xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision fa840ba4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
4  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
5  * Copyright (C) 2004 PathScale, Inc
6  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
7  */
8 
9 #include <stdlib.h>
10 #include <stdarg.h>
11 #include <stdbool.h>
12 #include <errno.h>
13 #include <signal.h>
14 #include <string.h>
15 #include <strings.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
19 #include <sysdep/mcontext.h>
20 #include <um_malloc.h>
21 #include <sys/ucontext.h>
22 #include <timetravel.h>
23 
24 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
25 	[SIGTRAP]	= relay_signal,
26 	[SIGFPE]	= relay_signal,
27 	[SIGILL]	= relay_signal,
28 	[SIGWINCH]	= winch,
29 	[SIGBUS]	= bus_handler,
30 	[SIGSEGV]	= segv_handler,
31 	[SIGIO]		= sigio_handler,
32 };
33 
34 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
35 {
36 	struct uml_pt_regs r;
37 	int save_errno = errno;
38 
39 	r.is_user = 0;
40 	if (sig == SIGSEGV) {
41 		/* For segfaults, we want the data from the sigcontext. */
42 		get_regs_from_mc(&r, mc);
43 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
44 	}
45 
46 	/* enable signals if sig isn't IRQ signal */
47 	if ((sig != SIGIO) && (sig != SIGWINCH))
48 		unblock_signals_trace();
49 
50 	(*sig_info[sig])(sig, si, &r);
51 
52 	errno = save_errno;
53 }
54 
55 /*
56  * These are the asynchronous signals.  SIGPROF is excluded because we want to
57  * be able to profile all of UML, not just the non-critical sections.  If
58  * profiling is not thread-safe, then that is not my problem.  We can disable
59  * profiling when SMP is enabled in that case.
60  */
61 #define SIGIO_BIT 0
62 #define SIGIO_MASK (1 << SIGIO_BIT)
63 
64 #define SIGALRM_BIT 1
65 #define SIGALRM_MASK (1 << SIGALRM_BIT)
66 
67 int signals_enabled;
68 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
69 static int signals_blocked, signals_blocked_pending;
70 #endif
71 static unsigned int signals_pending;
72 static unsigned int signals_active = 0;
73 
74 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
75 {
76 	int enabled = signals_enabled;
77 
78 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
79 	if ((signals_blocked ||
80 	     __atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) &&
81 	    (sig == SIGIO)) {
82 		/* increment so unblock will do another round */
83 		__atomic_add_fetch(&signals_blocked_pending, 1,
84 				   __ATOMIC_SEQ_CST);
85 		return;
86 	}
87 #endif
88 
89 	if (!enabled && (sig == SIGIO)) {
90 		/*
91 		 * In TT_MODE_EXTERNAL, need to still call time-travel
92 		 * handlers. This will mark signals_pending by itself
93 		 * (only if necessary.)
94 		 * Note we won't get here if signals are hard-blocked
95 		 * (which is handled above), in that case the hard-
96 		 * unblock will handle things.
97 		 */
98 		if (time_travel_mode == TT_MODE_EXTERNAL)
99 			sigio_run_timetravel_handlers();
100 		else
101 			signals_pending |= SIGIO_MASK;
102 		return;
103 	}
104 
105 	block_signals_trace();
106 
107 	sig_handler_common(sig, si, mc);
108 
109 	um_set_signals_trace(enabled);
110 }
111 
112 static void timer_real_alarm_handler(mcontext_t *mc)
113 {
114 	struct uml_pt_regs regs;
115 
116 	if (mc != NULL)
117 		get_regs_from_mc(&regs, mc);
118 	else
119 		memset(&regs, 0, sizeof(regs));
120 	timer_handler(SIGALRM, NULL, &regs);
121 }
122 
123 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
124 {
125 	int enabled;
126 
127 	enabled = signals_enabled;
128 	if (!signals_enabled) {
129 		signals_pending |= SIGALRM_MASK;
130 		return;
131 	}
132 
133 	block_signals_trace();
134 
135 	signals_active |= SIGALRM_MASK;
136 
137 	timer_real_alarm_handler(mc);
138 
139 	signals_active &= ~SIGALRM_MASK;
140 
141 	um_set_signals_trace(enabled);
142 }
143 
144 void deliver_alarm(void) {
145     timer_alarm_handler(SIGALRM, NULL, NULL);
146 }
147 
148 void timer_set_signal_handler(void)
149 {
150 	set_handler(SIGALRM);
151 }
152 
153 void set_sigstack(void *sig_stack, int size)
154 {
155 	stack_t stack = {
156 		.ss_flags = 0,
157 		.ss_sp = sig_stack,
158 		.ss_size = size
159 	};
160 
161 	if (sigaltstack(&stack, NULL) != 0)
162 		panic("enabling signal stack failed, errno = %d\n", errno);
163 }
164 
165 static void sigusr1_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
166 {
167 	uml_pm_wake();
168 }
169 
170 void register_pm_wake_signal(void)
171 {
172 	set_handler(SIGUSR1);
173 }
174 
175 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
176 	[SIGSEGV] = sig_handler,
177 	[SIGBUS] = sig_handler,
178 	[SIGILL] = sig_handler,
179 	[SIGFPE] = sig_handler,
180 	[SIGTRAP] = sig_handler,
181 
182 	[SIGIO] = sig_handler,
183 	[SIGWINCH] = sig_handler,
184 	[SIGALRM] = timer_alarm_handler,
185 
186 	[SIGUSR1] = sigusr1_handler,
187 };
188 
189 static void hard_handler(int sig, siginfo_t *si, void *p)
190 {
191 	ucontext_t *uc = p;
192 	mcontext_t *mc = &uc->uc_mcontext;
193 	unsigned long pending = 1UL << sig;
194 
195 	do {
196 		int nested, bail;
197 
198 		/*
199 		 * pending comes back with one bit set for each
200 		 * interrupt that arrived while setting up the stack,
201 		 * plus a bit for this interrupt, plus the zero bit is
202 		 * set if this is a nested interrupt.
203 		 * If bail is true, then we interrupted another
204 		 * handler setting up the stack.  In this case, we
205 		 * have to return, and the upper handler will deal
206 		 * with this interrupt.
207 		 */
208 		bail = to_irq_stack(&pending);
209 		if (bail)
210 			return;
211 
212 		nested = pending & 1;
213 		pending &= ~1;
214 
215 		while ((sig = ffs(pending)) != 0){
216 			sig--;
217 			pending &= ~(1 << sig);
218 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
219 		}
220 
221 		/*
222 		 * Again, pending comes back with a mask of signals
223 		 * that arrived while tearing down the stack.  If this
224 		 * is non-zero, we just go back, set up the stack
225 		 * again, and handle the new interrupts.
226 		 */
227 		if (!nested)
228 			pending = from_irq_stack(nested);
229 	} while (pending);
230 }
231 
232 void set_handler(int sig)
233 {
234 	struct sigaction action;
235 	int flags = SA_SIGINFO | SA_ONSTACK;
236 	sigset_t sig_mask;
237 
238 	action.sa_sigaction = hard_handler;
239 
240 	/* block irq ones */
241 	sigemptyset(&action.sa_mask);
242 	sigaddset(&action.sa_mask, SIGIO);
243 	sigaddset(&action.sa_mask, SIGWINCH);
244 	sigaddset(&action.sa_mask, SIGALRM);
245 
246 	if (sig == SIGSEGV)
247 		flags |= SA_NODEFER;
248 
249 	if (sigismember(&action.sa_mask, sig))
250 		flags |= SA_RESTART; /* if it's an irq signal */
251 
252 	action.sa_flags = flags;
253 	action.sa_restorer = NULL;
254 	if (sigaction(sig, &action, NULL) < 0)
255 		panic("sigaction failed - errno = %d\n", errno);
256 
257 	sigemptyset(&sig_mask);
258 	sigaddset(&sig_mask, sig);
259 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
260 		panic("sigprocmask failed - errno = %d\n", errno);
261 }
262 
263 void send_sigio_to_self(void)
264 {
265 	kill(os_getpid(), SIGIO);
266 }
267 
268 int change_sig(int signal, int on)
269 {
270 	sigset_t sigset;
271 
272 	sigemptyset(&sigset);
273 	sigaddset(&sigset, signal);
274 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
275 		return -errno;
276 
277 	return 0;
278 }
279 
280 void block_signals(void)
281 {
282 	signals_enabled = 0;
283 	/*
284 	 * This must return with signals disabled, so this barrier
285 	 * ensures that writes are flushed out before the return.
286 	 * This might matter if gcc figures out how to inline this and
287 	 * decides to shuffle this code into the caller.
288 	 */
289 	barrier();
290 }
291 
292 void unblock_signals(void)
293 {
294 	int save_pending;
295 
296 	if (signals_enabled == 1)
297 		return;
298 
299 	signals_enabled = 1;
300 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
301 	deliver_time_travel_irqs();
302 #endif
303 
304 	/*
305 	 * We loop because the IRQ handler returns with interrupts off.  So,
306 	 * interrupts may have arrived and we need to re-enable them and
307 	 * recheck signals_pending.
308 	 */
309 	while (1) {
310 		/*
311 		 * Save and reset save_pending after enabling signals.  This
312 		 * way, signals_pending won't be changed while we're reading it.
313 		 *
314 		 * Setting signals_enabled and reading signals_pending must
315 		 * happen in this order, so have the barrier here.
316 		 */
317 		barrier();
318 
319 		save_pending = signals_pending;
320 		if (save_pending == 0)
321 			return;
322 
323 		signals_pending = 0;
324 
325 		/*
326 		 * We have pending interrupts, so disable signals, as the
327 		 * handlers expect them off when they are called.  They will
328 		 * be enabled again above. We need to trace this, as we're
329 		 * expected to be enabling interrupts already, but any more
330 		 * tracing that happens inside the handlers we call for the
331 		 * pending signals will mess up the tracing state.
332 		 */
333 		signals_enabled = 0;
334 		um_trace_signals_off();
335 
336 		/*
337 		 * Deal with SIGIO first because the alarm handler might
338 		 * schedule, leaving the pending SIGIO stranded until we come
339 		 * back here.
340 		 *
341 		 * SIGIO's handler doesn't use siginfo or mcontext,
342 		 * so they can be NULL.
343 		 */
344 		if (save_pending & SIGIO_MASK)
345 			sig_handler_common(SIGIO, NULL, NULL);
346 
347 		/* Do not reenter the handler */
348 
349 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK)))
350 			timer_real_alarm_handler(NULL);
351 
352 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */
353 
354 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK))
355 			return;
356 
357 		/* Re-enable signals and trace that we're doing so. */
358 		um_trace_signals_on();
359 		signals_enabled = 1;
360 	}
361 }
362 
363 int um_set_signals(int enable)
364 {
365 	int ret;
366 	if (signals_enabled == enable)
367 		return enable;
368 
369 	ret = signals_enabled;
370 	if (enable)
371 		unblock_signals();
372 	else block_signals();
373 
374 	return ret;
375 }
376 
377 int um_set_signals_trace(int enable)
378 {
379 	int ret;
380 	if (signals_enabled == enable)
381 		return enable;
382 
383 	ret = signals_enabled;
384 	if (enable)
385 		unblock_signals_trace();
386 	else
387 		block_signals_trace();
388 
389 	return ret;
390 }
391 
392 #ifdef UML_CONFIG_UML_TIME_TRAVEL_SUPPORT
393 void mark_sigio_pending(void)
394 {
395 	/*
396 	 * It would seem that this should be atomic so
397 	 * it isn't a read-modify-write with a signal
398 	 * that could happen in the middle, losing the
399 	 * value set by the signal.
400 	 *
401 	 * However, this function is only called when in
402 	 * time-travel=ext simulation mode, in which case
403 	 * the only signal ever pending is SIGIO, which
404 	 * is blocked while this can be called, and the
405 	 * timer signal (SIGALRM) cannot happen.
406 	 */
407 	signals_pending |= SIGIO_MASK;
408 }
409 
410 void block_signals_hard(void)
411 {
412 	signals_blocked++;
413 	barrier();
414 }
415 
416 void unblock_signals_hard(void)
417 {
418 	static bool unblocking;
419 
420 	if (!signals_blocked)
421 		panic("unblocking signals while not blocked");
422 
423 	if (--signals_blocked)
424 		return;
425 	/*
426 	 * Must be set to 0 before we check pending so the
427 	 * SIGIO handler will run as normal unless we're still
428 	 * going to process signals_blocked_pending.
429 	 */
430 	barrier();
431 
432 	/*
433 	 * Note that block_signals_hard()/unblock_signals_hard() can be called
434 	 * within the unblock_signals()/sigio_run_timetravel_handlers() below.
435 	 * This would still be prone to race conditions since it's actually a
436 	 * call _within_ e.g. vu_req_read_message(), where we observed this
437 	 * issue, which loops. Thus, if the inner call handles the recorded
438 	 * pending signals, we can get out of the inner call with the real
439 	 * signal hander no longer blocked, and still have a race. Thus don't
440 	 * handle unblocking in the inner call, if it happens, but only in
441 	 * the outermost call - 'unblocking' serves as an ownership for the
442 	 * signals_blocked_pending decrement.
443 	 */
444 	if (unblocking)
445 		return;
446 	unblocking = true;
447 
448 	while (__atomic_load_n(&signals_blocked_pending, __ATOMIC_SEQ_CST)) {
449 		if (signals_enabled) {
450 			/* signals are enabled so we can touch this */
451 			signals_pending |= SIGIO_MASK;
452 			/*
453 			 * this is a bit inefficient, but that's
454 			 * not really important
455 			 */
456 			block_signals();
457 			unblock_signals();
458 		} else {
459 			/*
460 			 * we need to run time-travel handlers even
461 			 * if not enabled
462 			 */
463 			sigio_run_timetravel_handlers();
464 		}
465 
466 		/*
467 		 * The decrement of signals_blocked_pending must be atomic so
468 		 * that the signal handler will either happen before or after
469 		 * the decrement, not during a read-modify-write:
470 		 *  - If it happens before, it can increment it and we'll
471 		 *    decrement it and do another round in the loop.
472 		 *  - If it happens after it'll see 0 for both signals_blocked
473 		 *    and signals_blocked_pending and thus run the handler as
474 		 *    usual (subject to signals_enabled, but that's unrelated.)
475 		 *
476 		 * Note that a call to unblock_signals_hard() within the calls
477 		 * to unblock_signals() or sigio_run_timetravel_handlers() above
478 		 * will do nothing due to the 'unblocking' state, so this cannot
479 		 * underflow as the only one decrementing will be the outermost
480 		 * one.
481 		 */
482 		if (__atomic_sub_fetch(&signals_blocked_pending, 1,
483 				       __ATOMIC_SEQ_CST) < 0)
484 			panic("signals_blocked_pending underflow");
485 	}
486 
487 	unblocking = false;
488 }
489 #endif
490 
491 int os_is_signal_stack(void)
492 {
493 	stack_t ss;
494 	sigaltstack(NULL, &ss);
495 
496 	return ss.ss_flags & SS_ONSTACK;
497 }
498