1 /* 2 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 3 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 4 * Licensed under the GPL 5 */ 6 7 #include <stdlib.h> 8 #include <unistd.h> 9 #include <sched.h> 10 #include <errno.h> 11 #include <string.h> 12 #include <sys/mman.h> 13 #include <sys/wait.h> 14 #include <asm/unistd.h> 15 #include <as-layout.h> 16 #include <init.h> 17 #include <kern_util.h> 18 #include <mem.h> 19 #include <os.h> 20 #include <ptrace_user.h> 21 #include <registers.h> 22 #include <skas.h> 23 #include <sysdep/stub.h> 24 #include <linux/threads.h> 25 26 int is_skas_winch(int pid, int fd, void *data) 27 { 28 return pid == getpgrp(); 29 } 30 31 static int ptrace_dump_regs(int pid) 32 { 33 unsigned long regs[MAX_REG_NR]; 34 int i; 35 36 if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) 37 return -errno; 38 39 printk(UM_KERN_ERR "Stub registers -\n"); 40 for (i = 0; i < ARRAY_SIZE(regs); i++) 41 printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]); 42 43 return 0; 44 } 45 46 /* 47 * Signals that are OK to receive in the stub - we'll just continue it. 48 * SIGWINCH will happen when UML is inside a detached screen. 49 */ 50 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH)) 51 52 /* Signals that the stub will finish with - anything else is an error */ 53 #define STUB_DONE_MASK (1 << SIGTRAP) 54 55 void wait_stub_done(int pid) 56 { 57 int n, status, err; 58 59 while (1) { 60 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); 61 if ((n < 0) || !WIFSTOPPED(status)) 62 goto bad_wait; 63 64 if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) 65 break; 66 67 err = ptrace(PTRACE_CONT, pid, 0, 0); 68 if (err) { 69 printk(UM_KERN_ERR "wait_stub_done : continue failed, " 70 "errno = %d\n", errno); 71 fatal_sigsegv(); 72 } 73 } 74 75 if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) 76 return; 77 78 bad_wait: 79 err = ptrace_dump_regs(pid); 80 if (err) 81 printk(UM_KERN_ERR "Failed to get registers from stub, " 82 "errno = %d\n", -err); 83 printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, " 84 "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno, 85 status); 86 fatal_sigsegv(); 87 } 88 89 extern unsigned long current_stub_stack(void); 90 91 static void get_skas_faultinfo(int pid, struct faultinfo *fi) 92 { 93 int err; 94 unsigned long fpregs[FP_SIZE]; 95 96 err = get_fp_registers(pid, fpregs); 97 if (err < 0) { 98 printk(UM_KERN_ERR "save_fp_registers returned %d\n", 99 err); 100 fatal_sigsegv(); 101 } 102 err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); 103 if (err) { 104 printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " 105 "errno = %d\n", pid, errno); 106 fatal_sigsegv(); 107 } 108 wait_stub_done(pid); 109 110 /* 111 * faultinfo is prepared by the stub_segv_handler at start of 112 * the stub stack page. We just have to copy it. 113 */ 114 memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); 115 116 err = put_fp_registers(pid, fpregs); 117 if (err < 0) { 118 printk(UM_KERN_ERR "put_fp_registers returned %d\n", 119 err); 120 fatal_sigsegv(); 121 } 122 } 123 124 static void handle_segv(int pid, struct uml_pt_regs * regs) 125 { 126 get_skas_faultinfo(pid, ®s->faultinfo); 127 segv(regs->faultinfo, 0, 1, NULL); 128 } 129 130 /* 131 * To use the same value of using_sysemu as the caller, ask it that value 132 * (in local_using_sysemu 133 */ 134 static void handle_trap(int pid, struct uml_pt_regs *regs, 135 int local_using_sysemu) 136 { 137 int err, status; 138 139 if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) 140 fatal_sigsegv(); 141 142 if (!local_using_sysemu) 143 { 144 err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET, 145 __NR_getpid); 146 if (err < 0) { 147 printk(UM_KERN_ERR "handle_trap - nullifying syscall " 148 "failed, errno = %d\n", errno); 149 fatal_sigsegv(); 150 } 151 152 err = ptrace(PTRACE_SYSCALL, pid, 0, 0); 153 if (err < 0) { 154 printk(UM_KERN_ERR "handle_trap - continuing to end of " 155 "syscall failed, errno = %d\n", errno); 156 fatal_sigsegv(); 157 } 158 159 CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); 160 if ((err < 0) || !WIFSTOPPED(status) || 161 (WSTOPSIG(status) != SIGTRAP + 0x80)) { 162 err = ptrace_dump_regs(pid); 163 if (err) 164 printk(UM_KERN_ERR "Failed to get registers " 165 "from process, errno = %d\n", -err); 166 printk(UM_KERN_ERR "handle_trap - failed to wait at " 167 "end of syscall, errno = %d, status = %d\n", 168 errno, status); 169 fatal_sigsegv(); 170 } 171 } 172 173 handle_syscall(regs); 174 } 175 176 extern char __syscall_stub_start[]; 177 178 /** 179 * userspace_tramp() - userspace trampoline 180 * @stack: pointer to the new userspace stack page, can be NULL, if? FIXME: 181 * 182 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed. 183 * This function will run on a temporary stack page. 184 * It ptrace()'es itself, then 185 * Two pages are mapped into the userspace address space: 186 * - STUB_CODE (with EXEC), which contains the skas stub code 187 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel. 188 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process. 189 * And last the process stops itself to give control to the UML kernel for this userspace process. 190 * 191 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call 192 */ 193 static int userspace_tramp(void *stack) 194 { 195 void *addr; 196 int fd; 197 unsigned long long offset; 198 199 ptrace(PTRACE_TRACEME, 0, 0, 0); 200 201 signal(SIGTERM, SIG_DFL); 202 signal(SIGWINCH, SIG_IGN); 203 204 /* 205 * This has a pte, but it can't be mapped in with the usual 206 * tlb_flush mechanism because this is part of that mechanism 207 */ 208 fd = phys_mapping(to_phys(__syscall_stub_start), &offset); 209 addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE, 210 PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset); 211 if (addr == MAP_FAILED) { 212 printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, " 213 "errno = %d\n", STUB_CODE, errno); 214 exit(1); 215 } 216 217 if (stack != NULL) { 218 fd = phys_mapping(to_phys(stack), &offset); 219 addr = mmap((void *) STUB_DATA, 220 UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE, 221 MAP_FIXED | MAP_SHARED, fd, offset); 222 if (addr == MAP_FAILED) { 223 printk(UM_KERN_ERR "mapping segfault stack " 224 "at 0x%lx failed, errno = %d\n", 225 STUB_DATA, errno); 226 exit(1); 227 } 228 } 229 if (stack != NULL) { 230 struct sigaction sa; 231 232 unsigned long v = STUB_CODE + 233 (unsigned long) stub_segv_handler - 234 (unsigned long) __syscall_stub_start; 235 236 set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE); 237 sigemptyset(&sa.sa_mask); 238 sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO; 239 sa.sa_sigaction = (void *) v; 240 sa.sa_restorer = NULL; 241 if (sigaction(SIGSEGV, &sa, NULL) < 0) { 242 printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV " 243 "handler failed - errno = %d\n", errno); 244 exit(1); 245 } 246 } 247 248 kill(os_getpid(), SIGSTOP); 249 return 0; 250 } 251 252 int userspace_pid[NR_CPUS]; 253 254 /** 255 * start_userspace() - prepare a new userspace process 256 * @stub_stack: pointer to the stub stack. Can be NULL, if? FIXME: 257 * 258 * Setups a new temporary stack page that is used while userspace_tramp() runs 259 * Clones the kernel process into a new userspace process, with FDs only. 260 * 261 * Return: When positive: the process id of the new userspace process, 262 * when negative: an error number. 263 * FIXME: can PIDs become negative?! 264 */ 265 int start_userspace(unsigned long stub_stack) 266 { 267 void *stack; 268 unsigned long sp; 269 int pid, status, n, flags, err; 270 271 /* setup a temporary stack page */ 272 stack = mmap(NULL, UM_KERN_PAGE_SIZE, 273 PROT_READ | PROT_WRITE | PROT_EXEC, 274 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 275 if (stack == MAP_FAILED) { 276 err = -errno; 277 printk(UM_KERN_ERR "start_userspace : mmap failed, " 278 "errno = %d\n", errno); 279 return err; 280 } 281 282 /* set stack pointer to the end of the stack page, so it can grow downwards */ 283 sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *); 284 285 flags = CLONE_FILES | SIGCHLD; 286 287 /* clone into new userspace process */ 288 pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack); 289 if (pid < 0) { 290 err = -errno; 291 printk(UM_KERN_ERR "start_userspace : clone failed, " 292 "errno = %d\n", errno); 293 return err; 294 } 295 296 do { 297 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); 298 if (n < 0) { 299 err = -errno; 300 printk(UM_KERN_ERR "start_userspace : wait failed, " 301 "errno = %d\n", errno); 302 goto out_kill; 303 } 304 } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM)); 305 306 if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { 307 err = -EINVAL; 308 printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got " 309 "status = %d\n", status); 310 goto out_kill; 311 } 312 313 if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, 314 (void *) PTRACE_O_TRACESYSGOOD) < 0) { 315 err = -errno; 316 printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS " 317 "failed, errno = %d\n", errno); 318 goto out_kill; 319 } 320 321 if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { 322 err = -errno; 323 printk(UM_KERN_ERR "start_userspace : munmap failed, " 324 "errno = %d\n", errno); 325 goto out_kill; 326 } 327 328 return pid; 329 330 out_kill: 331 os_kill_ptraced_process(pid, 1); 332 return err; 333 } 334 335 void userspace(struct uml_pt_regs *regs) 336 { 337 int err, status, op, pid = userspace_pid[0]; 338 /* To prevent races if using_sysemu changes under us.*/ 339 int local_using_sysemu; 340 siginfo_t si; 341 342 /* Handle any immediate reschedules or signals */ 343 interrupt_end(); 344 345 while (1) { 346 347 /* 348 * This can legitimately fail if the process loads a 349 * bogus value into a segment register. It will 350 * segfault and PTRACE_GETREGS will read that value 351 * out of the process. However, PTRACE_SETREGS will 352 * fail. In this case, there is nothing to do but 353 * just kill the process. 354 */ 355 if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) { 356 printk(UM_KERN_ERR "userspace - ptrace set regs " 357 "failed, errno = %d\n", errno); 358 fatal_sigsegv(); 359 } 360 361 if (put_fp_registers(pid, regs->fp)) { 362 printk(UM_KERN_ERR "userspace - ptrace set fp regs " 363 "failed, errno = %d\n", errno); 364 fatal_sigsegv(); 365 } 366 367 /* Now we set local_using_sysemu to be used for one loop */ 368 local_using_sysemu = get_using_sysemu(); 369 370 op = SELECT_PTRACE_OPERATION(local_using_sysemu, 371 singlestepping(NULL)); 372 373 if (ptrace(op, pid, 0, 0)) { 374 printk(UM_KERN_ERR "userspace - ptrace continue " 375 "failed, op = %d, errno = %d\n", op, errno); 376 fatal_sigsegv(); 377 } 378 379 CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); 380 if (err < 0) { 381 printk(UM_KERN_ERR "userspace - wait failed, " 382 "errno = %d\n", errno); 383 fatal_sigsegv(); 384 } 385 386 regs->is_user = 1; 387 if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { 388 printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, " 389 "errno = %d\n", errno); 390 fatal_sigsegv(); 391 } 392 393 if (get_fp_registers(pid, regs->fp)) { 394 printk(UM_KERN_ERR "userspace - get_fp_registers failed, " 395 "errno = %d\n", errno); 396 fatal_sigsegv(); 397 } 398 399 UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ 400 401 if (WIFSTOPPED(status)) { 402 int sig = WSTOPSIG(status); 403 404 ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si); 405 406 switch (sig) { 407 case SIGSEGV: 408 if (PTRACE_FULL_FAULTINFO) { 409 get_skas_faultinfo(pid, 410 ®s->faultinfo); 411 (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si, 412 regs); 413 } 414 else handle_segv(pid, regs); 415 break; 416 case SIGTRAP + 0x80: 417 handle_trap(pid, regs, local_using_sysemu); 418 break; 419 case SIGTRAP: 420 relay_signal(SIGTRAP, (struct siginfo *)&si, regs); 421 break; 422 case SIGALRM: 423 break; 424 case SIGIO: 425 case SIGILL: 426 case SIGBUS: 427 case SIGFPE: 428 case SIGWINCH: 429 block_signals(); 430 (*sig_info[sig])(sig, (struct siginfo *)&si, regs); 431 unblock_signals(); 432 break; 433 default: 434 printk(UM_KERN_ERR "userspace - child stopped " 435 "with signal %d\n", sig); 436 fatal_sigsegv(); 437 } 438 pid = userspace_pid[0]; 439 interrupt_end(); 440 441 /* Avoid -ERESTARTSYS handling in host */ 442 if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) 443 PT_SYSCALL_NR(regs->gp) = -1; 444 } 445 } 446 } 447 448 static unsigned long thread_regs[MAX_REG_NR]; 449 static unsigned long thread_fp_regs[FP_SIZE]; 450 451 static int __init init_thread_regs(void) 452 { 453 get_safe_registers(thread_regs, thread_fp_regs); 454 /* Set parent's instruction pointer to start of clone-stub */ 455 thread_regs[REGS_IP_INDEX] = STUB_CODE + 456 (unsigned long) stub_clone_handler - 457 (unsigned long) __syscall_stub_start; 458 thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE - 459 sizeof(void *); 460 #ifdef __SIGNAL_FRAMESIZE 461 thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE; 462 #endif 463 return 0; 464 } 465 466 __initcall(init_thread_regs); 467 468 int copy_context_skas0(unsigned long new_stack, int pid) 469 { 470 int err; 471 unsigned long current_stack = current_stub_stack(); 472 struct stub_data *data = (struct stub_data *) current_stack; 473 struct stub_data *child_data = (struct stub_data *) new_stack; 474 unsigned long long new_offset; 475 int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset); 476 477 /* 478 * prepare offset and fd of child's stack as argument for parent's 479 * and child's mmap2 calls 480 */ 481 *data = ((struct stub_data) { 482 .offset = MMAP_OFFSET(new_offset), 483 .fd = new_fd 484 }); 485 486 err = ptrace_setregs(pid, thread_regs); 487 if (err < 0) { 488 err = -errno; 489 printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS " 490 "failed, pid = %d, errno = %d\n", pid, -err); 491 return err; 492 } 493 494 err = put_fp_registers(pid, thread_fp_regs); 495 if (err < 0) { 496 printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers " 497 "failed, pid = %d, err = %d\n", pid, err); 498 return err; 499 } 500 501 /* set a well known return code for detection of child write failure */ 502 child_data->err = 12345678; 503 504 /* 505 * Wait, until parent has finished its work: read child's pid from 506 * parent's stack, and check, if bad result. 507 */ 508 err = ptrace(PTRACE_CONT, pid, 0, 0); 509 if (err) { 510 err = -errno; 511 printk(UM_KERN_ERR "Failed to continue new process, pid = %d, " 512 "errno = %d\n", pid, errno); 513 return err; 514 } 515 516 wait_stub_done(pid); 517 518 pid = data->err; 519 if (pid < 0) { 520 printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports " 521 "error %d\n", -pid); 522 return pid; 523 } 524 525 /* 526 * Wait, until child has finished too: read child's result from 527 * child's stack and check it. 528 */ 529 wait_stub_done(pid); 530 if (child_data->err != STUB_DATA) { 531 printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports " 532 "error %ld\n", child_data->err); 533 err = child_data->err; 534 goto out_kill; 535 } 536 537 if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, 538 (void *)PTRACE_O_TRACESYSGOOD) < 0) { 539 err = -errno; 540 printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS " 541 "failed, errno = %d\n", errno); 542 goto out_kill; 543 } 544 545 return pid; 546 547 out_kill: 548 os_kill_ptraced_process(pid, 1); 549 return err; 550 } 551 552 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) 553 { 554 (*buf)[0].JB_IP = (unsigned long) handler; 555 (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - 556 sizeof(void *); 557 } 558 559 #define INIT_JMP_NEW_THREAD 0 560 #define INIT_JMP_CALLBACK 1 561 #define INIT_JMP_HALT 2 562 #define INIT_JMP_REBOOT 3 563 564 void switch_threads(jmp_buf *me, jmp_buf *you) 565 { 566 if (UML_SETJMP(me) == 0) 567 UML_LONGJMP(you, 1); 568 } 569 570 static jmp_buf initial_jmpbuf; 571 572 /* XXX Make these percpu */ 573 static void (*cb_proc)(void *arg); 574 static void *cb_arg; 575 static jmp_buf *cb_back; 576 577 int start_idle_thread(void *stack, jmp_buf *switch_buf) 578 { 579 int n; 580 581 set_handler(SIGWINCH); 582 583 /* 584 * Can't use UML_SETJMP or UML_LONGJMP here because they save 585 * and restore signals, with the possible side-effect of 586 * trying to handle any signals which came when they were 587 * blocked, which can't be done on this stack. 588 * Signals must be blocked when jumping back here and restored 589 * after returning to the jumper. 590 */ 591 n = setjmp(initial_jmpbuf); 592 switch (n) { 593 case INIT_JMP_NEW_THREAD: 594 (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup; 595 (*switch_buf)[0].JB_SP = (unsigned long) stack + 596 UM_THREAD_SIZE - sizeof(void *); 597 break; 598 case INIT_JMP_CALLBACK: 599 (*cb_proc)(cb_arg); 600 longjmp(*cb_back, 1); 601 break; 602 case INIT_JMP_HALT: 603 kmalloc_ok = 0; 604 return 0; 605 case INIT_JMP_REBOOT: 606 kmalloc_ok = 0; 607 return 1; 608 default: 609 printk(UM_KERN_ERR "Bad sigsetjmp return in " 610 "start_idle_thread - %d\n", n); 611 fatal_sigsegv(); 612 } 613 longjmp(*switch_buf, 1); 614 } 615 616 void initial_thread_cb_skas(void (*proc)(void *), void *arg) 617 { 618 jmp_buf here; 619 620 cb_proc = proc; 621 cb_arg = arg; 622 cb_back = &here; 623 624 block_signals(); 625 if (UML_SETJMP(&here) == 0) 626 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); 627 unblock_signals(); 628 629 cb_proc = NULL; 630 cb_arg = NULL; 631 cb_back = NULL; 632 } 633 634 void halt_skas(void) 635 { 636 block_signals(); 637 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); 638 } 639 640 void reboot_skas(void) 641 { 642 block_signals(); 643 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT); 644 } 645 646 void __switch_mm(struct mm_id *mm_idp) 647 { 648 userspace_pid[0] = mm_idp->u.pid; 649 } 650