1 /* 2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) 3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) 4 * Copyright (C) 2004 PathScale, Inc 5 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) 6 * Licensed under the GPL 7 */ 8 9 #include <stdlib.h> 10 #include <stdarg.h> 11 #include <errno.h> 12 #include <signal.h> 13 #include <strings.h> 14 #include <as-layout.h> 15 #include <kern_util.h> 16 #include <os.h> 17 #include <sysdep/mcontext.h> 18 #include <um_malloc.h> 19 #include <sys/ucontext.h> 20 21 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = { 22 [SIGTRAP] = relay_signal, 23 [SIGFPE] = relay_signal, 24 [SIGILL] = relay_signal, 25 [SIGWINCH] = winch, 26 [SIGBUS] = bus_handler, 27 [SIGSEGV] = segv_handler, 28 [SIGIO] = sigio_handler, 29 [SIGALRM] = timer_handler 30 }; 31 32 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc) 33 { 34 struct uml_pt_regs *r; 35 int save_errno = errno; 36 37 r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); 38 if (!r) 39 panic("out of memory"); 40 41 r->is_user = 0; 42 if (sig == SIGSEGV) { 43 /* For segfaults, we want the data from the sigcontext. */ 44 get_regs_from_mc(r, mc); 45 GET_FAULTINFO_FROM_MC(r->faultinfo, mc); 46 } 47 48 /* enable signals if sig isn't IRQ signal */ 49 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM)) 50 unblock_signals(); 51 52 (*sig_info[sig])(sig, si, r); 53 54 errno = save_errno; 55 56 free(r); 57 } 58 59 /* 60 * These are the asynchronous signals. SIGPROF is excluded because we want to 61 * be able to profile all of UML, not just the non-critical sections. If 62 * profiling is not thread-safe, then that is not my problem. We can disable 63 * profiling when SMP is enabled in that case. 64 */ 65 #define SIGIO_BIT 0 66 #define SIGIO_MASK (1 << SIGIO_BIT) 67 68 #define SIGALRM_BIT 1 69 #define SIGALRM_MASK (1 << SIGALRM_BIT) 70 71 static int signals_enabled; 72 static unsigned int signals_pending; 73 static unsigned int signals_active = 0; 74 75 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc) 76 { 77 int enabled; 78 79 enabled = signals_enabled; 80 if (!enabled && (sig == SIGIO)) { 81 signals_pending |= SIGIO_MASK; 82 return; 83 } 84 85 block_signals(); 86 87 sig_handler_common(sig, si, mc); 88 89 set_signals(enabled); 90 } 91 92 static void timer_real_alarm_handler(mcontext_t *mc) 93 { 94 struct uml_pt_regs *regs; 95 96 regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); 97 if (!regs) 98 panic("out of memory"); 99 100 if (mc != NULL) 101 get_regs_from_mc(regs, mc); 102 timer_handler(SIGALRM, NULL, regs); 103 104 free(regs); 105 } 106 107 void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc) 108 { 109 int enabled; 110 111 enabled = signals_enabled; 112 if (!signals_enabled) { 113 signals_pending |= SIGALRM_MASK; 114 return; 115 } 116 117 block_signals(); 118 119 signals_active |= SIGALRM_MASK; 120 121 timer_real_alarm_handler(mc); 122 123 signals_active &= ~SIGALRM_MASK; 124 125 set_signals(enabled); 126 } 127 128 void deliver_alarm(void) { 129 timer_alarm_handler(SIGALRM, NULL, NULL); 130 } 131 132 void timer_set_signal_handler(void) 133 { 134 set_handler(SIGALRM); 135 } 136 137 void set_sigstack(void *sig_stack, int size) 138 { 139 stack_t stack = { 140 .ss_flags = 0, 141 .ss_sp = sig_stack, 142 .ss_size = size - sizeof(void *) 143 }; 144 145 if (sigaltstack(&stack, NULL) != 0) 146 panic("enabling signal stack failed, errno = %d\n", errno); 147 } 148 149 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = { 150 [SIGSEGV] = sig_handler, 151 [SIGBUS] = sig_handler, 152 [SIGILL] = sig_handler, 153 [SIGFPE] = sig_handler, 154 [SIGTRAP] = sig_handler, 155 156 [SIGIO] = sig_handler, 157 [SIGWINCH] = sig_handler, 158 [SIGALRM] = timer_alarm_handler 159 }; 160 161 static void hard_handler(int sig, siginfo_t *si, void *p) 162 { 163 ucontext_t *uc = p; 164 mcontext_t *mc = &uc->uc_mcontext; 165 unsigned long pending = 1UL << sig; 166 167 do { 168 int nested, bail; 169 170 /* 171 * pending comes back with one bit set for each 172 * interrupt that arrived while setting up the stack, 173 * plus a bit for this interrupt, plus the zero bit is 174 * set if this is a nested interrupt. 175 * If bail is true, then we interrupted another 176 * handler setting up the stack. In this case, we 177 * have to return, and the upper handler will deal 178 * with this interrupt. 179 */ 180 bail = to_irq_stack(&pending); 181 if (bail) 182 return; 183 184 nested = pending & 1; 185 pending &= ~1; 186 187 while ((sig = ffs(pending)) != 0){ 188 sig--; 189 pending &= ~(1 << sig); 190 (*handlers[sig])(sig, (struct siginfo *)si, mc); 191 } 192 193 /* 194 * Again, pending comes back with a mask of signals 195 * that arrived while tearing down the stack. If this 196 * is non-zero, we just go back, set up the stack 197 * again, and handle the new interrupts. 198 */ 199 if (!nested) 200 pending = from_irq_stack(nested); 201 } while (pending); 202 } 203 204 void set_handler(int sig) 205 { 206 struct sigaction action; 207 int flags = SA_SIGINFO | SA_ONSTACK; 208 sigset_t sig_mask; 209 210 action.sa_sigaction = hard_handler; 211 212 /* block irq ones */ 213 sigemptyset(&action.sa_mask); 214 sigaddset(&action.sa_mask, SIGIO); 215 sigaddset(&action.sa_mask, SIGWINCH); 216 sigaddset(&action.sa_mask, SIGALRM); 217 218 if (sig == SIGSEGV) 219 flags |= SA_NODEFER; 220 221 if (sigismember(&action.sa_mask, sig)) 222 flags |= SA_RESTART; /* if it's an irq signal */ 223 224 action.sa_flags = flags; 225 action.sa_restorer = NULL; 226 if (sigaction(sig, &action, NULL) < 0) 227 panic("sigaction failed - errno = %d\n", errno); 228 229 sigemptyset(&sig_mask); 230 sigaddset(&sig_mask, sig); 231 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) 232 panic("sigprocmask failed - errno = %d\n", errno); 233 } 234 235 int change_sig(int signal, int on) 236 { 237 sigset_t sigset; 238 239 sigemptyset(&sigset); 240 sigaddset(&sigset, signal); 241 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0) 242 return -errno; 243 244 return 0; 245 } 246 247 void block_signals(void) 248 { 249 signals_enabled = 0; 250 /* 251 * This must return with signals disabled, so this barrier 252 * ensures that writes are flushed out before the return. 253 * This might matter if gcc figures out how to inline this and 254 * decides to shuffle this code into the caller. 255 */ 256 barrier(); 257 } 258 259 void unblock_signals(void) 260 { 261 int save_pending; 262 263 if (signals_enabled == 1) 264 return; 265 266 /* 267 * We loop because the IRQ handler returns with interrupts off. So, 268 * interrupts may have arrived and we need to re-enable them and 269 * recheck signals_pending. 270 */ 271 while (1) { 272 /* 273 * Save and reset save_pending after enabling signals. This 274 * way, signals_pending won't be changed while we're reading it. 275 */ 276 signals_enabled = 1; 277 278 /* 279 * Setting signals_enabled and reading signals_pending must 280 * happen in this order. 281 */ 282 barrier(); 283 284 save_pending = signals_pending; 285 if (save_pending == 0) 286 return; 287 288 signals_pending = 0; 289 290 /* 291 * We have pending interrupts, so disable signals, as the 292 * handlers expect them off when they are called. They will 293 * be enabled again above. 294 */ 295 296 signals_enabled = 0; 297 298 /* 299 * Deal with SIGIO first because the alarm handler might 300 * schedule, leaving the pending SIGIO stranded until we come 301 * back here. 302 * 303 * SIGIO's handler doesn't use siginfo or mcontext, 304 * so they can be NULL. 305 */ 306 if (save_pending & SIGIO_MASK) 307 sig_handler_common(SIGIO, NULL, NULL); 308 309 /* Do not reenter the handler */ 310 311 if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK))) 312 timer_real_alarm_handler(NULL); 313 314 /* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */ 315 316 if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK)) 317 return; 318 319 } 320 } 321 322 int get_signals(void) 323 { 324 return signals_enabled; 325 } 326 327 int set_signals(int enable) 328 { 329 int ret; 330 if (signals_enabled == enable) 331 return enable; 332 333 ret = signals_enabled; 334 if (enable) 335 unblock_signals(); 336 else block_signals(); 337 338 return ret; 339 } 340 341 int os_is_signal_stack(void) 342 { 343 stack_t ss; 344 sigaltstack(NULL, &ss); 345 346 return ss.ss_flags & SS_ONSTACK; 347 } 348