xref: /openbmc/linux/arch/um/os-Linux/signal.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Copyright (C) 2004 PathScale, Inc
3  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  * Licensed under the GPL
5  */
6 
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include <as-layout.h>
13 #include <kern_util.h>
14 #include <os.h>
15 #include <sysdep/mcontext.h>
16 #include "internal.h"
17 
18 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
19 	[SIGTRAP]	= relay_signal,
20 	[SIGFPE]	= relay_signal,
21 	[SIGILL]	= relay_signal,
22 	[SIGWINCH]	= winch,
23 	[SIGBUS]	= bus_handler,
24 	[SIGSEGV]	= segv_handler,
25 	[SIGIO]		= sigio_handler,
26 	[SIGVTALRM]	= timer_handler };
27 
28 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
29 {
30 	struct uml_pt_regs r;
31 	int save_errno = errno;
32 
33 	r.is_user = 0;
34 	if (sig == SIGSEGV) {
35 		/* For segfaults, we want the data from the sigcontext. */
36 		get_regs_from_mc(&r, mc);
37 		GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
38 	}
39 
40 	/* enable signals if sig isn't IRQ signal */
41 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
42 		unblock_signals();
43 
44 	(*sig_info[sig])(sig, si, &r);
45 
46 	errno = save_errno;
47 }
48 
49 /*
50  * These are the asynchronous signals.  SIGPROF is excluded because we want to
51  * be able to profile all of UML, not just the non-critical sections.  If
52  * profiling is not thread-safe, then that is not my problem.  We can disable
53  * profiling when SMP is enabled in that case.
54  */
55 #define SIGIO_BIT 0
56 #define SIGIO_MASK (1 << SIGIO_BIT)
57 
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
60 
61 static int signals_enabled;
62 static unsigned int signals_pending;
63 
64 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
65 {
66 	int enabled;
67 
68 	enabled = signals_enabled;
69 	if (!enabled && (sig == SIGIO)) {
70 		signals_pending |= SIGIO_MASK;
71 		return;
72 	}
73 
74 	block_signals();
75 
76 	sig_handler_common(sig, si, mc);
77 
78 	set_signals(enabled);
79 }
80 
81 static void real_alarm_handler(mcontext_t *mc)
82 {
83 	struct uml_pt_regs regs;
84 
85 	if (mc != NULL)
86 		get_regs_from_mc(&regs, mc);
87 	regs.is_user = 0;
88 	unblock_signals();
89 	timer_handler(SIGVTALRM, NULL, &regs);
90 }
91 
92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
93 {
94 	int enabled;
95 
96 	enabled = signals_enabled;
97 	if (!signals_enabled) {
98 		signals_pending |= SIGVTALRM_MASK;
99 		return;
100 	}
101 
102 	block_signals();
103 
104 	real_alarm_handler(mc);
105 	set_signals(enabled);
106 }
107 
108 void timer_init(void)
109 {
110 	set_handler(SIGVTALRM);
111 }
112 
113 void set_sigstack(void *sig_stack, int size)
114 {
115 	stack_t stack = {
116 		.ss_flags = 0,
117 		.ss_sp = sig_stack,
118 		.ss_size = size - sizeof(void *)
119 	};
120 
121 	if (sigaltstack(&stack, NULL) != 0)
122 		panic("enabling signal stack failed, errno = %d\n", errno);
123 }
124 
125 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
126 	[SIGSEGV] = sig_handler,
127 	[SIGBUS] = sig_handler,
128 	[SIGILL] = sig_handler,
129 	[SIGFPE] = sig_handler,
130 	[SIGTRAP] = sig_handler,
131 
132 	[SIGIO] = sig_handler,
133 	[SIGWINCH] = sig_handler,
134 	[SIGVTALRM] = alarm_handler
135 };
136 
137 
138 static void hard_handler(int sig, siginfo_t *si, void *p)
139 {
140 	struct ucontext *uc = p;
141 	mcontext_t *mc = &uc->uc_mcontext;
142 	unsigned long pending = 1UL << sig;
143 
144 	do {
145 		int nested, bail;
146 
147 		/*
148 		 * pending comes back with one bit set for each
149 		 * interrupt that arrived while setting up the stack,
150 		 * plus a bit for this interrupt, plus the zero bit is
151 		 * set if this is a nested interrupt.
152 		 * If bail is true, then we interrupted another
153 		 * handler setting up the stack.  In this case, we
154 		 * have to return, and the upper handler will deal
155 		 * with this interrupt.
156 		 */
157 		bail = to_irq_stack(&pending);
158 		if (bail)
159 			return;
160 
161 		nested = pending & 1;
162 		pending &= ~1;
163 
164 		while ((sig = ffs(pending)) != 0){
165 			sig--;
166 			pending &= ~(1 << sig);
167 			(*handlers[sig])(sig, (struct siginfo *)si, mc);
168 		}
169 
170 		/*
171 		 * Again, pending comes back with a mask of signals
172 		 * that arrived while tearing down the stack.  If this
173 		 * is non-zero, we just go back, set up the stack
174 		 * again, and handle the new interrupts.
175 		 */
176 		if (!nested)
177 			pending = from_irq_stack(nested);
178 	} while (pending);
179 }
180 
181 void set_handler(int sig)
182 {
183 	struct sigaction action;
184 	int flags = SA_SIGINFO | SA_ONSTACK;
185 	sigset_t sig_mask;
186 
187 	action.sa_sigaction = hard_handler;
188 
189 	/* block irq ones */
190 	sigemptyset(&action.sa_mask);
191 	sigaddset(&action.sa_mask, SIGVTALRM);
192 	sigaddset(&action.sa_mask, SIGIO);
193 	sigaddset(&action.sa_mask, SIGWINCH);
194 
195 	if (sig == SIGSEGV)
196 		flags |= SA_NODEFER;
197 
198 	if (sigismember(&action.sa_mask, sig))
199 		flags |= SA_RESTART; /* if it's an irq signal */
200 
201 	action.sa_flags = flags;
202 	action.sa_restorer = NULL;
203 	if (sigaction(sig, &action, NULL) < 0)
204 		panic("sigaction failed - errno = %d\n", errno);
205 
206 	sigemptyset(&sig_mask);
207 	sigaddset(&sig_mask, sig);
208 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
209 		panic("sigprocmask failed - errno = %d\n", errno);
210 }
211 
212 int change_sig(int signal, int on)
213 {
214 	sigset_t sigset;
215 
216 	sigemptyset(&sigset);
217 	sigaddset(&sigset, signal);
218 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
219 		return -errno;
220 
221 	return 0;
222 }
223 
224 void block_signals(void)
225 {
226 	signals_enabled = 0;
227 	/*
228 	 * This must return with signals disabled, so this barrier
229 	 * ensures that writes are flushed out before the return.
230 	 * This might matter if gcc figures out how to inline this and
231 	 * decides to shuffle this code into the caller.
232 	 */
233 	barrier();
234 }
235 
236 void unblock_signals(void)
237 {
238 	int save_pending;
239 
240 	if (signals_enabled == 1)
241 		return;
242 
243 	/*
244 	 * We loop because the IRQ handler returns with interrupts off.  So,
245 	 * interrupts may have arrived and we need to re-enable them and
246 	 * recheck signals_pending.
247 	 */
248 	while (1) {
249 		/*
250 		 * Save and reset save_pending after enabling signals.  This
251 		 * way, signals_pending won't be changed while we're reading it.
252 		 */
253 		signals_enabled = 1;
254 
255 		/*
256 		 * Setting signals_enabled and reading signals_pending must
257 		 * happen in this order.
258 		 */
259 		barrier();
260 
261 		save_pending = signals_pending;
262 		if (save_pending == 0)
263 			return;
264 
265 		signals_pending = 0;
266 
267 		/*
268 		 * We have pending interrupts, so disable signals, as the
269 		 * handlers expect them off when they are called.  They will
270 		 * be enabled again above.
271 		 */
272 
273 		signals_enabled = 0;
274 
275 		/*
276 		 * Deal with SIGIO first because the alarm handler might
277 		 * schedule, leaving the pending SIGIO stranded until we come
278 		 * back here.
279 		 *
280 		 * SIGIO's handler doesn't use siginfo or mcontext,
281 		 * so they can be NULL.
282 		 */
283 		if (save_pending & SIGIO_MASK)
284 			sig_handler_common(SIGIO, NULL, NULL);
285 
286 		if (save_pending & SIGVTALRM_MASK)
287 			real_alarm_handler(NULL);
288 	}
289 }
290 
291 int get_signals(void)
292 {
293 	return signals_enabled;
294 }
295 
296 int set_signals(int enable)
297 {
298 	int ret;
299 	if (signals_enabled == enable)
300 		return enable;
301 
302 	ret = signals_enabled;
303 	if (enable)
304 		unblock_signals();
305 	else block_signals();
306 
307 	return ret;
308 }
309 
310 int os_is_signal_stack(void)
311 {
312 	stack_t ss;
313 	sigaltstack(NULL, &ss);
314 
315 	return ss.ss_flags & SS_ONSTACK;
316 }
317