1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 5 */ 6 7 #include <stdlib.h> 8 #include <stdbool.h> 9 #include <unistd.h> 10 #include <sched.h> 11 #include <errno.h> 12 #include <string.h> 13 #include <sys/mman.h> 14 #include <sys/wait.h> 15 #include <asm/unistd.h> 16 #include <as-layout.h> 17 #include <init.h> 18 #include <kern_util.h> 19 #include <mem.h> 20 #include <os.h> 21 #include <ptrace_user.h> 22 #include <registers.h> 23 #include <skas.h> 24 #include <sysdep/stub.h> 25 #include <linux/threads.h> 26 27 int is_skas_winch(int pid, int fd, void *data) 28 { 29 return pid == getpgrp(); 30 } 31 32 static const char *ptrace_reg_name(int idx) 33 { 34 #define R(n) case HOST_##n: return #n 35 36 switch (idx) { 37 #ifdef __x86_64__ 38 R(BX); 39 R(CX); 40 R(DI); 41 R(SI); 42 R(DX); 43 R(BP); 44 R(AX); 45 R(R8); 46 R(R9); 47 R(R10); 48 R(R11); 49 R(R12); 50 R(R13); 51 R(R14); 52 R(R15); 53 R(ORIG_AX); 54 R(CS); 55 R(SS); 56 R(EFLAGS); 57 #elif defined(__i386__) 58 R(IP); 59 R(SP); 60 R(EFLAGS); 61 R(AX); 62 R(BX); 63 R(CX); 64 R(DX); 65 R(SI); 66 R(DI); 67 R(BP); 68 R(CS); 69 R(SS); 70 R(DS); 71 R(FS); 72 R(ES); 73 R(GS); 74 R(ORIG_AX); 75 #endif 76 } 77 return ""; 78 } 79 80 static int ptrace_dump_regs(int pid) 81 { 82 unsigned long regs[MAX_REG_NR]; 83 int i; 84 85 if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0) 86 return -errno; 87 88 printk(UM_KERN_ERR "Stub registers -\n"); 89 for (i = 0; i < ARRAY_SIZE(regs); i++) { 90 const char *regname = ptrace_reg_name(i); 91 92 printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]); 93 } 94 95 return 0; 96 } 97 98 /* 99 * Signals that are OK to receive in the stub - we'll just continue it. 100 * SIGWINCH will happen when UML is inside a detached screen. 101 */ 102 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH)) 103 104 /* Signals that the stub will finish with - anything else is an error */ 105 #define STUB_DONE_MASK (1 << SIGTRAP) 106 107 void wait_stub_done(int pid) 108 { 109 int n, status, err; 110 111 while (1) { 112 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); 113 if ((n < 0) || !WIFSTOPPED(status)) 114 goto bad_wait; 115 116 if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0) 117 break; 118 119 err = ptrace(PTRACE_CONT, pid, 0, 0); 120 if (err) { 121 printk(UM_KERN_ERR "%s : continue failed, errno = %d\n", 122 __func__, errno); 123 fatal_sigsegv(); 124 } 125 } 126 127 if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0) 128 return; 129 130 bad_wait: 131 err = ptrace_dump_regs(pid); 132 if (err) 133 printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n", 134 -err); 135 printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n", 136 __func__, pid, n, errno, status); 137 fatal_sigsegv(); 138 } 139 140 extern unsigned long current_stub_stack(void); 141 142 static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs) 143 { 144 int err; 145 146 err = get_fp_registers(pid, aux_fp_regs); 147 if (err < 0) { 148 printk(UM_KERN_ERR "save_fp_registers returned %d\n", 149 err); 150 fatal_sigsegv(); 151 } 152 err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV); 153 if (err) { 154 printk(UM_KERN_ERR "Failed to continue stub, pid = %d, " 155 "errno = %d\n", pid, errno); 156 fatal_sigsegv(); 157 } 158 wait_stub_done(pid); 159 160 /* 161 * faultinfo is prepared by the stub_segv_handler at start of 162 * the stub stack page. We just have to copy it. 163 */ 164 memcpy(fi, (void *)current_stub_stack(), sizeof(*fi)); 165 166 err = put_fp_registers(pid, aux_fp_regs); 167 if (err < 0) { 168 printk(UM_KERN_ERR "put_fp_registers returned %d\n", 169 err); 170 fatal_sigsegv(); 171 } 172 } 173 174 static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs) 175 { 176 get_skas_faultinfo(pid, ®s->faultinfo, aux_fp_regs); 177 segv(regs->faultinfo, 0, 1, NULL); 178 } 179 180 /* 181 * To use the same value of using_sysemu as the caller, ask it that value 182 * (in local_using_sysemu 183 */ 184 static void handle_trap(int pid, struct uml_pt_regs *regs, 185 int local_using_sysemu) 186 { 187 int err, status; 188 189 if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END)) 190 fatal_sigsegv(); 191 192 if (!local_using_sysemu) 193 { 194 err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET, 195 __NR_getpid); 196 if (err < 0) { 197 printk(UM_KERN_ERR "%s - nullifying syscall failed, errno = %d\n", 198 __func__, errno); 199 fatal_sigsegv(); 200 } 201 202 err = ptrace(PTRACE_SYSCALL, pid, 0, 0); 203 if (err < 0) { 204 printk(UM_KERN_ERR "%s - continuing to end of syscall failed, errno = %d\n", 205 __func__, errno); 206 fatal_sigsegv(); 207 } 208 209 CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); 210 if ((err < 0) || !WIFSTOPPED(status) || 211 (WSTOPSIG(status) != SIGTRAP + 0x80)) { 212 err = ptrace_dump_regs(pid); 213 if (err) 214 printk(UM_KERN_ERR "Failed to get registers from process, errno = %d\n", 215 -err); 216 printk(UM_KERN_ERR "%s - failed to wait at end of syscall, errno = %d, status = %d\n", 217 __func__, errno, status); 218 fatal_sigsegv(); 219 } 220 } 221 222 handle_syscall(regs); 223 } 224 225 extern char __syscall_stub_start[]; 226 227 /** 228 * userspace_tramp() - userspace trampoline 229 * @stack: pointer to the new userspace stack page, can be NULL, if? FIXME: 230 * 231 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed. 232 * This function will run on a temporary stack page. 233 * It ptrace()'es itself, then 234 * Two pages are mapped into the userspace address space: 235 * - STUB_CODE (with EXEC), which contains the skas stub code 236 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel. 237 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process. 238 * And last the process stops itself to give control to the UML kernel for this userspace process. 239 * 240 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call 241 */ 242 static int userspace_tramp(void *stack) 243 { 244 void *addr; 245 int fd; 246 unsigned long long offset; 247 248 ptrace(PTRACE_TRACEME, 0, 0, 0); 249 250 signal(SIGTERM, SIG_DFL); 251 signal(SIGWINCH, SIG_IGN); 252 253 fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset); 254 addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE, 255 PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset); 256 if (addr == MAP_FAILED) { 257 printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, errno = %d\n", 258 STUB_CODE, errno); 259 exit(1); 260 } 261 262 if (stack != NULL) { 263 fd = phys_mapping(uml_to_phys(stack), &offset); 264 addr = mmap((void *) STUB_DATA, 265 UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE, 266 MAP_FIXED | MAP_SHARED, fd, offset); 267 if (addr == MAP_FAILED) { 268 printk(UM_KERN_ERR "mapping segfault stack at 0x%lx failed, errno = %d\n", 269 STUB_DATA, errno); 270 exit(1); 271 } 272 } 273 if (stack != NULL) { 274 struct sigaction sa; 275 276 unsigned long v = STUB_CODE + 277 (unsigned long) stub_segv_handler - 278 (unsigned long) __syscall_stub_start; 279 280 set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE); 281 sigemptyset(&sa.sa_mask); 282 sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO; 283 sa.sa_sigaction = (void *) v; 284 sa.sa_restorer = NULL; 285 if (sigaction(SIGSEGV, &sa, NULL) < 0) { 286 printk(UM_KERN_ERR "%s - setting SIGSEGV handler failed - errno = %d\n", 287 __func__, errno); 288 exit(1); 289 } 290 } 291 292 kill(os_getpid(), SIGSTOP); 293 return 0; 294 } 295 296 int userspace_pid[NR_CPUS]; 297 int kill_userspace_mm[NR_CPUS]; 298 299 /** 300 * start_userspace() - prepare a new userspace process 301 * @stub_stack: pointer to the stub stack. Can be NULL, if? FIXME: 302 * 303 * Setups a new temporary stack page that is used while userspace_tramp() runs 304 * Clones the kernel process into a new userspace process, with FDs only. 305 * 306 * Return: When positive: the process id of the new userspace process, 307 * when negative: an error number. 308 * FIXME: can PIDs become negative?! 309 */ 310 int start_userspace(unsigned long stub_stack) 311 { 312 void *stack; 313 unsigned long sp; 314 int pid, status, n, flags, err; 315 316 /* setup a temporary stack page */ 317 stack = mmap(NULL, UM_KERN_PAGE_SIZE, 318 PROT_READ | PROT_WRITE | PROT_EXEC, 319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 320 if (stack == MAP_FAILED) { 321 err = -errno; 322 printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n", 323 __func__, errno); 324 return err; 325 } 326 327 /* set stack pointer to the end of the stack page, so it can grow downwards */ 328 sp = (unsigned long)stack + UM_KERN_PAGE_SIZE; 329 330 flags = CLONE_FILES | SIGCHLD; 331 332 /* clone into new userspace process */ 333 pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack); 334 if (pid < 0) { 335 err = -errno; 336 printk(UM_KERN_ERR "%s : clone failed, errno = %d\n", 337 __func__, errno); 338 return err; 339 } 340 341 do { 342 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL)); 343 if (n < 0) { 344 err = -errno; 345 printk(UM_KERN_ERR "%s : wait failed, errno = %d\n", 346 __func__, errno); 347 goto out_kill; 348 } 349 } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM)); 350 351 if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) { 352 err = -EINVAL; 353 printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n", 354 __func__, status); 355 goto out_kill; 356 } 357 358 if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, 359 (void *) PTRACE_O_TRACESYSGOOD) < 0) { 360 err = -errno; 361 printk(UM_KERN_ERR "%s : PTRACE_OLDSETOPTIONS failed, errno = %d\n", 362 __func__, errno); 363 goto out_kill; 364 } 365 366 if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) { 367 err = -errno; 368 printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n", 369 __func__, errno); 370 goto out_kill; 371 } 372 373 return pid; 374 375 out_kill: 376 os_kill_ptraced_process(pid, 1); 377 return err; 378 } 379 380 void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs) 381 { 382 int err, status, op, pid = userspace_pid[0]; 383 /* To prevent races if using_sysemu changes under us.*/ 384 int local_using_sysemu; 385 siginfo_t si; 386 387 /* Handle any immediate reschedules or signals */ 388 interrupt_end(); 389 390 while (1) { 391 if (kill_userspace_mm[0]) 392 fatal_sigsegv(); 393 394 /* 395 * This can legitimately fail if the process loads a 396 * bogus value into a segment register. It will 397 * segfault and PTRACE_GETREGS will read that value 398 * out of the process. However, PTRACE_SETREGS will 399 * fail. In this case, there is nothing to do but 400 * just kill the process. 401 */ 402 if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) { 403 printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n", 404 __func__, errno); 405 fatal_sigsegv(); 406 } 407 408 if (put_fp_registers(pid, regs->fp)) { 409 printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n", 410 __func__, errno); 411 fatal_sigsegv(); 412 } 413 414 /* Now we set local_using_sysemu to be used for one loop */ 415 local_using_sysemu = get_using_sysemu(); 416 417 op = SELECT_PTRACE_OPERATION(local_using_sysemu, 418 singlestepping(NULL)); 419 420 if (ptrace(op, pid, 0, 0)) { 421 printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n", 422 __func__, op, errno); 423 fatal_sigsegv(); 424 } 425 426 CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL)); 427 if (err < 0) { 428 printk(UM_KERN_ERR "%s - wait failed, errno = %d\n", 429 __func__, errno); 430 fatal_sigsegv(); 431 } 432 433 regs->is_user = 1; 434 if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) { 435 printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n", 436 __func__, errno); 437 fatal_sigsegv(); 438 } 439 440 if (get_fp_registers(pid, regs->fp)) { 441 printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n", 442 __func__, errno); 443 fatal_sigsegv(); 444 } 445 446 UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */ 447 448 if (WIFSTOPPED(status)) { 449 int sig = WSTOPSIG(status); 450 451 /* These signal handlers need the si argument. 452 * The SIGIO and SIGALARM handlers which constitute the 453 * majority of invocations, do not use it. 454 */ 455 switch (sig) { 456 case SIGSEGV: 457 case SIGTRAP: 458 case SIGILL: 459 case SIGBUS: 460 case SIGFPE: 461 case SIGWINCH: 462 ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si); 463 break; 464 } 465 466 switch (sig) { 467 case SIGSEGV: 468 if (PTRACE_FULL_FAULTINFO) { 469 get_skas_faultinfo(pid, 470 ®s->faultinfo, aux_fp_regs); 471 (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si, 472 regs); 473 } 474 else handle_segv(pid, regs, aux_fp_regs); 475 break; 476 case SIGTRAP + 0x80: 477 handle_trap(pid, regs, local_using_sysemu); 478 break; 479 case SIGTRAP: 480 relay_signal(SIGTRAP, (struct siginfo *)&si, regs); 481 break; 482 case SIGALRM: 483 break; 484 case SIGIO: 485 case SIGILL: 486 case SIGBUS: 487 case SIGFPE: 488 case SIGWINCH: 489 block_signals_trace(); 490 (*sig_info[sig])(sig, (struct siginfo *)&si, regs); 491 unblock_signals_trace(); 492 break; 493 default: 494 printk(UM_KERN_ERR "%s - child stopped with signal %d\n", 495 __func__, sig); 496 fatal_sigsegv(); 497 } 498 pid = userspace_pid[0]; 499 interrupt_end(); 500 501 /* Avoid -ERESTARTSYS handling in host */ 502 if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET) 503 PT_SYSCALL_NR(regs->gp) = -1; 504 } 505 } 506 } 507 508 static unsigned long thread_regs[MAX_REG_NR]; 509 static unsigned long thread_fp_regs[FP_SIZE]; 510 511 static int __init init_thread_regs(void) 512 { 513 get_safe_registers(thread_regs, thread_fp_regs); 514 /* Set parent's instruction pointer to start of clone-stub */ 515 thread_regs[REGS_IP_INDEX] = STUB_CODE + 516 (unsigned long) stub_clone_handler - 517 (unsigned long) __syscall_stub_start; 518 thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE - 519 sizeof(void *); 520 #ifdef __SIGNAL_FRAMESIZE 521 thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE; 522 #endif 523 return 0; 524 } 525 526 __initcall(init_thread_regs); 527 528 int copy_context_skas0(unsigned long new_stack, int pid) 529 { 530 int err; 531 unsigned long current_stack = current_stub_stack(); 532 struct stub_data *data = (struct stub_data *) current_stack; 533 struct stub_data *child_data = (struct stub_data *) new_stack; 534 unsigned long long new_offset; 535 int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset); 536 537 /* 538 * prepare offset and fd of child's stack as argument for parent's 539 * and child's mmap2 calls 540 */ 541 *data = ((struct stub_data) { 542 .offset = MMAP_OFFSET(new_offset), 543 .fd = new_fd, 544 .parent_err = -ESRCH, 545 .child_err = 0, 546 }); 547 548 *child_data = ((struct stub_data) { 549 .child_err = -ESRCH, 550 }); 551 552 err = ptrace_setregs(pid, thread_regs); 553 if (err < 0) { 554 err = -errno; 555 printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n", 556 __func__, pid, -err); 557 return err; 558 } 559 560 err = put_fp_registers(pid, thread_fp_regs); 561 if (err < 0) { 562 printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n", 563 __func__, pid, err); 564 return err; 565 } 566 567 /* 568 * Wait, until parent has finished its work: read child's pid from 569 * parent's stack, and check, if bad result. 570 */ 571 err = ptrace(PTRACE_CONT, pid, 0, 0); 572 if (err) { 573 err = -errno; 574 printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n", 575 pid, errno); 576 return err; 577 } 578 579 wait_stub_done(pid); 580 581 pid = data->parent_err; 582 if (pid < 0) { 583 printk(UM_KERN_ERR "%s - stub-parent reports error %d\n", 584 __func__, -pid); 585 return pid; 586 } 587 588 /* 589 * Wait, until child has finished too: read child's result from 590 * child's stack and check it. 591 */ 592 wait_stub_done(pid); 593 if (child_data->child_err != STUB_DATA) { 594 printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n", 595 __func__, pid, data->child_err); 596 err = data->child_err; 597 goto out_kill; 598 } 599 600 if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL, 601 (void *)PTRACE_O_TRACESYSGOOD) < 0) { 602 err = -errno; 603 printk(UM_KERN_ERR "%s : PTRACE_OLDSETOPTIONS failed, errno = %d\n", 604 __func__, errno); 605 goto out_kill; 606 } 607 608 return pid; 609 610 out_kill: 611 os_kill_ptraced_process(pid, 1); 612 return err; 613 } 614 615 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void)) 616 { 617 (*buf)[0].JB_IP = (unsigned long) handler; 618 (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE - 619 sizeof(void *); 620 } 621 622 #define INIT_JMP_NEW_THREAD 0 623 #define INIT_JMP_CALLBACK 1 624 #define INIT_JMP_HALT 2 625 #define INIT_JMP_REBOOT 3 626 627 void switch_threads(jmp_buf *me, jmp_buf *you) 628 { 629 if (UML_SETJMP(me) == 0) 630 UML_LONGJMP(you, 1); 631 } 632 633 static jmp_buf initial_jmpbuf; 634 635 /* XXX Make these percpu */ 636 static void (*cb_proc)(void *arg); 637 static void *cb_arg; 638 static jmp_buf *cb_back; 639 640 int start_idle_thread(void *stack, jmp_buf *switch_buf) 641 { 642 int n; 643 644 set_handler(SIGWINCH); 645 646 /* 647 * Can't use UML_SETJMP or UML_LONGJMP here because they save 648 * and restore signals, with the possible side-effect of 649 * trying to handle any signals which came when they were 650 * blocked, which can't be done on this stack. 651 * Signals must be blocked when jumping back here and restored 652 * after returning to the jumper. 653 */ 654 n = setjmp(initial_jmpbuf); 655 switch (n) { 656 case INIT_JMP_NEW_THREAD: 657 (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup; 658 (*switch_buf)[0].JB_SP = (unsigned long) stack + 659 UM_THREAD_SIZE - sizeof(void *); 660 break; 661 case INIT_JMP_CALLBACK: 662 (*cb_proc)(cb_arg); 663 longjmp(*cb_back, 1); 664 break; 665 case INIT_JMP_HALT: 666 kmalloc_ok = 0; 667 return 0; 668 case INIT_JMP_REBOOT: 669 kmalloc_ok = 0; 670 return 1; 671 default: 672 printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n", 673 __func__, n); 674 fatal_sigsegv(); 675 } 676 longjmp(*switch_buf, 1); 677 678 /* unreachable */ 679 printk(UM_KERN_ERR "impossible long jump!"); 680 fatal_sigsegv(); 681 return 0; 682 } 683 684 void initial_thread_cb_skas(void (*proc)(void *), void *arg) 685 { 686 jmp_buf here; 687 688 cb_proc = proc; 689 cb_arg = arg; 690 cb_back = &here; 691 692 block_signals_trace(); 693 if (UML_SETJMP(&here) == 0) 694 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK); 695 unblock_signals_trace(); 696 697 cb_proc = NULL; 698 cb_arg = NULL; 699 cb_back = NULL; 700 } 701 702 void halt_skas(void) 703 { 704 block_signals_trace(); 705 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT); 706 } 707 708 static bool noreboot; 709 710 static int __init noreboot_cmd_param(char *str, int *add) 711 { 712 noreboot = true; 713 return 0; 714 } 715 716 __uml_setup("noreboot", noreboot_cmd_param, 717 "noreboot\n" 718 " Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n" 719 " This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n" 720 " crashes in CI\n"); 721 722 void reboot_skas(void) 723 { 724 block_signals_trace(); 725 UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT); 726 } 727 728 void __switch_mm(struct mm_id *mm_idp) 729 { 730 userspace_pid[0] = mm_idp->u.pid; 731 kill_userspace_mm[0] = mm_idp->kill; 732 } 733