xref: /openbmc/linux/arch/x86/boot/compressed/head_64.S (revision 151f4e2b)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/boot/head.S
4 *
5 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
6 */
7
8/*
9 *  head.S contains the 32-bit startup code.
10 *
11 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
12 * the page directory will exist. The startup code will be overwritten by
13 * the page directory. [According to comments etc elsewhere on a compressed
14 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 *
16 * Page 0 is deliberately kept safe, since System Management Mode code in
17 * laptops may need to access the BIOS data stored there.  This is also
18 * useful for future device drivers that either access the BIOS via VM86
19 * mode.
20 */
21
22/*
23 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
24 */
25	.code32
26	.text
27
28#include <linux/init.h>
29#include <linux/linkage.h>
30#include <asm/segment.h>
31#include <asm/boot.h>
32#include <asm/msr.h>
33#include <asm/processor-flags.h>
34#include <asm/asm-offsets.h>
35#include <asm/bootparam.h>
36#include "pgtable.h"
37
38/*
39 * Locally defined symbols should be marked hidden:
40 */
41	.hidden _bss
42	.hidden _ebss
43	.hidden _got
44	.hidden _egot
45
46	__HEAD
47	.code32
48ENTRY(startup_32)
49	/*
50	 * 32bit entry is 0 and it is ABI so immutable!
51	 * If we come here directly from a bootloader,
52	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
53	 * all need to be under the 4G limit.
54	 */
55	cld
56	/*
57	 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
58	 * us to not reload segments
59	 */
60	testb $KEEP_SEGMENTS, BP_loadflags(%esi)
61	jnz 1f
62
63	cli
64	movl	$(__BOOT_DS), %eax
65	movl	%eax, %ds
66	movl	%eax, %es
67	movl	%eax, %ss
681:
69
70/*
71 * Calculate the delta between where we were compiled to run
72 * at and where we were actually loaded at.  This can only be done
73 * with a short local call on x86.  Nothing  else will tell us what
74 * address we are running at.  The reserved chunk of the real-mode
75 * data at 0x1e4 (defined as a scratch field) are used as the stack
76 * for this calculation. Only 4 bytes are needed.
77 */
78	leal	(BP_scratch+4)(%esi), %esp
79	call	1f
801:	popl	%ebp
81	subl	$1b, %ebp
82
83/* setup a stack and make sure cpu supports long mode. */
84	movl	$boot_stack_end, %eax
85	addl	%ebp, %eax
86	movl	%eax, %esp
87
88	call	verify_cpu
89	testl	%eax, %eax
90	jnz	no_longmode
91
92/*
93 * Compute the delta between where we were compiled to run at
94 * and where the code will actually run at.
95 *
96 * %ebp contains the address we are loaded at by the boot loader and %ebx
97 * contains the address where we should move the kernel image temporarily
98 * for safe in-place decompression.
99 */
100
101#ifdef CONFIG_RELOCATABLE
102	movl	%ebp, %ebx
103	movl	BP_kernel_alignment(%esi), %eax
104	decl	%eax
105	addl	%eax, %ebx
106	notl	%eax
107	andl	%eax, %ebx
108	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
109	jge	1f
110#endif
111	movl	$LOAD_PHYSICAL_ADDR, %ebx
1121:
113
114	/* Target address to relocate to for decompression */
115	movl	BP_init_size(%esi), %eax
116	subl	$_end, %eax
117	addl	%eax, %ebx
118
119/*
120 * Prepare for entering 64 bit mode
121 */
122
123	/* Load new GDT with the 64bit segments using 32bit descriptor */
124	addl	%ebp, gdt+2(%ebp)
125	lgdt	gdt(%ebp)
126
127	/* Enable PAE mode */
128	movl	%cr4, %eax
129	orl	$X86_CR4_PAE, %eax
130	movl	%eax, %cr4
131
132 /*
133  * Build early 4G boot pagetable
134  */
135	/*
136	 * If SEV is active then set the encryption mask in the page tables.
137	 * This will insure that when the kernel is copied and decompressed
138	 * it will be done so encrypted.
139	 */
140	call	get_sev_encryption_bit
141	xorl	%edx, %edx
142	testl	%eax, %eax
143	jz	1f
144	subl	$32, %eax	/* Encryption bit is always above bit 31 */
145	bts	%eax, %edx	/* Set encryption mask for page tables */
1461:
147
148	/* Initialize Page tables to 0 */
149	leal	pgtable(%ebx), %edi
150	xorl	%eax, %eax
151	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
152	rep	stosl
153
154	/* Build Level 4 */
155	leal	pgtable + 0(%ebx), %edi
156	leal	0x1007 (%edi), %eax
157	movl	%eax, 0(%edi)
158	addl	%edx, 4(%edi)
159
160	/* Build Level 3 */
161	leal	pgtable + 0x1000(%ebx), %edi
162	leal	0x1007(%edi), %eax
163	movl	$4, %ecx
1641:	movl	%eax, 0x00(%edi)
165	addl	%edx, 0x04(%edi)
166	addl	$0x00001000, %eax
167	addl	$8, %edi
168	decl	%ecx
169	jnz	1b
170
171	/* Build Level 2 */
172	leal	pgtable + 0x2000(%ebx), %edi
173	movl	$0x00000183, %eax
174	movl	$2048, %ecx
1751:	movl	%eax, 0(%edi)
176	addl	%edx, 4(%edi)
177	addl	$0x00200000, %eax
178	addl	$8, %edi
179	decl	%ecx
180	jnz	1b
181
182	/* Enable the boot page tables */
183	leal	pgtable(%ebx), %eax
184	movl	%eax, %cr3
185
186	/* Enable Long mode in EFER (Extended Feature Enable Register) */
187	movl	$MSR_EFER, %ecx
188	rdmsr
189	btsl	$_EFER_LME, %eax
190	wrmsr
191
192	/* After gdt is loaded */
193	xorl	%eax, %eax
194	lldt	%ax
195	movl    $__BOOT_TSS, %eax
196	ltr	%ax
197
198	/*
199	 * Setup for the jump to 64bit mode
200	 *
201	 * When the jump is performend we will be in long mode but
202	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
203	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
204	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
205	 * We place all of the values on our mini stack so lret can
206	 * used to perform that far jump.
207	 */
208	pushl	$__KERNEL_CS
209	leal	startup_64(%ebp), %eax
210#ifdef CONFIG_EFI_MIXED
211	movl	efi32_config(%ebp), %ebx
212	cmp	$0, %ebx
213	jz	1f
214	leal	handover_entry(%ebp), %eax
2151:
216#endif
217	pushl	%eax
218
219	/* Enter paged protected Mode, activating Long Mode */
220	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
221	movl	%eax, %cr0
222
223	/* Jump from 32bit compatibility mode into 64bit mode. */
224	lret
225ENDPROC(startup_32)
226
227#ifdef CONFIG_EFI_MIXED
228	.org 0x190
229ENTRY(efi32_stub_entry)
230	add	$0x4, %esp		/* Discard return address */
231	popl	%ecx
232	popl	%edx
233	popl	%esi
234
235	leal	(BP_scratch+4)(%esi), %esp
236	call	1f
2371:	pop	%ebp
238	subl	$1b, %ebp
239
240	movl	%ecx, efi32_config(%ebp)
241	movl	%edx, efi32_config+8(%ebp)
242	sgdtl	efi32_boot_gdt(%ebp)
243
244	leal	efi32_config(%ebp), %eax
245	movl	%eax, efi_config(%ebp)
246
247	jmp	startup_32
248ENDPROC(efi32_stub_entry)
249#endif
250
251	.code64
252	.org 0x200
253ENTRY(startup_64)
254	/*
255	 * 64bit entry is 0x200 and it is ABI so immutable!
256	 * We come here either from startup_32 or directly from a
257	 * 64bit bootloader.
258	 * If we come here from a bootloader, kernel(text+data+bss+brk),
259	 * ramdisk, zero_page, command line could be above 4G.
260	 * We depend on an identity mapped page table being provided
261	 * that maps our entire kernel(text+data+bss+brk), zero page
262	 * and command line.
263	 */
264
265	/* Setup data segments. */
266	xorl	%eax, %eax
267	movl	%eax, %ds
268	movl	%eax, %es
269	movl	%eax, %ss
270	movl	%eax, %fs
271	movl	%eax, %gs
272
273	/*
274	 * Compute the decompressed kernel start address.  It is where
275	 * we were loaded at aligned to a 2M boundary. %rbp contains the
276	 * decompressed kernel start address.
277	 *
278	 * If it is a relocatable kernel then decompress and run the kernel
279	 * from load address aligned to 2MB addr, otherwise decompress and
280	 * run the kernel from LOAD_PHYSICAL_ADDR
281	 *
282	 * We cannot rely on the calculation done in 32-bit mode, since we
283	 * may have been invoked via the 64-bit entry point.
284	 */
285
286	/* Start with the delta to where the kernel will run at. */
287#ifdef CONFIG_RELOCATABLE
288	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
289	movl	BP_kernel_alignment(%rsi), %eax
290	decl	%eax
291	addq	%rax, %rbp
292	notq	%rax
293	andq	%rax, %rbp
294	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
295	jge	1f
296#endif
297	movq	$LOAD_PHYSICAL_ADDR, %rbp
2981:
299
300	/* Target address to relocate to for decompression */
301	movl	BP_init_size(%rsi), %ebx
302	subl	$_end, %ebx
303	addq	%rbp, %rbx
304
305	/* Set up the stack */
306	leaq	boot_stack_end(%rbx), %rsp
307
308	/*
309	 * paging_prepare() and cleanup_trampoline() below can have GOT
310	 * references. Adjust the table with address we are running at.
311	 *
312	 * Zero RAX for adjust_got: the GOT was not adjusted before;
313	 * there's no adjustment to undo.
314	 */
315	xorq	%rax, %rax
316
317	/*
318	 * Calculate the address the binary is loaded at and use it as
319	 * a GOT adjustment.
320	 */
321	call	1f
3221:	popq	%rdi
323	subq	$1b, %rdi
324
325	call	adjust_got
326
327	/*
328	 * At this point we are in long mode with 4-level paging enabled,
329	 * but we might want to enable 5-level paging or vice versa.
330	 *
331	 * The problem is that we cannot do it directly. Setting or clearing
332	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
333	 * long mode and paging first.
334	 *
335	 * We also need a trampoline in lower memory to switch over from
336	 * 4- to 5-level paging for cases when the bootloader puts the kernel
337	 * above 4G, but didn't enable 5-level paging for us.
338	 *
339	 * The same trampoline can be used to switch from 5- to 4-level paging
340	 * mode, like when starting 4-level paging kernel via kexec() when
341	 * original kernel worked in 5-level paging mode.
342	 *
343	 * For the trampoline, we need the top page table to reside in lower
344	 * memory as we don't have a way to load 64-bit values into CR3 in
345	 * 32-bit mode.
346	 *
347	 * We go though the trampoline even if we don't have to: if we're
348	 * already in a desired paging mode. This way the trampoline code gets
349	 * tested on every boot.
350	 */
351
352	/* Make sure we have GDT with 32-bit code segment */
353	leaq	gdt(%rip), %rax
354	movq	%rax, gdt64+2(%rip)
355	lgdt	gdt64(%rip)
356
357	/*
358	 * paging_prepare() sets up the trampoline and checks if we need to
359	 * enable 5-level paging.
360	 *
361	 * paging_prepare() returns a two-quadword structure which lands
362	 * into RDX:RAX:
363	 *   - Address of the trampoline is returned in RAX.
364	 *   - Non zero RDX means trampoline needs to enable 5-level
365	 *     paging.
366	 *
367	 * RSI holds real mode data and needs to be preserved across
368	 * this function call.
369	 */
370	pushq	%rsi
371	movq	%rsi, %rdi		/* real mode address */
372	call	paging_prepare
373	popq	%rsi
374
375	/* Save the trampoline address in RCX */
376	movq	%rax, %rcx
377
378	/*
379	 * Load the address of trampoline_return() into RDI.
380	 * It will be used by the trampoline to return to the main code.
381	 */
382	leaq	trampoline_return(%rip), %rdi
383
384	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
385	pushq	$__KERNEL32_CS
386	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
387	pushq	%rax
388	lretq
389trampoline_return:
390	/* Restore the stack, the 32-bit trampoline uses its own stack */
391	leaq	boot_stack_end(%rbx), %rsp
392
393	/*
394	 * cleanup_trampoline() would restore trampoline memory.
395	 *
396	 * RDI is address of the page table to use instead of page table
397	 * in trampoline memory (if required).
398	 *
399	 * RSI holds real mode data and needs to be preserved across
400	 * this function call.
401	 */
402	pushq	%rsi
403	leaq	top_pgtable(%rbx), %rdi
404	call	cleanup_trampoline
405	popq	%rsi
406
407	/* Zero EFLAGS */
408	pushq	$0
409	popfq
410
411	/*
412	 * Previously we've adjusted the GOT with address the binary was
413	 * loaded at. Now we need to re-adjust for relocation address.
414	 *
415	 * Calculate the address the binary is loaded at, so that we can
416	 * undo the previous GOT adjustment.
417	 */
418	call	1f
4191:	popq	%rax
420	subq	$1b, %rax
421
422	/* The new adjustment is the relocation address */
423	movq	%rbx, %rdi
424	call	adjust_got
425
426/*
427 * Copy the compressed kernel to the end of our buffer
428 * where decompression in place becomes safe.
429 */
430	pushq	%rsi
431	leaq	(_bss-8)(%rip), %rsi
432	leaq	(_bss-8)(%rbx), %rdi
433	movq	$_bss /* - $startup_32 */, %rcx
434	shrq	$3, %rcx
435	std
436	rep	movsq
437	cld
438	popq	%rsi
439
440/*
441 * Jump to the relocated address.
442 */
443	leaq	relocated(%rbx), %rax
444	jmp	*%rax
445
446#ifdef CONFIG_EFI_STUB
447
448/* The entry point for the PE/COFF executable is efi_pe_entry. */
449ENTRY(efi_pe_entry)
450	movq	%rcx, efi64_config(%rip)	/* Handle */
451	movq	%rdx, efi64_config+8(%rip) /* EFI System table pointer */
452
453	leaq	efi64_config(%rip), %rax
454	movq	%rax, efi_config(%rip)
455
456	call	1f
4571:	popq	%rbp
458	subq	$1b, %rbp
459
460	/*
461	 * Relocate efi_config->call().
462	 */
463	addq	%rbp, efi64_config+40(%rip)
464
465	movq	%rax, %rdi
466	call	make_boot_params
467	cmpq	$0,%rax
468	je	fail
469	mov	%rax, %rsi
470	leaq	startup_32(%rip), %rax
471	movl	%eax, BP_code32_start(%rsi)
472	jmp	2f		/* Skip the relocation */
473
474handover_entry:
475	call	1f
4761:	popq	%rbp
477	subq	$1b, %rbp
478
479	/*
480	 * Relocate efi_config->call().
481	 */
482	movq	efi_config(%rip), %rax
483	addq	%rbp, 40(%rax)
4842:
485	movq	efi_config(%rip), %rdi
486	call	efi_main
487	movq	%rax,%rsi
488	cmpq	$0,%rax
489	jne	2f
490fail:
491	/* EFI init failed, so hang. */
492	hlt
493	jmp	fail
4942:
495	movl	BP_code32_start(%esi), %eax
496	leaq	startup_64(%rax), %rax
497	jmp	*%rax
498ENDPROC(efi_pe_entry)
499
500	.org 0x390
501ENTRY(efi64_stub_entry)
502	movq	%rdi, efi64_config(%rip)	/* Handle */
503	movq	%rsi, efi64_config+8(%rip) /* EFI System table pointer */
504
505	leaq	efi64_config(%rip), %rax
506	movq	%rax, efi_config(%rip)
507
508	movq	%rdx, %rsi
509	jmp	handover_entry
510ENDPROC(efi64_stub_entry)
511#endif
512
513	.text
514relocated:
515
516/*
517 * Clear BSS (stack is currently empty)
518 */
519	xorl	%eax, %eax
520	leaq    _bss(%rip), %rdi
521	leaq    _ebss(%rip), %rcx
522	subq	%rdi, %rcx
523	shrq	$3, %rcx
524	rep	stosq
525
526/*
527 * Do the extraction, and jump to the new kernel..
528 */
529	pushq	%rsi			/* Save the real mode argument */
530	movq	%rsi, %rdi		/* real mode address */
531	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
532	leaq	input_data(%rip), %rdx  /* input_data */
533	movl	$z_input_len, %ecx	/* input_len */
534	movq	%rbp, %r8		/* output target address */
535	movq	$z_output_len, %r9	/* decompressed length, end of relocs */
536	call	extract_kernel		/* returns kernel location in %rax */
537	popq	%rsi
538
539/*
540 * Jump to the decompressed kernel.
541 */
542	jmp	*%rax
543
544/*
545 * Adjust the global offset table
546 *
547 * RAX is the previous adjustment of the table to undo (use 0 if it's the
548 * first time we touch GOT).
549 * RDI is the new adjustment to apply.
550 */
551adjust_got:
552	/* Walk through the GOT adding the address to the entries */
553	leaq	_got(%rip), %rdx
554	leaq	_egot(%rip), %rcx
5551:
556	cmpq	%rcx, %rdx
557	jae	2f
558	subq	%rax, (%rdx)	/* Undo previous adjustment */
559	addq	%rdi, (%rdx)	/* Apply the new adjustment */
560	addq	$8, %rdx
561	jmp	1b
5622:
563	ret
564
565	.code32
566/*
567 * This is the 32-bit trampoline that will be copied over to low memory.
568 *
569 * RDI contains the return address (might be above 4G).
570 * ECX contains the base address of the trampoline memory.
571 * Non zero RDX means trampoline needs to enable 5-level paging.
572 */
573ENTRY(trampoline_32bit_src)
574	/* Set up data and stack segments */
575	movl	$__KERNEL_DS, %eax
576	movl	%eax, %ds
577	movl	%eax, %ss
578
579	/* Set up new stack */
580	leal	TRAMPOLINE_32BIT_STACK_END(%ecx), %esp
581
582	/* Disable paging */
583	movl	%cr0, %eax
584	btrl	$X86_CR0_PG_BIT, %eax
585	movl	%eax, %cr0
586
587	/* Check what paging mode we want to be in after the trampoline */
588	cmpl	$0, %edx
589	jz	1f
590
591	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
592	movl	%cr4, %eax
593	testl	$X86_CR4_LA57, %eax
594	jnz	3f
595	jmp	2f
5961:
597	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
598	movl	%cr4, %eax
599	testl	$X86_CR4_LA57, %eax
600	jz	3f
6012:
602	/* Point CR3 to the trampoline's new top level page table */
603	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
604	movl	%eax, %cr3
6053:
606	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
607	pushl	%ecx
608	pushl	%edx
609	movl	$MSR_EFER, %ecx
610	rdmsr
611	btsl	$_EFER_LME, %eax
612	wrmsr
613	popl	%edx
614	popl	%ecx
615
616	/* Enable PAE and LA57 (if required) paging modes */
617	movl	$X86_CR4_PAE, %eax
618	cmpl	$0, %edx
619	jz	1f
620	orl	$X86_CR4_LA57, %eax
6211:
622	movl	%eax, %cr4
623
624	/* Calculate address of paging_enabled() once we are executing in the trampoline */
625	leal	paging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax
626
627	/* Prepare the stack for far return to Long Mode */
628	pushl	$__KERNEL_CS
629	pushl	%eax
630
631	/* Enable paging again */
632	movl	$(X86_CR0_PG | X86_CR0_PE), %eax
633	movl	%eax, %cr0
634
635	lret
636
637	.code64
638paging_enabled:
639	/* Return from the trampoline */
640	jmp	*%rdi
641
642	/*
643         * The trampoline code has a size limit.
644         * Make sure we fail to compile if the trampoline code grows
645         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
646	 */
647	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE
648
649	.code32
650no_longmode:
651	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
6521:
653	hlt
654	jmp     1b
655
656#include "../../kernel/verify_cpu.S"
657
658	.data
659gdt64:
660	.word	gdt_end - gdt
661	.quad   0
662gdt:
663	.word	gdt_end - gdt
664	.long	gdt
665	.word	0
666	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
667	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
668	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
669	.quad	0x0080890000000000	/* TS descriptor */
670	.quad   0x0000000000000000	/* TS continued */
671gdt_end:
672
673#ifdef CONFIG_EFI_STUB
674efi_config:
675	.quad	0
676
677#ifdef CONFIG_EFI_MIXED
678	.global efi32_config
679efi32_config:
680	.fill	5,8,0
681	.quad	efi64_thunk
682	.byte	0
683#endif
684
685	.global efi64_config
686efi64_config:
687	.fill	5,8,0
688	.quad	efi_call
689	.byte	1
690#endif /* CONFIG_EFI_STUB */
691
692/*
693 * Stack and heap for uncompression
694 */
695	.bss
696	.balign 4
697boot_heap:
698	.fill BOOT_HEAP_SIZE, 1, 0
699boot_stack:
700	.fill BOOT_STACK_SIZE, 1, 0
701boot_stack_end:
702
703/*
704 * Space for page tables (not in .bss so not zeroed)
705 */
706	.section ".pgtable","a",@nobits
707	.balign 4096
708pgtable:
709	.fill BOOT_PGT_SIZE, 1, 0
710
711/*
712 * The page table is going to be used instead of page table in the trampoline
713 * memory.
714 */
715top_pgtable:
716	.fill PAGE_SIZE, 1, 0
717