x00001000, %eax
221	addl	$8, %edi
222	decl	%ecx
223	jnz	1b
224
225	/* Build Level 2 */
226	leal	rva(pgtable + 0x2000)(%ebx), %edi
227	movl	$0x00000183, %eax
228	movl	$2048, %ecx
2291:	movl	%eax, 0(%edi)
230	addl	%edx, 4(%edi)
231	addl	$0x00200000, %eax
232	addl	$8, %edi
233	decl	%ecx
234	jnz	1b
235
236	/* Enable the boot page tables */
237	leal	rva(pgtable)(%ebx), %eax
238	movl	%eax, %cr3
239
240	/* Enable Long mode in EFER (Extended Feature Enable Register) */
241	movl	$MSR_EFER, %ecx
242	rdmsr
243	btsl	$_EFER_LME, %eax
244	wrmsr
245
246	/* After gdt is loaded */
247	xorl	%eax, %eax
248	lldt	%ax
249	movl    $__BOOT_TSS, %eax
250	ltr	%ax
251
252	/*
253	 * Setup for the jump to 64bit mode
254	 *
255	 * When the jump is performed we will be in long mode but
256	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
257	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
258	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
259	 * We place all of the values on our mini stack so lret can
260	 * used to perform that far jump.
261	 */
262	leal	rva(startup_64)(%ebp), %eax
263#ifdef CONFIG_EFI_MIXED
264	movl	rva(efi32_boot_args)(%ebp), %edi
265	testl	%edi, %edi
266	jz	1f
267	leal	rva(efi64_stub_entry)(%ebp), %eax
268	movl	rva(efi32_boot_args+4)(%ebp), %esi
269	movl	rva(efi32_boot_args+8)(%ebp), %edx	// saved bootparams pointer
270	testl	%edx, %edx
271	jnz	1f
272	/*
273	 * efi_pe_entry uses MS calling convention, which requires 32 bytes of
274	 * shadow space on the stack even if all arguments are passed in
275	 * registers. We also need an additional 8 bytes for the space that
276	 * would be occupied by the return address, and this also results in
277	 * the correct stack alignment for entry.
278	 */
279	subl	$40, %esp
280	leal	rva(efi_pe_entry)(%ebp), %eax
281	movl	%edi, %ecx			// MS calling convention
282	movl	%esi, %edx
2831:
284#endif
285	/* Check if the C-bit position is correct when SEV is active */
286	call	startup32_check_sev_cbit
287
288	pushl	$__KERNEL_CS
289	pushl	%eax
290
291	/* Enter paged protected Mode, activating Long Mode */
292	movl	$CR0_STATE, %eax
293	movl	%eax, %cr0
294
295	/* Jump from 32bit compatibility mode into 64bit mode. */
296	lret
297SYM_FUNC_END(startup_32)
298
299#ifdef CONFIG_EFI_MIXED
300	.org 0x190
301SYM_FUNC_START(efi32_stub_entry)
302	add	$0x4, %esp		/* Discard return address */
303	popl	%ecx
304	popl	%edx
305	popl	%esi
306
307	call	1f
3081:	pop	%ebp
309	subl	$ rva(1b), %ebp
310
311	movl	%esi, rva(efi32_boot_args+8)(%ebp)
312SYM_INNER_LABEL(efi32_pe_stub_entry, SYM_L_LOCAL)
313	movl	%ecx, rva(efi32_boot_args)(%ebp)
314	movl	%edx, rva(efi32_boot_args+4)(%ebp)
315	movb	$0, rva(efi_is64)(%ebp)
316
317	/* Save firmware GDTR and code/data selectors */
318	sgdtl	rva(efi32_boot_gdt)(%ebp)
319	movw	%cs, rva(efi32_boot_cs)(%ebp)
320	movw	%ds, rva(efi32_boot_ds)(%ebp)
321
322	/* Store firmware IDT descriptor */
323	sidtl	rva(efi32_boot_idt)(%ebp)
324
325	/* Disable paging */
326	movl	%cr0, %eax
327	btrl	$X86_CR0_PG_BIT, %eax
328	movl	%eax, %cr0
329
330	jmp	startup_32
331SYM_FUNC_END(efi32_stub_entry)
332#endif
333
334	.code64
335	.org 0x200
336SYM_CODE_START(startup_64)
337	/*
338	 * 64bit entry is 0x200 and it is ABI so immutable!
339	 * We come here either from startup_32 or directly from a
340	 * 64bit bootloader.
341	 * If we come here from a bootloader, kernel(text+data+bss+brk),
342	 * ramdisk, zero_page, command line could be above 4G.
343	 * We depend on an identity mapped page table being provided
344	 * that maps our entire kernel(text+data+bss+brk), zero page
345	 * and command line.
346	 */
347
348	cld
349	cli
350
351	/* Setup data segments. */
352	xorl	%eax, %eax
353	movl	%eax, %ds
354	movl	%eax, %es
355	movl	%eax, %ss
356	movl	%eax, %fs
357	movl	%eax, %gs
358
359	/*
360	 * Compute the decompressed kernel start address.  It is where
361	 * we were loaded at aligned to a 2M boundary. %rbp contains the
362	 * decompressed kernel start address.
363	 *
364	 * If it is a relocatable kernel then decompress and run the kernel
365	 * from load address aligned to 2MB addr, otherwise decompress and
366	 * run the kernel from LOAD_PHYSICAL_ADDR
367	 *
368	 * We cannot rely on the calculation done in 32-bit mode, since we
369	 * may have been invoked via the 64-bit entry point.
370	 */
371
372	/* Start with the delta to where the kernel will run at. */
373#ifdef CONFIG_RELOCATABLE
374	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
375
376#ifdef CONFIG_EFI_STUB
377/*
378 * If we were loaded via the EFI LoadImage service, startup_32 will be at an
379 * offset to the start of the space allocated for the image. efi_pe_entry will
380 * set up image_offset to tell us where the image actually starts, so that we
381 * can use the full available buffer.
382 *	image_offset = startup_32 - image_base
383 * Otherwise image_offset will be zero and has no effect on the calculations.
384 */
385	movl    image_offset(%rip), %eax
386	subq	%rax, %rbp
387#endif
388
389	movl	BP_kernel_alignment(%rsi), %eax
390	decl	%eax
391	addq	%rax, %rbp
392	notq	%rax
393	andq	%rax, %rbp
394	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
395	jae	1f
396#endif
397	movq	$LOAD_PHYSICAL_ADDR, %rbp
3981:
399
400	/* Target address to relocate to for decompression */
401	movl	BP_init_size(%rsi), %ebx
402	subl	$ rva(_end), %ebx
403	addq	%rbp, %rbx
404
405	/* Set up the stack */
406	leaq	rva(boot_stack_end)(%rbx), %rsp
407
408	/*
409	 * At this point we are in long mode with 4-level paging enabled,
410	 * but we might want to enable 5-level paging or vice versa.
411	 *
412	 * The problem is that we cannot do it directly. Setting or clearing
413	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
414	 * long mode and paging first.
415	 *
416	 * We also need a trampoline in lower memory to switch over from
417	 * 4- to 5-level paging for cases when the bootloader puts the kernel
418	 * above 4G, but didn't enable 5-level paging for us.
419	 *
420	 * The same trampoline can be used to switch from 5- to 4-level paging
421	 * mode, like when starting 4-level paging kernel via kexec() when
422	 * original kernel worked in 5-level paging mode.
423	 *
424	 * For the trampoline, we need the top page table to reside in lower
425	 * memory as we don't have a way to load 64-bit values into CR3 in
426	 * 32-bit mode.
427	 *
428	 * We go though the trampoline even if we don't have to: if we're
429	 * already in a desired paging mode. This way the trampoline code gets
430	 * tested on every boot.
431	 */
432
433	/* Make sure we have GDT with 32-bit code segment */
434	leaq	gdt64(%rip), %rax
435	addq	%rax, 2(%rax)
436	lgdt	(%rax)
437
438	/* Reload CS so IRET returns to a CS actually in the GDT */
439	pushq	$__KERNEL_CS
440	leaq	.Lon_kernel_cs(%rip), %rax
441	pushq	%rax
442	lretq
443
444.Lon_kernel_cs:
445
446	pushq	%rsi
447	call	load_stage1_idt
448	popq	%rsi
449
450#ifdef CONFIG_AMD_MEM_ENCRYPT
451	/*
452	 * Now that the stage1 interrupt handlers are set up, #VC exceptions from
453	 * CPUID instructions can be properly handled for SEV-ES guests.
454	 *
455	 * For SEV-SNP, the CPUID table also needs to be set up in advance of any
456	 * CPUID instructions being issued, so go ahead and do that now via
457	 * sev_enable(), which will also handle the rest of the SEV-related
458	 * detection/setup to ensure that has been done in advance of any dependent
459	 * code.
460	 */
461	pushq	%rsi
462	movq	%rsi, %rdi		/* real mode address */
463	call	sev_enable
464	popq	%rsi
465#endif
466
467	/*
468	 * paging_prepare() sets up the trampoline and checks if we need to
469	 * enable 5-level paging.
470	 *
471	 * paging_prepare() returns a two-quadword structure which lands
472	 * into RDX:RAX:
473	 *   - Address of the trampoline is returned in RAX.
474	 *   - Non zero RDX means trampoline needs to enable 5-level
475	 *     paging.
476	 *
477	 * RSI holds real mode data and needs to be preserved across
478	 * this function call.
479	 */
480	pushq	%rsi
481	movq	%rsi, %rdi		/* real mode address */
482	call	paging_prepare
483	popq	%rsi
484
485	/* Save the trampoline address in RCX */
486	movq	%rax, %rcx
487
488	/*
489	 * Load the address of trampoline_return() into RDI.
490	 * It will be used by the trampoline to return to the main code.
491	 */
492	leaq	trampoline_return(%rip), %rdi
493
494	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
495	pushq	$__KERNEL32_CS
496	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
497	pushq	%rax
498	lretq
499trampoline_return:
500	/* Restore the stack, the 32-bit trampoline uses its own stack */
501	leaq	rva(boot_stack_end)(%rbx), %rsp
502
503	/*
504	 * cleanup_trampoline() would restore trampoline memory.
505	 *
506	 * RDI is address of the page table to use instead of page table
507	 * in trampoline memory (if required).
508	 *
509	 * RSI holds real mode data and needs to be preserved across
510	 * this function call.
511	 */
512	pushq	%rsi
513	leaq	rva(top_pgtable)(%rbx), %rdi
514	call	cleanup_trampoline
515	popq	%rsi
516
517	/* Zero EFLAGS */
518	pushq	$0
519	popfq
520
521/*
522 * Copy the compressed kernel to the end of our buffer
523 * where decompression in place becomes safe.
524 */
525	pushq	%rsi
526	leaq	(_bss-8)(%rip), %rsi
527	leaq	rva(_bss-8)(%rbx), %rdi
528	movl	$(_bss - startup_32), %ecx
529	shrl	$3, %ecx
530	std
531	rep	movsq
532	cld
533	popq	%rsi
534
535	/*
536	 * The GDT may get overwritten either during the copy we just did or
537	 * during extract_kernel below. To avoid any issues, repoint the GDTR
538	 * to the new copy of the GDT.
539	 */
540	leaq	rva(gdt64)(%rbx), %rax
541	leaq	rva(gdt)(%rbx), %rdx
542	movq	%rdx, 2(%rax)
543	lgdt	(%rax)
544
545/*
546 * Jump to the relocated address.
547 */
548	leaq	rva(.Lrelocated)(%rbx), %rax
549	jmp	*%rax
550SYM_CODE_END(startup_64)
551
552#ifdef CONFIG_EFI_STUB
553	.org 0x390
554SYM_FUNC_START(efi64_stub_entry)
555	and	$~0xf, %rsp			/* realign the stack */
556	movq	%rdx, %rbx			/* save boot_params pointer */
557	call	efi_main
558	movq	%rbx,%rsi
559	leaq	rva(startup_64)(%rax), %rax
560	jmp	*%rax
561SYM_FUNC_END(efi64_stub_entry)
562SYM_FUNC_ALIAS(efi_stub_entry, efi64_stub_entry)
563#endif
564
565	.text
566SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)
567
568/*
569 * Clear BSS (stack is currently empty)
570 */
571	xorl	%eax, %eax
572	leaq    _bss(%rip), %rdi
573	leaq    _ebss(%rip), %rcx
574	subq	%rdi, %rcx
575	shrq	$3, %rcx
576	rep	stosq
577
578	pushq	%rsi
579	call	load_stage2_idt
580
581	/* Pass boot_params to initialize_identity_maps() */
582	movq	(%rsp), %rdi
583	call	initialize_identity_maps
584	popq	%rsi
585
586/*
587 * Do the extraction, and jump to the new kernel..
588 */
589	pushq	%rsi			/* Save the real mode argument */
590	movq	%rsi, %rdi		/* real mode address */
591	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
592	leaq	input_data(%rip), %rdx  /* input_data */
593	movl	input_len(%rip), %ecx	/* input_len */
594	movq	%rbp, %r8		/* output target address */
595	movl	output_len(%rip), %r9d	/* decompressed length, end of relocs */
596	call	extract_kernel		/* returns kernel location in %rax */
597	popq	%rsi
598
599/*
600 * Jump to the decompressed kernel.
601 */
602	jmp	*%rax
603SYM_FUNC_END(.Lrelocated)
604
605	.code32
606/*
607 * This is the 32-bit trampoline that will be copied over to low memory.
608 *
609 * RDI contains the return address (might be above 4G).
610 * ECX contains the base address of the trampoline memory.
611 * Non zero RDX means trampoline needs to enable 5-level paging.
612 */
613SYM_CODE_START(trampoline_32bit_src)
614	/* Set up data and stack segments */
615	movl	$__KERNEL_DS, %eax
616	movl	%eax, %ds
617	movl	%eax, %ss
618
619	/* Set up new stack */
620	leal	TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
621
622	/* Disable paging */
623	movl	%cr0, %eax
624	btrl	$X86_CR0_PG_BIT, %eax
625	movl	%eax, %cr0
626
627	/* Check what paging mode we want to be in after the trampoline */
628	testl	%edx, %edx
629	jz	1f
630
631	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
632	movl	%cr4, %eax
633	testl	$X86_CR4_LA57, %eax
634	jnz	3f
635	jmp	2f
6361:
637	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
638	movl	%cr4, %eax
639	testl	$X86_CR4_LA57, %eax
640	jz	3f
6412:
642	/* Point CR3 to the trampoline's new top level page table */
643	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
644	movl	%eax, %cr3
6453:
646	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
647	pushl	%ecx
648	pushl	%edx
649	movl	$MSR_EFER, %ecx
650	rdmsr
651	btsl	$_EFER_LME, %eax
652	/* Avoid writing EFER if no change was made (for TDX guest) */
653	jc	1f
654	wrmsr
6551:	popl	%edx
656	popl	%ecx
657
658#ifdef CONFIG_X86_MCE
659	/*
660	 * Preserve CR4.MCE if the kernel will enable #MC support.
661	 * Clearing MCE may fault in some environments (that also force #MC
662	 * support). Any machine check that occurs before #MC support is fully
663	 * configured will crash the system regardless of the CR4.MCE value set
664	 * here.
665	 */
666	movl	%cr4, %eax
667	andl	$X86_CR4_MCE, %eax
668#else
669	movl	$0, %eax
670#endif
671
672	/* Enable PAE and LA57 (if required) paging modes */
673	orl	$X86_CR4_PAE, %eax
674	testl	%edx, %edx
675	jz	1f
676	orl	$X86_CR4_LA57, %eax
6771:
678	movl	%eax, %cr4
679
680	/* Calculate address of paging_enabled() once we are executing in the trampoline */
681	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
682
683	/* Prepare the stack for far return to Long Mode */
684	pushl	$__KERNEL_CS
685	pushl	%eax
686
687	/* Enable paging again. */
688	movl	%cr0, %eax
689	btsl	$X86_CR0_PG_BIT, %eax
690	movl	%eax, %cr0
691
692	lret
693SYM_CODE_END(trampoline_32bit_src)
694
695	.code64
696SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
697	/* Return from the trampoline */
698	jmp	*%rdi
699SYM_FUNC_END(.Lpaging_enabled)
700
701	/*
702         * The trampoline code has a size limit.
703         * Make sure we fail to compile if the trampoline code grows
704         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
705	 */
706	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
707
708	.code32
709SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
710	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
7111:
712	hlt
713	jmp     1b
714SYM_FUNC_END(.Lno_longmode)
715
716#include "../../kernel/verify_cpu.S"
717
718	.data
719SYM_DATA_START_LOCAL(gdt64)
720	.word	gdt_end - gdt - 1
721	.quad   gdt - gdt64
722SYM_DATA_END(gdt64)
723	.balign	8
724SYM_DATA_START_LOCAL(gdt)
725	.word	gdt_end - gdt - 1
726	.long	0
727	.word	0
728	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
729	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
730	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
731	.quad	0x0080890000000000	/* TS descriptor */
732	.quad   0x0000000000000000	/* TS continued */
733SYM_DATA_END_LABEL(gdt, SYM_L_LOCAL, gdt_end)
734
735SYM_DATA_START(boot_idt_desc)
736	.word	boot_idt_end - boot_idt - 1
737	.quad	0
738SYM_DATA_END(boot_idt_desc)
739	.balign 8
740SYM_DATA_START(boot_idt)
741	.rept	BOOT_IDT_ENTRIES
742	.quad	0
743	.quad	0
744	.endr
745SYM_DATA_END_LABEL(boot_idt, SYM_L_GLOBAL, boot_idt_end)
746
747#ifdef CONFIG_AMD_MEM_ENCRYPT
748SYM_DATA_START(boot32_idt_desc)
749	.word   boot32_idt_end - boot32_idt - 1
750	.long   0
751SYM_DATA_END(boot32_idt_desc)
752	.balign 8
753SYM_DATA_START(boot32_idt)
754	.rept 32
755	.quad 0
756	.endr
757SYM_DATA_END_LABEL(boot32_idt, SYM_L_GLOBAL, boot32_idt_end)
758#endif
759
760#ifdef CONFIG_EFI_STUB
761SYM_DATA(image_offset, .long 0)
762#endif
763#ifdef CONFIG_EFI_MIXED
764SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0)
765SYM_DATA(efi_is64, .byte 1)
766
767#define ST32_boottime		60 // offsetof(efi_system_table_32_t, boottime)
768#define BS32_handle_protocol	88 // offsetof(efi_boot_services_32_t, handle_protocol)
769#define LI32_image_base		32 // offsetof(efi_loaded_image_32_t, image_base)
770
771	__HEAD
772	.code32
773SYM_FUNC_START(efi32_pe_entry)
774/*
775 * efi_status_t efi32_pe_entry(efi_handle_t image_handle,
776 *			       efi_system_table_32_t *sys_table)
777 */
778
779	pushl	%ebp
780	movl	%esp, %ebp
781	pushl	%eax				// dummy push to allocate loaded_image
782
783	pushl	%ebx				// save callee-save registers
784	pushl	%edi
785
786	call	verify_cpu			// check for long mode support
787	testl	%eax, %eax
788	movl	$0x80000003, %eax		// EFI_UNSUPPORTED
789	jnz	2f
790
791	call	1f
7921:	pop	%ebx
793	subl	$ rva(1b), %ebx
794
795	/* Get the loaded image protocol pointer from the image handle */
796	leal	-4(%ebp), %eax
797	pushl	%eax				// &loaded_image
798	leal	rva(loaded_image_proto)(%ebx), %eax
799	pushl	%eax				// pass the GUID address
800	pushl	8(%ebp)				// pass the image handle
801
802	/*
803	 * Note the alignment of the stack frame.
804	 *   sys_table
805	 *   handle             <-- 16-byte aligned on entry by ABI
806	 *   return address
807	 *   frame pointer
808	 *   loaded_image       <-- local variable
809	 *   saved %ebx		<-- 16-byte aligned here
810	 *   saved %edi
811	 *   &loaded_image
812	 *   &loaded_image_proto
813	 *   handle             <-- 16-byte aligned for call to handle_protocol
814	 */
815
816	movl	12(%ebp), %eax			// sys_table
817	movl	ST32_boottime(%eax), %eax	// sys_table->boottime
818	call	*BS32_handle_protocol(%eax)	// sys_table->boottime->handle_protocol
819	addl	$12, %esp			// restore argument space
820	testl	%eax, %eax
821	jnz	2f
822
823	movl	8(%ebp), %ecx			// image_handle
824	movl	12(%ebp), %edx			// sys_table
825	movl	-4(%ebp), %esi			// loaded_image
826	movl	LI32_image_base(%esi), %esi	// loaded_image->image_base
827	movl	%ebx, %ebp			// startup_32 for efi32_pe_stub_entry
828	/*
829	 * We need to set the image_offset variable here since startup_32() will
830	 * use it before we get to the 64-bit efi_pe_entry() in C code.
831	 */
832	subl	%esi, %ebx
833	movl	%ebx, rva(image_offset)(%ebp)	// save image_offset
834	jmp	efi32_pe_stub_entry
835
8362:	popl	%edi				// restore callee-save registers
837	popl	%ebx
838	leave
839	RET
840SYM_FUNC_END(efi32_pe_entry)
841
842	.section ".rodata"
843	/* EFI loaded image protocol GUID */
844	.balign 4
845SYM_DATA_START_LOCAL(loaded_image_proto)
846	.long	0x5b1b31a1
847	.word	0x9562, 0x11d2
848	.byte	0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
849SYM_DATA_END(loaded_image_proto)
850#endif
851
852#ifdef CONFIG_AMD_MEM_ENCRYPT
853	__HEAD
854	.code32
855/*
856 * Write an IDT entry into boot32_idt
857 *
858 * Parameters:
859 *
860 * %eax:	Handler address
861 * %edx:	Vector number
862 *
863 * Physical offset is expected in %ebp
864 */
865SYM_FUNC_START(startup32_set_idt_entry)
866	push    %ebx
867	push    %ecx
868
869	/* IDT entry address to %ebx */
870	leal    rva(boot32_idt)(%ebp), %ebx
871	shl	$3, %edx
872	addl    %edx, %ebx
873
874	/* Build IDT entry, lower 4 bytes */
875	movl    %eax, %edx
876	andl    $0x0000ffff, %edx	# Target code segment offset [15:0]
877	movl    $__KERNEL32_CS, %ecx	# Target code segment selector
878	shl     $16, %ecx
879	orl     %ecx, %edx
880
881	/* Store lower 4 bytes to IDT */
882	movl    %edx, (%ebx)
883
884	/* Build IDT entry, upper 4 bytes */
885	movl    %eax, %edx
886	andl    $0xffff0000, %edx	# Target code segment offset [31:16]
887	orl     $0x00008e00, %edx	# Present, Type 32-bit Interrupt Gate
888
889	/* Store upper 4 bytes to IDT */
890	movl    %edx, 4(%ebx)
891
892	pop     %ecx
893	pop     %ebx
894	RET
895SYM_FUNC_END(startup32_set_idt_entry)
896#endif
897
898SYM_FUNC_START(startup32_load_idt)
899#ifdef CONFIG_AMD_MEM_ENCRYPT
900	/* #VC handler */
901	leal    rva(startup32_vc_handler)(%ebp), %eax
902	movl    $X86_TRAP_VC, %edx
903	call    startup32_set_idt_entry
904
905	/* Load IDT */
906	leal	rva(boot32_idt)(%ebp), %eax
907	movl	%eax, rva(boot32_idt_desc+2)(%ebp)
908	lidt    rva(boot32_idt_desc)(%ebp)
909#endif
910	RET
911SYM_FUNC_END(startup32_load_idt)
912
913/*
914 * Check for the correct C-bit position when the startup_32 boot-path is used.
915 *
916 * The check makes use of the fact that all memory is encrypted when paging is
917 * disabled. The function creates 64 bits of random data using the RDRAND
918 * instruction. RDRAND is mandatory for SEV guests, so always available. If the
919 * hypervisor violates that the kernel will crash right here.
920 *
921 * The 64 bits of random data are stored to a memory location and at the same
922 * time kept in the %eax and %ebx registers. Since encryption is always active
923 * when paging is off the random data will be stored encrypted in main memory.
924 *
925 * Then paging is enabled. When the C-bit position is correct all memory is
926 * still mapped encrypted and comparing the register values with memory will
927 * succeed. An incorrect C-bit position will map all memory unencrypted, so that
928 * the compare will use the encrypted random data and fail.
929 */
930SYM_FUNC_START(startup32_check_sev_cbit)
931#ifdef CONFIG_AMD_MEM_ENCRYPT
932	pushl	%eax
933	pushl	%ebx
934	pushl	%ecx
935	pushl	%edx
936
937	/* Check for non-zero sev_status */
938	movl	rva(sev_status)(%ebp), %eax
939	testl	%eax, %eax
940	jz	4f
941
942	/*
943	 * Get two 32-bit random values - Don't bail out if RDRAND fails
944	 * because it is better to prevent forward progress if no random value
945	 * can be gathered.
946	 */
9471:	rdrand	%eax
948	jnc	1b
9492:	rdrand	%ebx
950	jnc	2b
951
952	/* Store to memory and keep it in the registers */
953	movl	%eax, rva(sev_check_data)(%ebp)
954	movl	%ebx, rva(sev_check_data+4)(%ebp)
955
956	/* Enable paging to see if encryption is active */
957	movl	%cr0, %edx			 /* Backup %cr0 in %edx */
958	movl	$(X86_CR0_PG | X86_CR0_PE), %ecx /* Enable Paging and Protected mode */
959	movl	%ecx, %cr0
960
961	cmpl	%eax, rva(sev_check_data)(%ebp)
962	jne	3f
963	cmpl	%ebx, rva(sev_check_data+4)(%ebp)
964	jne	3f
965
966	movl	%edx, %cr0	/* Restore previous %cr0 */
967
968	jmp	4f
969
9703:	/* Check failed - hlt the machine */
971	hlt
972	jmp	3b
973
9744:
975	popl	%edx
976	popl	%ecx
977	popl	%ebx
978	popl	%eax
979#endif
980	RET
981SYM_FUNC_END(startup32_check_sev_cbit)
982
983/*
984 * Stack and heap for uncompression
985 */
986	.bss
987	.balign 4
988SYM_DATA_LOCAL(boot_heap,	.fill BOOT_HEAP_SIZE, 1, 0)
989
990SYM_DATA_START_LOCAL(boot_stack)
991	.fill BOOT_STACK_SIZE, 1, 0
992	.balign 16
993SYM_DATA_END_LABEL(boot_stack, SYM_L_LOCAL, boot_stack_end)
994
995/*
996 * Space for page tables (not in .bss so not zeroed)
997 */
998	.section ".pgtable","aw",@nobits
999	.balign 4096
1000SYM_DATA_LOCAL(pgtable,		.fill BOOT_PGT_SIZE, 1, 0)
1001
1002/*
1003 * The page table is going to be used instead of page table in the trampoline
1004 * memory.
1005 */
1006SYM_DATA_LOCAL(top_pgtable,	.fill PAGE_SIZE, 1, 0)
1007